Kết quả xử lý mẫu thực được ghi nhận trong bảng 3.20
Bảng 3.20 Nồng độ As(V) trong mẫu thực trước và sau khi xử lí
C As(V) Q Q % hấp phụ (ppb) (µg/g) (µmolAs/gAk) trước hấp phụ 1185 5879,76 78,48 99,37 sau hấp phụ 7,44 Nhận xét:
Theo kết quả, mẫu điều chế hấp phụ As(V) tốt trong mơi trường thực, nồng độ As(V) cịn lại dưới ngưỡng cho phép.
TAØI LIỆU THAM KHẢO
Tiếng Việt
[1] Cù Thành Long – Vũ Ngọc Vinh (2002), Hướng dẫn thực hành phân tích định lượng bằng các phương pháp hĩa học kết hợp với các phương pháp xử lý thống kê hiện đại, NXB Đại Học Quốc Gia Tp. Hồ Chí Minh. [2] Nguyễn Thị Thanh Nhàn (2009), Tổng hợp Ferrihydrite từ FeCl2 và
khảo sát tính chất hấp phụ của nĩ, Luận văn thạc sĩ hĩa học, Khoa Hĩa Vơ cơ và ứng dụng Trường ĐHKHTN-ĐHQG Tp. HCM.
[3] Vương Thị Luyến, Nguyễn Thanh Tùng, Trần Thị Mỹ Linh, Nguyễn Thy Phương (2007), Tổng hợp vật liệu sắt hydroxit trên nền silicagel nhằm
hấp phụ và loại bỏ Arsen trong nước ngầm, Khoa Hĩa học Trường
ĐHKHTN- ĐHQG Hà Nội.
[4] Iu. V. Kariakin và II. Anggelov ( 1976), Hĩa chất tinh khiết, NXB Khoa học và kỹ thuật Hà Nội, Hà Nội.
Tiếng Anh
[5] A.L. Mackay (1962), β-Ferric oxyhydroxide- akaganeite, Min. Mag. 33: 270 – 280.
[6] A. Saric; K. Nomura; S. Popovic; N. Ljubesic; S. Music (1998), Effects of urotropin on the chemical and microstructural properties of Fe-oxide
powders prepared by the hydrolysis of aqueous FeCl3 solutions,
Materials Chemistry and Physics 52: 214 – 220.
[7] A. Saric; K. Nomura; S. Popovic; N. Ljubesic; S. Music (1998),
Microstructural properties of Fe-oxide powders obtained by
precipitation from FeCl3 solutions, Materials Science and Engineering
[8] A.T. Howe & K.J. Gallagher (1975), Mossbauer studies in the colloidal
system β-FeOOH – β-Fe2O3: Structures and dehydration mechanism, J.
Chem. Soc. Faraday Trans. I. 71: 22 – 34.
[9] C. Remazeilles; Ph. Refait (2007), On the formation of β-FeOOH
(akaganeite)in the chloride-containing enviroments, Corrosion Science
49: 844 – 857.
[10] Daniel Teclu, George Tivchev, Mark Laing, Mike Wallis(2008),
Bioremoval of arsenic species from contaminated watersby sulphate-
reducing bacteria,water research 42: 4885–4893.
[11] Dhanarekha Vasireddy, 2005, Arsenic adsorption onto iron-chitosan
composite from drinking water, University of Missouri-Columbia.
[12] D.G. Chambaere & E. De Grave (1984), A study of nonstoichiometric
halogen and water content of β-FeOOH, Phys. Stat. Sol. 83: 93 – 102.
[13] D.G. Chambaere & E. De Grave (1985), The β-FeOOH to α-Fe2O3 phase
transformation: Structural and magnetic phenomena, Phys. Chem. Min.
12: 176 – 184.
[14] D.N. Bakoyannakis; E.A Deliyanni; A.I. Zouboulis; K.A. Matis; L. Nalbandian; Th. Kehagias (2003), Akaganeite and goethite-type
nanocrystal: synthesis and characterization, Microporous and
Mesoporous Materials 59: 35 – 42.
[15] E.A. Deliyanni; D.N. Bakoyannakis; A.I. Zouboulis; K.A. Matis; L. Nalbandian (2001), Akaganeite-type β-FeO(OH) nanocrystals:
preparation and characterization, Micoporous and Mesoporous
Materials 42: 49 – 57.
[16] E. Murad (1979), Mossbauer and X-ray data on β-FeOOH (akaganeite), Clay Min. 14: 273-283.
[17] E. Murad & J.L. Bishop (2000), The infrared spectrum of synthetic
akaganeite β-FeOOH, Am. Min. 85: 716 – 721.
[18] E. Paterson & J.M. Tait (1997), Nitrogen adsorption on synthetic
akaganeite and its structural implications, Clay Min. 12: 345 – 352.
[19] E. Paterson; R. Swaffield and D.R. Clark (1982), Thermal
decomposition of synthetic akaganeite (β-FeOOH), Thermochimica
Acta, 54: 201 – 211.
