Tình hình nghiên cứu vật liệu polyme nanocompozit

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở blend của cao su thiên nhiên với cao su nitril butadien và một số phụ gia nan (Trang 37)

Do những tiềm năng to lớn của công nghệ nano, các quốc gia trên thế giới không ngừng đưa ra các chiến lược nhằm chú trọng đầu tư vào nghiên cứu và phát triển công nghệ nano. Về mặt chiến lược, kể từ năm 1990 công nghệ nano đã trở thành nhiệm vụ quốc gia ở các nước như Mỹ, Nhật, Hàn Quốc và liên minh Châu Âu. Về mặt đầu tư, theo tờ Lux Reaserch (2004) một báo cáo được công bố gần đây của Mỹ, cho biết trong năm 2004 chính phủ của các nước trên tồn thế giới đã chi cho cơng nghệ nano đạt 4,6 tỷ USD, trong đó các nước Bắc Mỹ chi 1,6 tỷ USD, các nước châu Á chi 1,6 tỷ, các nước châu Âu chi 1,3 tỷ và khoảng 133 triệu USD là của các nước khác [42].

Mỹ là quốc gia đi đầu trong việc phát triển công nghệ nano. Cùng với việc thông qua đạo luật R&D (reaserch and devolop) Công nghệ nano thế kỷ 21 và tiếp theo đó là Sáng kiến Công nghệ nano quốc gia, Mỹ đã dành 3,7 tỷ USD đầu tư cho công nghệ nano giai đoạn 2005-2008. Tại châu Âu, mỗi nước đều theo đuổi những chương trình phát triển cơng nghệ nano theo mục tiêu của riêng mình; và cả cấp độ EU, với một chương trình có nền tảng rộng rãi hơn. Ví dụ, theo chương trình Khung về Nghiên cứu và Phát triển công nghệ lần thứ 6 (FP 6), EU cam kết tài trợ 350 triệu euro cho công nghệ nano năm 2003, chiếm 1/3 tổng chi tiêu châu Âu. Tại châu Á, theo báo cáo của Chương trình Thơng tin về cơng nghệ châu Á (ATIP) thì Nhật Bản là nước đầu tư mạnh cho công nghệ nano hàng đầu thế giới, năm 2004 Nhật đã đầu tư cho lĩnh vực này đạt 900 triệu USD và tăng lên 950 triệu USD vào cuối năm 2005. Chính phủ Nhật

đã coi việc “phát triển những linh kiện mới sử dụng công nghệ nano” là một trong “5 dự án hàng đầu” nhằm phục hồi kinh tế đất nước. Ngoài ra các nước châu Á khác như Trung Quốc, Ấn Độ, Hàn Quốc, Đài Loan, Thái Lan,… cũng đưa ra những kế hoạch dài hạn và những khoản đầu tư lớn cho việc nghiên cứu và phát triển đầu tư công nghệ nano ứng dụng cho các ngành khác nhau.

Trong số các vật liệu có kích thước nano thì nanoclay thu hút được sự quan tâm chú ý của rất nhiều nhà khoa học bởi các đặc tính ưu việt của chúng như diện tích bề mặt riêng lớn cỡ 700800 m2/g, giá thành rẻ, dễ điều chế,... Chỉ với một lượng nhỏ cỡ vài phần trăm khối lượng được đưa vào polyme người ta có thể nâng cao nhiều tính chất cơ lý của vật liệu, nâng cao khả năng chống cháy, hệ số chống thấm khí lên rất nhiều lần mà không làm tăng đáng kể trọng lượng, độ trong của vật liệu [23,35].

Hiện nay, số lượng các cơng trình cơng bố về polyme/silica nanocompozit ngày càng tăng. Những phát triển gần đây về việc chế tạo, đặc điểm, tính chất và ứng dụng của loại nanocompozit này đã được xem xét. Chủ yếu có ba phương pháp để chế tạo polyme/silica nanocompozit có thể được sử dụng là trộn nóng chảy, quá trình sol gel và trùng hợp in-situ, cả ba phương pháp này đã được nghiên cứu rộng rãi. Ngồi các tính chất của các thành phần cấu tử trong nanocompozit, mức độ phân tán của các hạt nano trong polyme và sự tương tác bề mặt đóng vai trị quan trọng trong việc gia cường hoặc hạn chế các tính chất chung của hệ. Xu hướng cho thấy khơng có mơ hình chung cho các tính chất của vật liệu polyme nanocompozit có thể được suy luận tổng quát. Tuy nhiên các tính chất của polyme/silica nanocompozit, nói chung là cao hơn hẳn với những polyme tinh khiết và polyme microcompozit [43,46].

