Điểm 1 biểu thị giá trị phổ tại thời điểm trước khi xảy ra biến động, điểm 2 biểu thị giá trị phổ tại thời điểm sau khi xảy ra biến động. Khi đó véc tơ 12 chính là véc tơ thay đổi phổ, và được biểu thị bởi giá trị (khoảng cách từ 1 đến 2) và hướng thay đổi (góc β).
Giá trị của véc tơ thay đổi phổ tính trên toàn cảnh theo công thức:
CMpixel = 2 1 , , , , (1) (2) n k k j i k j i BV BV
Trong đó: CMpixel là giá trị của véc tơ thay đổi phổ,
BVi,j,k(1), BVi,j,k(2) là giá trị phổ của pixel ij, kênh k của ảnh trước và sau khi xảy ra biến động.
Việc phân tích véc tơ thay đổi được ghi lại thành hai tệp dữ liệu: một tệp chứa các mã của khu vực, một tệp chứa độ lớn của các véc tơ thay đổi phổ. Thông tin về sự thay đổi được tạo ra từ hai tệp dữ liệu đó và được thể hiện bằng màu sắc của các pixel tương ứng với các mã đã quy định. Trên ảnh đa phổ thay đổi này sẽ kết hợp cả hướng và giá trị của véc tơ thay đổi phổ. Sự thay đổi có xảy ra hay không được quyết định bởi véc tơ thay đổi phổ có vượt ra khỏi ngưỡng quy định hay không. Giá trị ngưỡng được xác định từ kết quả thực nghiệm dựa vào các mẫu biến động và không biến động.
Phương pháp phân tích véc tơ thay đổi phổ được ứng dụng hiệu quả trong nghiên cứu biến động rừng nhất là biến động hệ sinh thái rừng ngập mặn. Nhưng nhược điểm của phương pháp này là khó xác định ngưỡng của sự biến động.
2.3.3.7. Nghiên cứu biến động sau phân loại
Là phương pháp thông dụng nhất được áp dụng để nghiên cứu biến động. bản chất của nó là so sánh sự biến động của kết quả phân loại ảnh.
Để áp dụng phương pháp này cần lựa chọn hai tư liệu ảnh ở hai thời điểm khác nhau của cùng một khu vực nghiên cứu. Độ chính xác phụ thuộc vào độ chính xác của từng phương pháp phân loại do phải tiến hành phân loại độc lập các ảnh viễn thám.
Hình 2.4. Phƣơng pháp đánh giá biến động sau phân loại
Phương pháp so sánh sau phân loại được sử dụng rộng rãi nhất, đơn giản, dễ hiểu và dễ thực hiện. Sau khi ảnh vệ tinh được nắn chỉnh hình học sẽ tiến hành phân loại độc lập để tạo thành hai bản đồ. Hai bản đồ này được so sánh bằng cách so sánh pixel tạo thành ma trận biến động.
Theo J. Jensen [13] ưu điểm của phương pháp này cho biết sự thay đổi từ loại đất gì sang loại đất gì và chúng ta cũng có thể sử dụng các bản đồ hiện trạng sử dụng đất đã được thành lập trước đó. Ảnh 1 Ảnh 2 Phân loại Phân loại Đánh giá biến động Bản đồ hiện trạng thời điểm 1 Bản đồ hiện trạng thời điểm 2
Nhược điểm của phương pháp này là phải phân loại độc lập các ảnh viễn thám nên độ chính xác phụ thuộc vào độ chính xác của từng phép phân loại và thường độ chính xác không cao vì các sai sót trong quá trình phân loại của từng ảnh vẫn được giữ nguyên trong bản đồ biến động.
2.3.3.8. Nghiên cứu biến động bằng phương pháp số học
Đây là phương pháp đơn giản để xác định mức độ biến động giữa hai thời điểm bằng cách sử dụng tỉ số giữa các ảnh trên cùng một kênh hoặc sự khác nhau trên cùng một kênh của các thời điểm ảnh.
Trước tiên các ảnh được nắn về cùng một hệ tọa độ. Sau đó dùng phép các biến đổi số học để tạo ra các ảnh thay đổi. Phép trừ và phép chia số học được sử dụng trong trường hợp này.
