Một trong những tham số quan trọng ảnh hưởng trực tiếp đến tốc độ phản ứng, dẫn tới ảnh hưởng đến sự hình thành cấu trúc nano kim loại hai thành phần
27
là nhiệt độ. Trong phần này chúng tôi làm thí nghiệm điển hình cho mẫu Ag0.25Au0.75 khi nhiệt độ thay đổi từ 5oC đến 100oC. Do tính chất hóa học đặc trưng của TSC chỉ phản ứng mạnh ở 100oC vì vậy chúng tôi dùng thêm chất khử là NaBH4 để điều chỉnh ở nhiệt độ thấp.
Bảng 2.6. Thí nghiệm ảnh hưởng của nhiệt độ lên tính chất quang
của nano hợp kim AgAu
Mẫu alloy AgNO3 (%wt.) HAuCl4 (%wt.) NaBH4 TSC (0.02M) H2O Nhiệt độ (oC) Ag0.25Au0.75 25 75 20 µl 0 30 ml 5 25 75 20 µl 0 30 ml 30 25 75 20 µl 0 30 ml 50 25 75 20 µl 0 30 ml 80 25 75 200 µl 30 ml 100 2.3. Các phương pháp khảo sát
2.3.1. Kính hiển vi điện tử truyền qua (TEM)
Kính hiển vi điện tử truyền qua (TEM) là một thiết bị hiệu đại, nó cho phép phân tích siêu cấu trúc vật liệu rất tinh tế. Để kiểm tra về hình thái bề mặt, kích thước và hình dạng thì TEM là một ứng viên sáng giá cho công việc này. Thiết bị hoạt động dựa theo nguyên tắc phóng đại nhờ các thấu kính, tia điện tử được sử dụng để xuyên qua vật chất có bước sóng rất ngắn, cỡ 0,04 Å. Các thấu kính là thấu kính điện tử có tiêu cự thay đổi được, năng suất phân giải cỡ 2 3 Å. Hình 2.4 trình bày sơ đồ nguyên lý hệ TEM và ảnh chụp của máy đã sử dụng.
28
Hình 2.4. Sơ đồ khối kính hiển vi điện tử truyền qua (a)
và ảnh chụp kính hiển vi điện tử truyền qua đã sử dụng (b)
Nguyên lý hoạt động:
Kính hiển vi điện tử truyền qua làm việc theo nguyên tắc phóng đại nhờ các thấu kính, ánh sáng tới là tia điện tử có bước sóng ngắn cỡ 0,05 Å và thấu kính thường là các thấu kính điện tử có tiêu cự f thay đổi được. Chùm tia điện tử phát ra từ súng điện tử được gia tốc với điện thế tăng tốc (80 kV), qua một số kính hội tụ và chiếu lên mẫu. Kính vật tạo ra ảnh trung gian và kính phóng sẽ phóng đại ảnh trung gian thành ảnh cuối cùng với độ phóng đại M = Mv∗ Mp.
Hiện nay, năng suất phân giải của kính hiển vi điện tử truyền qua không bị giới hạn. Phương pháp này có độ phân giải cỡ 2-3Å. Một nhược điểm cơ bản của kính hiển vi điện tử truyền qua là các mẫu nghiên cứu phải được xử lý thành các lát rất mỏng (< 0.1 mm), hoặc tạo thành các dung dịch để nhỏ lên các tấm lưới bằng đồng mà đã được trải một lớp màng Cacbon, các hạt nano tinh thể sẽ mắc trên các lưới đỡ này khi đo dưới kính hiển vi điện tử. Các lớp này phải đủ
29
dày để tồn tại ở dạng rắn, ít nhất là vài chục đến vài trăm lớp nguyên tử. Như vậy ứng với mỗi điểm trên ảnh hiển vi điện tử truyền qua là những cột điện tử mẫu (chiều cao của cột nguyên tử là chiều dày trên mẫu). Việc quan sát chi tiết của vật rắn như: lệch mạng, các sai hỏng,…được giải thích theo cơ chế tương phản nhiễu xạ. Nguyên lý hoạt động của TEM được minh họa trong hình 2.5.