Polyme/silica nanocompozit nói chung và cao su/silica nanocompozit nói riêng cũng được nhiều nhà khoa học quan tâm nghiên cứu, đặc biệt là cao su thiên nhiên/silica nanocompozit. Tính chất của vật liệu cao su thiên nhiên/nanosilica cho thấy, nanosilica làm tăng thời gian lưu hóa, ứng suất kéo của cao su-nanosilica ở độ dãn dài thấp nhỏ hơn với cao su thường. Zheng Peng và cộng sự [50] đã nghiên cứu cao su thiên nhiên/silica nanocompozit tự ghép, kết quả cho thấy nano-SiO phân tán

đồng nhất trong nền cao su, kích cỡ hạt vào khoảng 60-150nm khi hàm lượng SiO2 dưới 6,5%. Ở hàm lượng 4% nano-SiO2 nâng cao khả năng bền nhiệt và tính chất cơ học cho cao su thiên nhiên trong đó độ bền kéo đứt của vật liệu tăng mạnh (cao su thiên nhiên khơng độn là 15,1 MPa cịn cao su thiên nhiên có 4% nano-SiO2 là 26,3 MPa). Tác giả Ying Chen [49] đã nghiên cứu vật liệu nanocompozit từ cao su thiên nhiên được gia cường bằng nanosilica. Kết quả cho thấy các hạt nano-SiO2 phân tán đồng nhất vào nền cao su thiên nhiên để hình thành các đám nano hình cầu với kích thước trung bình 80 nm khi hàm lượng nano-SiO2 là 4 phần khối lượng. Với sự có mặt của nano-SiO2 độ bền nhiệt của cao su thiên nhiên tăng lên đáng kể, năng lượng hồi phục hoạt hóa của nanocompozit cao hơn cao su thiên nhiên ban đầu từ 90,1 đến 125,8 KJ/mol. Saowaroj Chuayjuljit, và Anyaporn Boonmahitthisud [41] nghiên cứu vật liệu nanocompozit của cao su thiên nhiên và PS có chứa nanosilica được chế tạo bằng phương pháp kết hợp latex. Nanolatex của PS có chứa nanosilica được tổng hợp bằng phương pháp trùng hợp huyền phù micro trực tiếp. Các hạt nano lai thu được có hình thái cấu trúc nhân-vỏ với đường kính trung bình của các hạt là 40 nm. Các hạt nanosilica lai được sử dụng làm chất độn cho vật liệu cao su thiên nhiên nanocompozit. Các tính chất của cao su thiên nhiên như độ bền kéo đứt và modul kéo 300% được cải thiện với sự có mặt của PS có chứa nanosilica ở 3 và 3-9 phần khối lượng ngoại trừ độ dãn dài khi đứt và ở 9 phần khối lượng độ bền cháy được cải thiện đáng kể. Khi nghiên cứu tính chất cơ động học cho thấy các tính chất đàn hồi của CSTN ở gần nhiệt độ hóa thủy tinh được cải thiện cùng với sự gia tăng hàm lượng của nanosilica được giả thích là do cấu trúc nano đan xen nhau trong vật liệu.

Kể từ khi phát hiện ống nano carbon (CNT) của Iijima vào năm 1991, vật liệu polyme/CNT nanocompozit đã là chủ đề của nhiều nghiên cứu trong Viện hàn lâm và trong công nghiệp. Việc sử dụng CNT làm chất độn cho polyme nói chung và cao su nói riêng nhằm để cải thiện tính chất cơ học và tính chất điện của vật liệu [38,44]. CNT có thể được phân loại theo số lớp tường trong ống là đơn tường và đa tường, mỗi lớp tường có thể tiếp tục phân thành các dạng đối xứng hoặc không đối xứng.

cao su bằng cách độn CNT vào trong cao su ở hàm lượng thấp (thường dùng ống nano carbon đa tường hơn ống nano carbon đơn tường). CNT được phân tán trong cao su bằng phương pháp dung dịch, quá trình này địi hỏi CNT và cao su tan trong một dung mơi, sau đó cho dung mơi bay hơi thì thu được nanocompozit [22,28,48]. Việc chế tạo nanocompozit trên cơ cao su với CNT chức năng hóa bằng phương pháp trộn nóng chảy đã được báo cáo [45].