Nếu ảnh thay đổi là kết quả của phép trừ số học thì khi đó giá trị độ xám của các pixel trên ảnh thay đổi là một dãy số âm (-) và dương (+). Các kết quả âm và dương biểu thị mức độ biến đổi của các vùng, còn giá trị 0 thể hiện sự không thay đổi. Với giá trị độ xám từ 0 đến 255 thì giá trị pixel thay đổi trong khoảng từ -255 đến + 255. Thông thường để tránh kết quả mang giá trị âm người ta cộng thêm một hằng số không đổi. Công thức toán học để biểu diễn là:
Dijk = BVijk (1) - BVijk (2) + c Trong đó:
Dijk: giá trị độ xám của pixel thay đổi
BVijk (1): giá trị độ xám của ảnh thời điểm 1 BVijk (2): giá trị độ xám của ảnh thời điểm 2 c: là một hằng số (c = 127)
i: chỉ số dòng; j: chỉ số cột
k: Kênh ảnh (ví dụ kênh 4 trên ảnh Landsat TM).
Ảnh thay đổi được tạo ra bằng cách tổ hợp giá trị độ xám theo luật phân bố chuẩn Gauss. Vị trí nào có pixel không thay đổi, độ xám biểu diễn xung quanh giá trị trung bình, vị trí có pixel thay đổi được biểu diễn ở phần biên của đường phân bố.
Cũng tương tự như vậy, nếu ảnh thay đổi được tạo ra từ phép chia số học thì giá trị của các pixel trên ảnh là một tỷ số chứng tỏ ở đó có sự thay đổi, nếu bằng 1 thì không có sự thay đổi.
Giá trị giới hạn trên ảnh thay đổi (tạo ra bởi phép trừ số học) và ảnh tỷ số kênh sẽ quyết định ngưỡng giữa ranh giới sự thay đổi - không thay đổi, và được biểu thị bằng biểu đồ độ xám của ảnh thay đổi.
Thông thường độ lệch chuẩn sẽ được lựa chọn và kiểm tra theo kinh nghiệm. Nhưng ngược lại, hầu hết các nhà phân tích đều sử dụng phương pháp thử nghiệm nhiều hơn phương pháp kinh nghiệm. Giá trị ngưỡng của sự thay đổi sẽ được xác định khi bắt gặp giá trị thay đổi trên thực tế.
Vì vậy, để xác định được ta cần phải hiểu rõ về khu vực nghiên cứu, thậm chí phải lựa chọn một số vùng biến động và ghi lại để hiển thị trên vùng nghiên cứu mà người lựa chọn biết rõ. Tuy nhiên kỹ thuật này có thể kết hợp với các kỹ thuật khác để nghiên cứu biến động và thành lập bản đồ biến động hiệu quả.
2.4. TÍCH HỢP HỆ THỐNG THÔNG TIN ĐỊA LÝ (GIS) VÀ VIỄN THÁM TRONG NGHIÊN CỨU BIẾN ĐỘNG ĐẤT ĐAI
2.4.1. Khái quát về công nghệ tích hợp viễn thám và GIS
Tích hợp (Integrated) nghĩa là tập hợp, tích cóp, nhóm gọn một hoặc nhiều các phần tử riêng lẻ vào cùng một diện tích. Phần diện tích này thường là một sự vật, bản, hộp, phạm vi, tấm, ... được bố trí và gắn bó các phần tử thành phần sao cho được nhỏ gọn nhất.
Những kết quả ứng dụng viễn thám gần đây chỉ ra rằng giải quyết một vấn đề thực tiễn chỉ dựa đơn thuần trên tư liệu ảnh viễn thám là một việc hết sức khó khăn và trong nhiều trường hợp không thể thực hiện được. Vì vậy cần có một sự tiếp cận tổng hợp trong đó tư liệu viễn thám giữ một vai trò quan trọng và kèm theo các thông tin truyền thông khác như số liệu thống kê, quan trắc, số liệu thực địa. Cách tiếp cận đánh giá, quản lý tài nguyên như vậy được các nhà chuyên môn đặt tên là hệ thống thông tin địa lý. Như vậy tích hợp viễn thám và hệ thống thông tin địa lý là việc hợp nhất các ưu điểm của hai loại thành một thể thống nhất đồng thời tìm ra cách hạn chế của hai loại tư liệu nói trên.
- Ưu điểm của phương pháp tích hợp viễn thám và GIS:
+ Chỉ rõ được vị trí, diện tích, hình dạng của đối tượng nghiên cứu.
+ Ảnh vệ tinh có chu kỳ lặp nhanh nên có thể theo dõi đối tượng được thường xuyên.
+ Dữ liệu ảnh vệ tinh phản ánh đúng thực trạng sử dụng đất tại thời điểm chụp ảnh.
- Nhược điểm của phương pháp tích hợp viễn thám và GIS: để phương pháp đạt độ chính xác cao thì yêu cầu dữ liệu ảnh vệ tinh phải có độ phân giải cao, chi phí lớn.