Hình 2.5. Sơ đồ khối kính hiển vi điện tử truyền qua
Cơ chế tương phản nhiễu xạ ở ảnh TEM: Điện tử đi vào mẫu gặp các nguyên tử, bị tán xạ, nguyên tử số Z của mẫu càng lớn, phần tán xạ càng mạnh, phần truyền thẳng càng yếu. Mặt khác, khi điện tử đi qua chỗ dày gặp nhiều nguyên tử hơn là đi qua chỗ mỏng. Một trong những ưu điểm của TEM là có thể dễ dàng điều khiển thay đổi tiêu cự (bằng cách thay đổi dòng điện kích thích vào thấu kính) nên có thể thay đổi tiêu cự của kính phóng để trên màn có ảnh hiển vi hay ảnh nhiễu xạ, nhờ đó mà kết hợp biết được nhiều thông tin về cấu trúc, cách sắp xếp các nguyên tử của mẫu nghiên cứu. Hơn nữa, có thể dùng diafram đặt ở vị trí thích hợp để che bớt các tia tán xạ, chỉ lấy các tia đi giữa, đó là cách tạo ảnh trường sáng BF (Bright Field) thông thường. Kính hiển vi điện tử truyền qua cho phép quan sát được nhiều chi tiết nano của mẫu cần nghiên cứu: hình dạng, kích thước hạt, biên các hạt…
30
Kính hiển vi điện tử quét (Scanning Electron Microscope (SEM)), là một loại kính hiển vi điện tử có thể tạo ra ảnh với độ phân giải cao của bề mặt mẫu vật bằng cách sử dụng một chùm điện tử (chùm các electron) hẹp quét trên bề mặt mẫu. Việc tạo ảnh của mẫu vật được thực hiện thông qua việc ghi nhận và phân tích các bức xạ phát ra từ tương tác của chùm điện tử với bề mặt mẫu vật. Sơ đồ khối kính hiển vi điện tử quét như trình bày trong hình 2.6.
Hình 2.6. Sơ đồ khối kính hiển vi điện tử quét
Nguyên lý hoạt động và sự tạo ảnh của SEM được hoạt động như sau:
các chùm điện tử trong SEM cũng giống như việc tạo ra chùm điện tử trong kính hiển vi điện tử truyền qua, tức là điện tử được phát ra từ súng phóng điện tử (có thể là phát xạ nhiệt, hay phát xạ trường...), sau đó được tăng tốc. Tuy nhiên, thế tăng tốc của SEM thường chỉ từ 10 kV đến 50 kV vì sự hạn chế của thấu kính từ, việc hội tụ các chùm điện tử có bước sóng quá nhỏ vào một điểm kích thước nhỏ sẽ rất khó khăn. Điện tử được phát ra, tăng tốc và hội tụ thành một chùm điện tử hẹp (cỡ vài trăm Angstrong đến vài nanomet) nhờ hệ thống thấu kính từ, sau đó quét trên bề mặt mẫu nhờ các cuộn quét tĩnh điện. Độ phân giải của SEM được xác định từ kích thước chùm điện tử hội tụ, mà kích thước của chùm điện tử này bị hạn chế bởi quang sai, chính vì thế mà SEM không thể đạt được độ phân giải tốt như TEM. Ngoài ra, độ phân giải của SEM
31
còn phụ thuộc vào tương tác giữa vật liệu tại bề mặt mẫu vật và điện tử. Khi điện tử tương tác với bề mặt mẫu vật, sẽ có các bức xạ phát ra, sự tạo ảnh trong SEM và các phép phân tích được thực hiện thông qua việc phân tích các bức xạ này. Các bức xạ chủ yếu gồm:
Điện tử thứ cấp (Secondary electrons): đây là chế độ ghi ảnh thông dụng nhất của kính hiển vi điện tử quét, chùm điện tử thứ cấp có năng lượng thấp (thường nhỏ hơn 50 eV) được ghi nhận bằng ống nhân quang nhấp nháy. Vì chúng có năng lượng thấp nên chủ yếu là các điện tử phát ra từ bề mặt mẫu với độ sâu chỉ vài nanomet, do vậy chúng tạo ra ảnh hai chiều của bề mặt mẫu.