Các loại cao su được sử dụng nhiều trong nghiên cứu CNT nanocompozit là cao su thiên nhiên (CSTN) [29] tiếp theo là cao su styren-butadien (SBR) [18], cao su silicon [30], cao su nitril hydro hóa (HNBR) và cao su etylen-propylen-dien monome (EPDM). Đến năm 2010 đã có riêng một cuốn sách về vật liệu “Cao su nanocompozit” được xuất bản. Cho tới nay, hướng nghiên cứu này vẫn đang được quan tâm với nhiều cơng trình cơng bố mỗi năm.

Riêng ở Việt Nam, hướng nghiên cứu vật liệu polyme nanocompozit cũng được nhiều nhà khoa học quan tâm. Các phụ gia nano hay được sử dụng nghiên cứu là nanoclay, nanosilica, ống nano carbon,… Tác giả Đặng Việt Hưng [5] đã nghiên cứu chế tạo vật liệu nanocompozit trên cơ sở cao su tự nhiên và chất độn nano-silica bằng hai phương pháp là trộn hợp nóng chảy và trộn huyền phù. Trong hai phương pháp trên thì phương pháp trộn huyền phù cho kích thước hạt silica phân tán ở kích thước 30-100 nm. Lê Văn Thụ [14] đã gắn thành công dodexylamin (DDA) và 3- amino propyltrietoxy silan (ATS) lên bề mặt ống nano carbon đa tường (MWCNT) và ứng dụng chúng trong chế tạo vật liệu nanocompozit vải carbon/MWCNT/epoxy; hay Nguyễn Thị Thái [10] đã thực hiện thành cơng q trình hữu cơ hóa bề mặt CNT bằng quá trình oxi hóa gắn nhóm -COOH từ đó nghiên cứu các vật liệu nanocompozit trên cơ sở CSTN/PP, CSTN/SBR, CSTN/EPDM, CSTN/BR. Tiếp theo đó, các tác giả Trần Hải Ninh và cộng sự đã công bố kết quả nghiên cứu về ảnh hưởng của cao su thiên nhiên epoxy hóa tới tính chất của vật liệu cao su thiên nhiên/silica nanocompozit [8] và gần đây, các tác giả Thái Hoàng, Đỗ Quang Thẩm, Đinh Thị Mai Thanh tiếp tục công bố một số kết quả nghiên cứu về cấu trúc, tính chất của vật liệu EVA/silica nanocompozit,… Tuy

nhiên những kết quả nghiên cứu về lĩnh vực này cho tới nay cũng chỉ dừng lại ở kết quả nghiên cứu, chưa có triển khai tiếp tục ở quy mơ lớn hơn vào thực tế.

Từ những nội dung trên, cho thấy vật liệu polyme nanocompozit nói chung và cao su nanocompozit trên cơ sở cao su gia cường bằng nanoclay, nanosilica, ống nano carbon là một loại vật liệu mới có tiềm năng ứng dụng to lớn. Tuy nhiên, cho tới nay trên thế giới và đặc biệt ở Việt Nam vẫn chưa có nhiều ứng dụng của vật liệu này trong thực tế. Vì vậy vấn đề nghiên cứu chế tạo, tính chất và ứng dụng của vật liệu cao su, cao su blend nanocompozit đang là lĩnh vực nghiên cứu còn rộng mở và hứa hẹn những tương lai tốt đẹp cho những ứng dụng công nghệ cao của loại vật liệu này.

Chƣơng 2 - MỤC TIÊU, VẬT LIỆU VÀ PHƢƠNG PHÁP NGHIÊN CỨU 2.1. Mục tiêu nghiên cứu

Đưa ra được điều kiện thích hợp để chế tạo vật liệu cao su nano compozit trên cơ sở blend của cao su thiên nhiên với cao su nitril butadien gia cường bằng nanosilica, ống nano carbon.