2.4.2. Ứng dụng của công nghệ tích hợp viễn thám và GIS
Việc sử dụng kết hợp viễn thám và GIS cho nhiều mục đích khác nhau đã trở nên rất phổ biến trên toàn thế giới trong thời đại ngày nay.
GIS bắt đầu đươc xây dựng ở Canada từ những năm 60 của thế kỷ XX và đã được ứng dụng ở rất nhiều lĩnh vực khác nhau trên toàn thế giới. Sau khi vệ tinh quan sát Trái đất Landsat đầu tiên được phóng vào năm 1972, các dữ liệu viễn thám được xem là nguồn thông tin đầu vào quan trọng của GIS nhờ những tiến bộ về kỹ thuật của nó. Ngày nay, Trái đất được nghiên cứu thông qua một dải quang phổ rộng với nhiều bước sóng khác nhau từ dải sóng nhìn thấy được đến dải sóng hồng ngoại nhiệt. Các thế hệ vệ tinh mới được bổ sung thêm các tính năng quan sát trái đất tốt hơn với những quy mô không gian khác nhau. Vệ tinh cung cấp một lượng thông tin khổng lồ và phong phú về các phản ứng quang phổ của các hợp phần của trái đất như đất, nước và thực vật. Chính các phản ứng này sau đó sẽ phản ánh bản chất sinh lý của trái đất và các hiện tượng diễn ra trong tự nhiên bao gồm các hoạt động của con người.
Có thể nói lâm nghiệp là một trong những lĩnh vực đầu tiên áp dụng thành tựu của công nghệ viễn thám. Hiện nay, việc sử dụng tư liệu viễn thám trong thành lập bản đồ rừng, theo dõi biến động, chặt phá rừng...đã trở thành công nghệ phổ biến trên thế giới. Tích hợp dữ liệu viễn thám với hệ thống thông tin địa lý (GIS) có thể dự báo những khu vực có nguy cơ cháy rừng; dự báo sự suy giảm diện tích rừng trên quy mô toàn cầu do biến đổi khí hậu và sự gia tăng dân số. Xét một ví dụ về kết hợp giữa viễn thám và GIS trong nghiên cứu cháy rừng: nhờ có công nghệ viễn thám con người đã sử dụng những tấm ảnh viễn thám chụp được để phân loại rừng. Còn dữ liệu GIS sẽ cung cấp các thông tin về địa hình, khí hậu, mạng lưới thuỷ văn, những thông tin về khu vực nghiên cứu. Trên cơ sở đó các thông tin tích hợp sẽ chỉ ra các khu vực có nguy cơ cháy rừng ở mức độ khác nhau.
Trong nghiên cứu địa chất: người ta sử dụng tư liệu viễn thám kết hợp với GIS để thành lập các bản đồ kiến tạo, các cấu trúc địa chất.… Trong lĩnh vực nông nghiệp và sử dụng đất: đối với nhiều quốc gia
trên thế giới để quản lý và quy hoạch sử dụng đất một cách hợp lý, có hiệu quả họ đã sử dụng công nghệ viễn thám kết hợp với dữ liệu GIS. Như ở Nhật Bản để đưa ra những đánh giá về năng suất thực ban đầu cho các nước Châu Á người ta sử dụng viễn thám và GIS kết hợp với dữ liệu thống kê về các sản phẩm nông nghiệp. Hay ở Trung Quốc đã sử dụng ảnh SAR ở các thời điểm khác nhau trên cơ sở kết hợp với bản đồ địa hình, bản đồ sử dụng đất để cập nhật nhanh bản đồ đất trồng lúa cho các tỉnh … Ngoài ra để đánh giá mức độ thích hợp của đất đối với các loại cây trồng nông nghiệp thì tư liệu viễn thám được sử dụng để phân loại các đối tượng sử dụng đất còn dữ liệu GIS là các bản đồ nông hoá thổ nhưỡng, bản đồ địa hình, bản đồ chế độ tưới tiêu.
