Giản đồ TGA mẫu vật liệu cao su CSTN/NBR/7% nanosilica

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở blend của cao su thiên nhiên với cao su nitril butadien và một số phụ gia nan (Trang 56 - 59)

Hình 3.13: Giản đồ TGA mẫu vật liệu cao su CSTN/NBR/7% nanosilica bt 5% Si69

Bảng 3.1: Kết quả phân tích TGA của một số mẫu vật liệu

trên cơ sở cao su blend CSTN/NBR Mẫu vật liệu

Nhiệt độ bắt đầu phân hủy

(oC) Nhiệt độ phân hủy mạnh 1 (oC) Nhiệt độ phân hủy mạnh 2 (oC) Tổn hao khối lượng đến 600oC (%) CSTN/NBR 281,5 372,2 434 92,62 CSTN/NBR/7nSiO2 294,0 374,9 - 89,02 CSTN/NBR/7nSiO2-5Si69 298,3 375,3 - 85,46

Nhận thấy rằng, nhiệt độ bắt đầu phân hủy và nhiệt độ phân hủy mạnh đầu tiên (tương ứng với quá trình phân hủy của CSTN) của vật liệu đều tăng khi có 7% nanosilica và nhất là mẫu có thêm tác nhân ghép nối silan Si69. Nhiệt độ bắt đầu phân hủy của vật liệu tăng mạnh từ 281,5C lên 298,3C và nhiệt độ phân hủy mạnh đầu tiên tăng từ 372,2C lên 375,3C. Đối với mẫu vật liệu blend CSTN/NBR không gia cường, xuất hiện pic nhiệt độ phân hủy mạnh thứ 2 ở 434C (ứng với nhiệt độ phân hủy mạnh nhất của NBR). Trong khi đó ở các mẫu blend gia cường 7% nanosilica, pic này xuất hiện khơng rõ. Bên cạnh đó, tổn hao khối lượng đến 600C của vật liệu cũng giảm từ 92,62 xuống còn 85,38%. Điều này có thể giải thích, một mặt do nanosilica là chất độn vơ cơ, có khả năng bền nhiệt cao. Khi đưa vào phân tán đều trong nền cao su có tác dụng che chắn tác động của nhiệt và cản trở quá trình phân hủy nhiệt của cao su. Mặt khác, cũng giống như nanoclay, nanosilica (chưa và đã biến tính) cịn có tác dụng làm tăng khả năng tương hợp giữa CSTN và NBR, do vậy nhiệt độ phân hủy mạnh nhất của hai cấu tử đã tiến lại gần nhau và gần như hịa vào nhau. Chính vì vậy, với hàm lượng nanosilica và tác nhân ghép nối silan Si69 thích hợp đã làm tăng khả năng bền nhiệt và tương hợp cho vật liệu.

3.1.5. Nghiên cứu khả năng bền dầu mỡ của vật liệu

Để đánh giá đầy đủ hiệu quả gia cường của nanosilica, chúng tôi tiếp tục nghiên cứu khả năng bền dầu mỡ thông qua đánh giá độ trương của vật liệu trong hỗn hợp dung mơi toluen và isooctan (50:50). Hình 3.14 là kết quả đo độ trương trong dung môi của vật liệu theo TCVN 2752:2008.

Hình 3.14: Độ trương của các mẫu vật liệu trên cơ sở CSTN/NBR trong

hỗn hợp dung môi toluen và isooctan

Kết quả trên cho thấy, độ trương của các mẫu vật liệu trên cơ sở blend CSTN/NBR đều tăng mạnh sau 6 giờ ngâm trong hỗn hợp dung mơi, sau đó tăng chậm và đạt cân bằng sau 48 giờ. Khi có thêm 7% nanosilica, độ trương của vật liệu giảm đáng kể, nhất là khi có thêm 5% tác nhân ghép nối silan Si69. Điều đó minh chứng tác nhân ghép nối silan Si69 đã tạo cầu nối giữa chất độn và cao su, dẫn đến vật liệu có cấu trúc chặt chẽ đã cản trở sự xâm nhập của dung môi (giảm độ trương) đồng nghĩa với việc làm tăng khả năng bền dầu mỡ cho vật liệu.

3.2. Nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở blend của CSTN/NBR và ống nano carbon blend của CSTN/NBR và ống nano carbon

3.2.1. Biến tính CNT bằng polyvinylchloride

Cấu trúc của CNT gồm nhiều nguyên tử carbon (C) trong đó mỗi nguyên tử Csp2 lại tham gia liên kết với 2 nguyên tử Csp3 gần giống với vòng benzen. Dưới điều kiện thích hợp có mặt xúc tác axit Lewis phản ứng thế Electrophin xảy ra dễ dàng. Vì vậy, việc thực hiện phản ứng giữa polyvinylcloride với CNT có AlCl3 khan làm chất xúc tác có thể theo cơ chế như sau:

Một phần của tài liệu (LUẬN văn THẠC sĩ) nghiên cứu chế tạo và tính chất vật liệu cao su nanocompozit trên cơ sở blend của cao su thiên nhiên với cao su nitril butadien và một số phụ gia nan (Trang 56 - 59)