Điện tử tán xạ ngược (Backscattered electrons): Điện tử tán xạ ngược là chùm điện tử ban đầu khi tương tác với bề mặt mẫu bị bật ngược trở lại, do đó chúng thường có năng lượng cao. Sự tán xạ này phụ thuộc rất nhiều vào thành phần hóa học ở bề mặt mẫu, do đó ảnh điện tử tán xạ ngược rất hữu ích cho phân tích về độ tương phản thành phần hóa học. Ngoài ra, điện tử tán xạ ngược có thể dùng để ghi nhận ảnh nhiễu xạ điện tử tán xạ ngược, giúp cho việc phân tích cấu trúc tinh thể (chế độ phân cực điện tử). Ngoài ra, điện tử tán xạ ngược phụ thuộc vào các liên kết điện tại bề mặt mẫu nên có thể đem lại thông tin về các đômen sắt điện.
Hình 2.7. Ảnh chụp thiết bị kính hiển vi điện tử quét Jeol 5410 LV
tại Trung tâm Khoa học Vật liệu, Đại học Quốc gia Hà Nội.
32
Phân tích phổ tia X (X-ray microanalysis): Tương tác giữa điện tử với vật chất có thể sản sinh phổ tia X đặc trưng, rất hữu ích cho phân tích thành phần hóa học của vật liệu. Các phép phân tích có thể là phổ tán sắc năng lượng tia X (Energy Dispersive X-ray Spectroscopy - EDXS) hay phổ tán sắc bước sóng tia X (Wavelength Dispersive X-ray Spectroscopy - WDXS)...
Ưu điểm của kính hiển vi điện tử quét:
Mặc dù không thể có độ phân giải tốt như kính hiển vi điện tử truyền qua nhưng kính hiển vi điện tử quét lại có điểm mạnh là phân tích mà không cần phá hủy mẫu vật và có thể hoạt động ở chân không thấp. Một điểm mạnh khác của SEM là các thao tác điều khiển đơn giản hơn rất nhiều so với TEM khiến cho nó rất dễ sử dụng. Một điều khác là giá thành của SEM thấp hơn rất nhiều so với TEM, vì thế SEM phổ biến hơn rất nhiều so với TEM.
2.3.3. Phương pháp phổ nhiễu xạ tia X
Nhiễu xạ tia X là hiện tượng các chùm tia X tương tác với các mặt tinh thể của chất rắn, do tính tuần hoàn của cấu trúc tinh thể tạo nên các cực đại và cực tiểu nhiễu xạ. Chiếu một chùm tia X đơn sắc có bước sóng λ tới một tinh thể chất rắn, tia X đi vào bên trong mạng lưới. Tinh thể mạng lưới này đóng vai trò như một cách tử nhiễu xạ gây ra hiện tượng nhiễu xạ của các tia X tới. Định luật phản xạ Bragg cho biết mối quan hệ giữa khoảng cách của hai mặt phẳng tinh thể song song (d), góc giữa phương tia X tới và mặt phẳng tinh thể (θ) và bước sóng tia X (λ) được xác định:
2dhklsinθ = nλ (2.1) với n là bậc nhiễu xạ (n = 1, 2, 3, …).
Từ thực nghiệm có thể xác định được bước sóng λ, góc nhiễu xạ θ tương ứng với vạch nhiễu xạ thu được. Khi đó xác định được khoảng cách giữa các mặt mạng d theo phương trình (2.1) và (2.2).
