1.4. Một số loại vật liệu polyme nanocompozit điển hình
1.4.1. Vật liệu polyme ống carbon nanocompozit
- Chế tạo vật liệu polyme ống carbon nanocompozit
Như các vật liệu polyme nanocompozit khác, các phương pháp chủ yếu hiện nay để chế tạo vật liệu polyme ống nano carbon (CNT) nanocompozit là trộn hợp trong dung môi, trộn hợp nóng chảy và trùng hợp in-situ [11].
+ Phương pháp trộn hợp trong dung môi: Dung môi phù hợp được sử dụng để
hòa tan vật liệu polyme nền và phân tán CNT. Sau đó chúng được trộn hợp bằng cách khuấy cơ học, siêu âm hoặc phối hợp cả hai phương pháp để tạo thành hệ đồng nhất và cuối cùng làm bốc hơi dung mơi ở điều kiện có hoặc khơng có chân
khơng. Phương pháp này được sử dụng để chế tạo màng polyme nanocompozit. Theo một số tác giả, phân tán hiệu quả nhất đạt được bằng cách rung siêu âm.
Sơ đồ khối của quá trình được trình bày trên hình dưới đây.
Hình 1.7: Sơ đồ nguyên lý chế tạo CNT polyme nanocompozit theo
phương pháp trộn hợp trong dung mơi
+ Trộn hợp nóng chảy: Các polyme nhiệt dẻo được làm nóng chảy và chuyển sang trạng thái chảy nhớt ở nhiệt độ cao hơn nhiệt độ nóng chảy của nó. Phương pháp trộn hợp nóng chảy đơn giản, dễ thực hiện và do vậy có giá trị để chế tạo compozit trên cơ sở CNT và được ứng dụng phổ biến cho các loại nanocompozit với nhựa nhiệt dẻo. Phương pháp này không sử dụng dung môi nên thuận tiện hơn nhiều trong q trình gia cơng (khơng cần tách, xử lý và thu hồi dung môi). Q trình trộn hợp nóng chảy có thể thực hiện trên máy trộn kín hay hệ thống máy đùn một hoặc hai trục vít [13].
+ Trùng hợp in-situ: Phản ứng trùng hợp in-situ được thực hiện như sau: monome và CNT được phối trộn (cơ học hoặc thủ công). Trong giai đoạn này monome và CNT phân bố đồng đều vào nhau, các monome được phân bố ở bên trong và bên ngoài ống CNT. Tiếp theo, chất khơi mào và chất đóng rắn được trộn hợp vào hỗn hợp monone và CNT [22]. Q trình trùng hợp đóng rắn khối vật liệu xảy ra tạo thành vật liệu polyme nanocompozit với các polyme hình thành bao bọc lấy các ống CNT, thậm chí có cả mạch polyme hình thành phía bên trong ống nano carbon. Sơ đồ khối của quá trình được trình bày trên hình dưới đây.
Hình 1.8: Sơ đồ nguyên lý quá trình chế tạo polyme CNT nanocompozit
theo phương pháp trùng hợp in-situ
Trùng hợp in-situ có một số ưu điểm so với phương pháp chế chế tạo polyme CNT nanocompozit khác. Điều này là do sự tương tác mạnh mẽ giữa polyme và ống nano carbon khi hình thành polyme dễ dàng hơn so với trộn polyme bằng các phương pháp khác. Trong một số trường hợp, tùy thuộc vào cách thực hiện phản ứng, một số mạch polyme thậm chí có thể được gắn cộng hóa trị vào các ống nano. Các phương pháp này làm tăng cường độ bền trượt của mặt phân cách vì tương tác mạnh của polyme/ống nano carbon.
- Tính chất của vật liệu polyme CNT nanocompozit
CNT có thể được coi như sợi carbon cơ bản với độ bền kéo đứt cao (150 GPa), modul đàn hồi cao (1200 GPa) và diện tích bề mặt riêng lớn gấp 500 lần sợi carbon. Chính vì vậy, vật liệu này đã được quan tâm nghiên cứu sử dụng làm vật liệu gia cường cho polyme. Trong các polyme nanocompozit, CNT có liên kết cộng hóa trị với chuỗi polyme làm cho tính chất cơ học được nâng cao. Điều này đã cải thiện, sự phân tán CNT và sự truyền ứng suất vào nền polyme. Sự phối hợp của CNT chưa biến đổi bề mặt với các polyme bằng phương pháp dung dịch như trường hợp gia cường PVA bằng CNT làm tăng mạnh tính chất cơ lý của vật liệu sau khi thêm CNT. Điều này có thể giải thích do CNT làm mầm cho sự kết tinh của polyme, do đó dẫn đến tạo ra vật liệu cứng hơn [20].
Bản chất vật liệu gia cường ống nano carbon cũng là yếu tố có vai trị quan trọng đối với các tính chất của vật liệu nanocompozit. Độ bền mỏi của compozit SWCNT/epoxy cao gấp đôi so với compozit sợi carbon/epoxy [31].
Một vấn đề thường gặp phải trong việc chế tạo polyme nanocompozit gia cường CNT là sự kết tụ của CNT và tương tác trên bề mặt yếu giữa CNT và nền. Để giải quyết vấn đề này, nhiều nghiên cứu đã đưa ra phương pháp hiệu quả để phân tán đồng đều CNT và tăng cường tương tác trên bề mặt trong nền polyme. Một phương pháp hiệu quả là chức hóa CNT, tạo ra các nhóm chức trên bề mặt CNT. Thơng qua đó, có thể tăng cường sự phân tán của CNT trong nền cũng như tương tác giữa CNT với pha nền. Tuy nhiên, các nhóm chức này phải có khả năng phản ứng với polyme nền. Qua một số kết quả nghiên cứu cho thấy, CNT chức hóa bằng 3- aminopropyltrietoxysilan là một phương pháp hiệu quả có thể tạo ra các nhóm chức trên bề mặt của CNT làm chúng có thể phân tán tốt hơn trong nền epoxy. Các nghiên cứu cũng cho thấy rằng, CNT chức hóa bằng silan vẫn cịn ngun vẹn cấu trúc, khơng có sự phá hủy CNT trong q trình silan hóa và tính chất bền kéo của CNT chức hóa silan/epoxy nanocompozit tốt hơn so với CNT biến tính axit/epoxy nanocompozit [13,34].