Trong nghiên cứu môi trường, tài nguyên thiên nhiên: Trong vài năm trở lại đây thiên nhiên có nhiều biến động bất thường xảy ra và đã gây hậu quả thiệt hại về người và của vô cùng to lớn đối với con người. Những thảm hoạ xảy ra như sóng thần, lũ lụt, hiện tượng hiệu ứng nhà kính…Xuất phát từ thực tế đó việc ứng dụng công nghệ viễn thám và GIS trong nghiên cứu môi trường toàn cầu là vô cùng cần thiết, có ý nghĩa quan trọng. Những ứng dụng quan trọng được kể đến là thành lập bản đồ độ sâu ngập lụt, dự báo nguy cơ trượt lở đất…
Trong những năm vừa qua Việt Nam ngày càng chịu ảnh hưởng nặng nề bởi biến đổi khí hậu, hàng năm chịu nhiều ảnh hưởng của thiên tai, bão lũ; ảnh hưởng đến đời sống và hoạt động sản xuất nông nghiệp của nhân dân. Trước tình hình đó công tác dự báo và quản lý thiên tai đóng vai trò quan trọng trong giảm thiểu thiệt hại. Và hiện tại vệ tinh của Việt Nam mới đáp ứng phần nào nhu cầu phục vụ phát triển kinh tế, thương mại. Bởi vậy, ngành nông nghiệp đã và đang tiếp cận nhiều với các công nghệ phân tích ảnh viễn thám. Đến nay, từ những ảnh viễn thám do nước ngoài và Việt Nam cung cấp kết hợp với công nghệ GIS đã ứng dụng vào công tác theo dõi, quản lý, bảo vệ nguồn tài nguyên thiên nhiên và môi trường, đặc biệt là tài nguyên rừng.
2.4.3. Tình hình nghiên cứu ứng dụng công nghệ viễn thám và hệ thống thông tin địa lý (gis) trong và ngoài nƣớc
2.4.3.1. Tình hình nghiên cứu ứng dụng công nghệ viễn thám và GIS trên thế giới
Việc sử dụng kết hợp viễn thám và GIS cho nhiều mục đích khác nhau đã trở nên rất phổ biến trên toàn thế giới trong thời đại ngày nay.
GIS bắt đầu được xây dựng ở Canada từ những năm 60 của thế kỷ XX và đã được ứng dụng ở rất nhiều lĩnh vực khác nhau trên toàn thế giới. Sau khi vệ tinh quan sát trái đất Landsat đầu tiên được phóng vào năm 1972, các dữ liệu viễn thám được xem là nguồn thông tin đầu vào quan trọng của GIS nhờ những tiến bộ về kỹ thuật của nó. Ngày nay, Trái đất được nghiên cứu thông qua một dải quang phổ rộng với nhiều bước sóng khác nhau từ dải sóng nhìn thấy được đến dải sóng hồng ngoại nhiệt. Các thế hệ vệ tinh mới được bổ sung thêm các tính năng quan sát trái đất tốt hơn với những quy mô không gian khác nhau. Vệ tinh cũng cung cấp một lượng thông tin khổng lồ và phong phú về các phản ứng quang phổ của cá hợp phần của trái đất như đất, nước, thực vật. Chính các phản ứng này sau đó sẽ phản ánh bản chất sinh lý của trái đất và các hiện tượng diễn ra trong tự nhiên bao gồm các hoạt động của con người. Nhờ khả năng phân tích không gian, thời gian và mô hình hóa, GIS cho phép tạo ra những thông tin có giá trị gia tăng cho các thông tin được triết xuất từ dữ liệu vệ tinh.
Có thể nói lâm nghiệp là một trong những lĩnh vực đầu tiên áp dụng thành tựu của công nghệ viễn thám. Hiện nay, việc sử dụng tư liệu viễn thám trong thành lập bản đồ rừng, theo dõi biến động, chặt phá rừng … đã trở thành công nghệ phổ biến trên thế giới. Tích hợp dữ liệu viễn thám với hệ thống thông tin địa lý (GIS) có thể dự báo những khu vực có nguy cơ cháy rừng; dự báo suy giảm diện tích rừng trên quy mô toàn cầu do biến đổi khí hậu và sự gia tăng dân số. Xét một ví dụ về kết hợp giữa viễn thám và GIS trong nghiên cứu cháy rừng: nhờ có công nghệ viễn thám công người đã sử dụng những tấm ảnh viễn thám chụp được để phân loại rừng. Còn dữ liệu GIS sẽ cung cấp các thông tin về địa hình, khí hậu, mạng lưới thủy văn, những thông tin về khu vực nghiên cứu. Trên cơ sở đó các thông tin tích hợp sẽ chỉ ra các khu vực có nguy cơ cháy rừng ở mức độ khác nhau.
Trong nghiên cứu địa chất: người ra sử dụng tư liệu viễn thám kết hợp với GIS để thành lập các bản đồ kiến tạo, các cấu trúc địa chất, …
Trong lĩnh vực nông nghiệp và sử dụng đất: đối với nhiều quốc gia trên thế giới để quản lý và quy hoạch sử dụng đất một cách hợp lý, có hiệu quả họ đã sử dụng công nghệ viễn thám kết hợp với dữ liệu GIS, Như ở Nhật Bản để đưa ra những đánh giá về năng suất thực ban đầu cho các nước Châu Á người ta sử dụng viễn thám và GIS kết hợp với dữ liệu thống kê về các sản phẩm nông