33 2 2 2 2 2 2 2 1 c l b k d h dhkl (2.2)
Trong đó, h,k,l là các chỉ số Miler và a,b,c là các hằng số mạng. Hình 2.7 minh họa về mặt hình học định luật Bragg.
Vì mỗi một tinh thể khác nhau được đặc trưng bằng các giá trị d khác nhau. Do vậy, phương pháp nhiễu xạ tia X có thể xác định được thành phần pha tinh thể của vật liệu, xác định được kích thước tinh thể cũng như cấu trúc tinh thể của vật liệu.
Hình 2.8. Giản đồ minh họa về mặt hình học của định luật Bragg
Giản đồ XRD của các mẫu chế tạo được thực hiện trên hệ nhiễu xạ kế tia X sử dụng nhiễu xạ kế D5000 (Siemens) với nguồn tia X là Cu Kα có bước sóng 1,5406 Å, có khả năng phân giải 0,01o với thời gian đếm xung tùy chọn được đặt tại trường Đại học Bách Khoa Hà Nội.
2.3.4. Phổ hấp thụ UV-Vis
Chiếu một chùm tia sáng đơn sắc có cường độ I0vào môi trường vật chất có bề dày 1(cm) và nồng độ C(mol/l), thì chùm tia này sẽ bị môi trường vật chất hấp thụ và truyền qua. Cường độ I của chùm tia truyền qua môi trường này bị giảm theo quy luật Lamber-Beer:
𝐿𝑜𝑔 (𝐼0
𝐼) = 𝐾. 𝑛 (2.3) hay: log (𝐼0
34
Trong đó: 𝐾: là hệ số hấp thụ mol hay độ hấp thụ của môi trường, 𝑛: là số mol chất nghiên cứu đặt trên đường đi của bức xạ.
Đại lượng log(I0/I ) được gọi là mật độ quang (D) hoặc độ hấp thụ (A). 𝜀 là hệ số hấp thụ mol (hệ số mol) có giá trị bằng mật độ quang của dung dịch khi nồng độ chất hấp thụ bằng một đơn vị và độ dầy chất hấp thụ bằng một đơn vị. Hệ số hấp thụ chỉ phụ thuộc vào bản chất của chất hấp thụ và bước sóng của bức xạ bị hấp thụ. Độ truyền qua của môi trường T=I /I0.
Hình 2.9. Biểu diễn định luật Lamber-Beer
Không một chất nào lại hấp thụ trong toàn bộ các vùng phổ điện từ. Sự hấp thụ thường tập trung vào từng vùng phổ hẹp, cho nên để thuận lợi, người ta thường biểu diễn và xem xét từng vùng phổ riêng biệt như: vùng tử ngoại, khả kiến, hồng ngoại…
Đường cong biểu diễn sự phụ thuộc của hệ số hấp thụ Kνvào tần số
hoặc bước sóng gọi là đường cong hấp thụ (hay phổ hấp thụ). Mỗi chất hấp thụ đều hấp thụ lọc lựa ở những tần số bước sóng khác nhau. Phương trình (2.3) là biểu thức toán học của định luật Beer-Lamber: khi hấp thụ tia đơn sắc, độ hấp thụ phụ thuộc bậc nhất vào nồng độ chất hấp thụ. Tùy từng chất, định luật Beer-Lamber thường đúng trong một khoảng nồng độ.
35
Đối với các dung dịch nano kim loại nói chung và nano bạc nói riêng thì việc phân tích phổ hấp thụ UV-Vis (hay còn gọi là phổ hấp thụ plasmon) cho các thông tin quan trọng về tính chất quang của chúng.