2.2. Thiết bị và hoá chất sử dụng trong nghiên cứu

2.2.1. Thiết bị

1. Máy trộn kín Brabender của Cộng hịa liên bang Đức

2. Máy ép thí nghiệm có gia nhiệt của hãng Toyoseiki, Nhật Bản 3. Máy đo độ bền mài mòn Y – 634 của Đài Loan

4. Máy đo độ bền kéo Gester của Trung Quốc

5. Đồng hồ đo độ cứng TECLOCK, ký hiệu JIS K 7215 A của Nhật Bản 6. Cân phân tích

7. Khn ép mẫu và dao cắt 8. Thước đo chiều dày

9. Kính hiển vi điện tử quét (FESEM) của hãng Hitachi, Nhật Bản

10. Máy phân tích nhiệt trọng lượng (TGA) Netzsch STA 490 PC/PG (CHLB Đức)

2.2.2. Hoá chất, vật liệu

Cao su thiên nhiên (CSTN) SVR-3L (Công ty cao su Đồng Nai); cao su nitril butadien (NBR) Kosyl – KNB35L (Hàn Quốc); nanosilica Reolosil (Akpa, Thổ Nhĩ Kỳ, diện tích bề mặt riêng: 200  20 m2/g; cỡ hạt: 12–50 nm); ống nano carbon loại NC7000 của hãng Nanocyl S.A. (Bỉ), có độ tinh khiết 95%, kích thước 10-15 nm; lưu huỳnh (Sae Kwang Chemical IND. Co. Ltd, Hàn Quốc), oxit kẽm Zincollied (Ấn Độ), axit stearic (PT. Orindo Fine Chemical, Indonesia), xúc tiến DM, xúc tiến D và phòng lão D (Trung Quốc); tác nhân ghép nối silan Si69 là bis-(3-trietoxysilyl propyl) tetrasulphit (TESPT) và hỗn hợp dung môi toluen và isooctan (50:50) (Trung Quốc).

Hóa chất khác như CHCl3, NaOH, AlCl3, THF, axeton đều là các hóa chất thơng dụng của Trung Quốc, bột PVC-S của Việt Nam.

2.3. Phƣơng pháp nghiên cứu

2.3.1. Biến tính phụ gia nano

2.3.1.1. Phối trộn nanosilica với Si69

- Cân nanosilica (7% so với cao su) và Si69 (lượng Si69 thay đổi từ 0-15% so với nanosilica), hỗn hợp này được nghiền trộn đều trong cối sứ..

2.3.1.2. Biến tính CNT bằng polyvinylchloride (PVC)

- Cân 0,2g CNT và 0,5g PVC cho vào bình cầu 3 cổ có sẵn 30ml CHCl3 khan, bình cầu được nối với một ống đựng CaCl2 khan và một ống dẫn khí khác được nhúng trong dung dịch NaOH 10% để loại bỏ HCl sinh ra trong quá trình phản ứng. Thêm từ từ 0,5g AlCl3 trong thời gian 1giờ, đồng thời khuấy trộn trong môi trường nitơ ở 60oC trong 30 giờ tiếp theo. Sau khi làm nguội đến nhiệt độ phòng hỗn hợp sản phẩm CNT-PVC được khuấy rung siêu âm trong dung môi tetrahydrofuran (THF) 10 phút, lọc và rửa nhiều lần bằng axeton và ete dầu hỏa, sấy ở 60oC trong 10 giờ.

2.3.2. Chế tạo mẫu cao su nanocompozit

Trên cơ sở đơn phối trộn từ cao su blend CSTN/NBR có tỷ lệ là 80/20 với các phụ gia cố định, ảnh hưởng của hàm lượng phụ gia nano tới tính chất của vật liệu đã được khảo sát. Thành phần cơ bản của các mẫu được trình bày trong bảng sau:

Bảng 2.1: Thành phần cơ bản của mẫu vật liệu cao su nanocompozit

Thành phần Hàm lượng Pkl-phần khối lượng CSTN 80 NBR 20 Kẽm oxit 4,5 Phòng lão D 0,6 Axit stearic 1,0 Xúc tiến D 0,2 Xúc tiến DM 0,4 Lưu huỳnh 2,0

- Vật liệu cao su nanocompozit được chế tạo theo sơ đồ sau:

Hình 2.1: Sơ đồ chế tạo mẫu vật liệu cao su nanocompozit

Sản phẩm cao su nanocompozit thu được ở dạng tấm dày 2 mm, sau đó cắt mẫu theo các tiêu chuẩn Việt Nam để đo các tính chất cơ lý.