Hình 2.10. Sơ đồ nguyên lý của hệ đo hấp thụ UV-Vis hai chùm tia
Ánh sáng tới được tách thành các bước sóng đơn sắc nhờ cách tử nhiễu xạ. Tiếp đó, chùm sáng đơn sắc được chia thành hai tia có cường độ bằng nhau nhờ gương bán phản xạ. Một trong hai tia sáng truyền qua cuvet thạch anh chứa dung dịch mẫu cần nghiên cứu, có cường độ I sau khi truyền qua mẫu. Tia còn lại truyền qua cuvet tương tự chứa dung môi để so sánh. Cường độ của tia sáng sau khi truyền qua mẫu so sánh là I0. Việc quay cách tử và tự động so sánh cường độ các tia sáng sau khi truyền qua dung dịch chứa mẫu nghiên cứu và mẫu dung môi sẽ cho phép nhận được phổ hấp thụ của mẫu nghiên cứu dưới dạng sự phụ thuộc của độ hấp thụ vào bước sóng.
Các dung dịch chứa keo nano bạc được đo trên thiết bị UV-Vis hai chùm tia Jasco V770 tại Khoa Vật lý và Công nghệ-Trường Đại học Khoa học-Đại học Thái Nguyên. Thiết bị này cho phép đo phổ từ 190 nm đến 2700 nm.
2.3.5. Phổ tán xạ Raman tăng cường bề mặt (SERS)
Để đo SERS, cần chuẩn bị mẫu theo quy trình được tóm tắt như sau: các cấu trúc nano sau khi chế tạo được chải lên đế silicon (Si) và tích điện cho nó
36
bằng một nguồn điện một chiều (12V) trong khoảng 30 phút. Tiếp đến, ngâm đế SERS trong dung dịch chất cần phân tích (ví dụ như methylen canh) trong khoảng 2 giờ để đảm bảo độ đồng đều. Cuối cùng, lấy đế ra và mang đo trên hệ đo Raman.
Quang phổ Raman là một kỹ thuật quang phổ phân tử, sử dụng sự tương tác của ánh sáng với vật chất để hiểu rõ hơn về cấu tạo hoặc đặc tính của vật liệu. Thông tin được cung cấp bởi quang phổ Raman là kết quả của quá trình tán xạ ánh sáng, trong khi quang phổ hồng ngoại phụ thuộc vào sự hấp thụ ánh sáng. Quang phổ Raman mang lại thông tin về các dao động trong và giữa các phân tử và có thể cung cấp thêm sự hiểu biết về một phản ứng. Cả quang phổ Raman và hồng ngoại đều cung cấp một đặc tính phổ của các dao động cụ thể của một phân tử ("dấu vân tay phân tử") và có giá trị để xác định một chất. Quang phổ cấu trúc mạng tinh thể và xương sống phân tử.
Nguyên lý: Khi ánh sáng tương tác với các phân tử trong chất khí, chất
lỏng hoặc chất rắn, phần lớn các photon bị phân tán hoặc tán xạ ở cùng năng lượng với các photon tới. Điều này được mô tả là tán xạ đàn hồi, hoặc tán xạ Rayleigh. Một số lượng nhỏ các photon này, xấp xỉ 1 photon trong 10 triệu sẽ tán xạ ở tần số khác với photon tới. Quá trình này được gọi là tán xạ không đàn hồi, hoặc hiệu ứng quang phổ Raman, được đặt theo tên của TS. C.V. Raman. Kể từ đó, quang phổ Raman đã được sử dụng cho một loạt các ứng dụng từ chẩn đoán y khoa đến khoa học vật liệu và phân tích phản ứng. Quang phổ Raman cho phép người dùng ghi nhận những dao động đặc trưng của một phân tử, cung cấp cái nhìn sâu sắc về cách kết hợp nó, cũng như cách quang phổ tương tác với các phân tử khác xung quanh nó. Quang phổ Raman là một kỹ thuật quang phổ dựa trên sự tán xạ không đàn hồi của ánh sáng đơn sắc thường được phát từ một nguồn laser. Tán xạ không đàn hồi là hiện tượng tần số của các photon trong ánh sáng đơn sắc bị thay đổi khi tương tác với mẫu. Các photon của ánh sáng laser được mẫu hấp thụ rồi sau đó lại được phát xạ lại. Tần số của các photon phát xạ