2.4. Phƣơng pháp xác định một số tính chất cơ học của vật liệu

2.4.1. Phương pháp xác định độ bền kéo đứt

Độ bền kéo đứt của vật liệu được xác định theo TCVN 4509:2006 với mẫu đo dạng hình mái chèo dưới đây:

Hình 2.2: Mẫu vật liệu đo tính chất kéo của vật liệu

Phép đo được thực hiện trên máy Gester của Trung Quốc tại phòng Công nghệ Vật liệu và Mơi trường. Độ bền kéo đứt của mẫu được tính theo cơng thức sau:

Sđ = F/(a.b) Trong đó :

- Sđ là độ bền kéo đứt (MPa) hay N/mm2 - F là lực kéo đứt mẫu (kgf)

- a là bề rộng mẫu ở phần nhỏ nhất (mm) - b là chiều dày mẫu ở phần nhỏ nhất (mm)

2.4.2. Phương pháp xác định độ dãn dài khi đứt

Các tiêu chuẩn về mẫu đo và phép đo giống như phương pháp xác định độ bền kéo đứt theo TCVN 4509:2006. Độ dãn dài khi đứt được tính theo cơng thức sau:

Trong đó : -  là độ dãn dài khi đứt (%)

- lo là độ dài của hai điểm đựoc đánh dấu trên mẫu trước khi kéo (25 mm).

- l1 là chiều dài giữa hai điểm đánh dấu trên mẫu ngay sau khi đứt mẫu (mm).

2.4.3 Phương pháp xác định độ dãn dài dư

Các tiêu chuẩn và phép đo giống như phương pháp xác định độ bền kéo đứt theo TCVN 4509:2006. Độ dãn dài dư được tính theo cơng thức:

- l0 là độ dài giữa hai điểm được đánh dấu trước khi kéo (25mm). - l2 là độ dài giữa hai điểm được đánh dấu sau khi bị kéo đứt 15 phút.

2.4.4. Phương pháp xác định độ cứng của vật liệu

Độ cứng Shore A được xác định theo TCVN 1595 -1:2007. Độ cứng của vật liệu được đo bằng đồng hồ đo độ cứng TECLOCK ký hiệu JIS K7215 A (Nhật Bản).

Cách đo như sau: Trước hết lau sạch bề mặt mẫu, đặt mẫu trên bề mặt nằm ngang. Dùng tay ấn mạnh đồng hồ đo xuống mẫu. Mỗi mẫu vật liệu đo ở 5 vị trí khác nhau sau đó lấy giá trị trung bình.

2.4.5. Phương pháp xác định độ mài mòn

Độ mài mòn của vật liệu được xác định bằng phương pháp AKRON, theo tiêu chuẩn TCVN 1594-87 biên soạn lại năm 2008.

Mẫu đo hình trụ có kích thước đường kính vịng ngồi 68±0,1mm, đường kính lỗ trong 12,7±0,1 mm, chiều dày 12,7±0,5 mm. Góc mài mịn 15o. Lực tỳ trên đá mài là 27,2 N. Đá mài có đường kính 150 mm, dày 25 mm, có ký hiệu A36-P5. Vận tốc mẫu quay 76  80 vòng/phút, vận tốc đá mài 3335 vòng/phút. Độ mài mịn được tính theo cơng thức:

d m m

V 1  2

 (cm3/1,61 km)

Trong đó: m1: là khối lượng của mẫu trước khi mài, g m2: là khối lượng của mẫu sau khi mài, g d: là khối lượng riêng của mẫu, g/cm3

2.5. Nghiên cứu khả năng bền dầu mỡ, dung môi của vật liệu

Khả năng bền dầu mỡ, dung môi được đánh giá thông qua độ trương của vật

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở blend của cao su thiên nhiên với cao su nitril butadien và một số phụ gia nan (Trang 37)

Tải bản đầy đủ (PDF)

(79 trang)