[20] Ernest O.Kartinen; Jr. and Christopher J. Martin (1995), An overview of
arsenic removal processes, Desalination 103: 79 - 88.
[21] E.R. Nightingade & R.F. Benck (1960), Precipitation of crystalline iron
(III) oxide from homogeneous solution, Anal. Chem. 32: 566 – 567.
[22] Esperanza Barrios; Lourdes Hernan; Julian Morales and Jose L. Tirado (1986), Effect of grinding in synthetic akaganeite, Journal of Colloid and Interface Science, 113, No 1, 212 – 217.
[23] Feihu Li et al., (2009),Synthesis of mesostructured ferric oxyhydroxides templated by alkyl surfactants: Effect of pH, F- and solvents, and their
adsorption isotherms for As(V), Microporous and Mesoporous Materials.
[24] G.A.Waychunas et al.,(1993),Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometryof coprecipitated and adsorbed arsenate,
Geochimica et Cosmochimica Acta, Vol. 57, 2251-2269.
[25] H. Braun & K.J. Gallagher (1972), β-Fe2O3: a new structural form of
iron(III) oxide, Nature 240: 13 – 14.
[26] H. Naono; J. Sonoda; K. Oka & M. Hakuman (1993), Evaluation of
microporous texture of undecomposed and decomposed β-FeOOH fine
particles by means of adsortion isotherms of nitrogen gas and water
vapour, Studies in Surface Science and Catalysis, Volume 80, 1993, 467
[27] H. Naono; R. Fujiwara; H. Sugioka; K. Sumiya & H. Yanazawa (1982),
Micropore formation due to thermal decomposition of acicular
microcrystals of β-FeOOH, J. Colloid Interface Sci. 87, 317 – 332.
[28] H.S. Altundogan; S. Altundogan; F. Tumen; M. Bildik (2002), Arsenic
adsorption from aqueous solutions by activated red mud, Waste Manage
22: 357-363.
[29] I. Dezsi; L. Keszthelyi; D. Kulgawczuk; B. Molnar & N.A. Eissa (1967),
Mossbauer study of β- and δ-FeOOH and their disintegrationproducts,
Phys. Stat. Sol. 22: 617-629
[30] J.A. Davis & J.O. Leckie (1978), Surface ionization and complexationat the oxide/water interface. II. Surface properties of amorphous iron
oxuhydroxide and adsorption of metal ions, J. Colloid Interface Sci. 67:
90-107.
[31] J.D. Bernal & D.R. Dasgupta & A.L. Mackay (1959), The oxides and
hydroxides of iron and their structural interrelationships, Clay min.
Bull. 4: 15-29.
[32] J. Ellis, R. Giovanoli & W. Stumn (1976), Anion exchange properties of
β-FeOOH, Chimia 30: 194-197.
[33] J.E. Post & V.F. Buchwald (1991), Crystal structure refinement of
akaganeite, Am. Min. 76: 272-277.
[34] J.G. Parsons; C. Luna; C.E. Botez; J. Elizalde; J.L. Gardea-Torresdey (2009), Microwave-assisted synthesis of iron (III) oxyhydroxides/oxides characterized using transmission electron microscopy, X-ray diffraction,
and X-ray absorption spectrocsopy, Journal of Physics and Chemistry of
[35] J.M. Gonzalez-Calbet & M.A. Alario-Franco (1982), A Thermogravimetric and electron microscopy study of the decomposition
of akaganeite, Thermochimica Acta, 58: 45 – 51.
[36] J.M. Gonzalez-Calbet & M.A. Alario-Franco (1981), The porous
structure of synthetic akaganeite, Pergarnon Press L.td. 43: 257 – 264.
[37] J. Morales; J.L. Tirado & M. Macias (1984), Changes in crystallite size and microstrains of hematite derive from the thermal decomposition of
synthetic akaganeite, J. Solid State Chem. 53: 303-312.
[38] Juan Carlo Villalba, Vera R.L. Constantino, Fauze Jacĩ Anaissi (2010),
Iron oxyhydroxide nanostructured in montmorillonite clays: Preparation
and characterization, Journal of Colloid and Interface Science 349: 49–
55
[39] K.E. Garcia; C.A. Barrero; A.L. Morales; J.M. Greneche (2008),
Characterization of akaganeite synthesizeed in presence of Al3+, Cr3+
and Cu2+ ions and urea, Materials Chemistry and Physics 112: 120 –
126.
[40] K. Inouye; H. Ichimura; K. Kaneko & T. Ishikawa (1974), The effect of
copper(II) on the formation and thermal change of synthetic β-FeOOH,
Bull. Chem. Soc. Japan 47: 743-744.
[41] K.J. Gallagher & D.N. Phillips (1969), Hydrogen exchange studies and
proton transfer in γ-iron(III) oxyhydroxide, Chimi 23: 465-470.
[42] K. Kandori; Y. Kawashima & T. Ishikawa (1991), Characterization of monodispersed hematite particles by gas and Fourier transform
infrarred spectroscopy, J. Chem. Soc. Faraday Trans. I. 87: 2241 – 2246.
[43] Li-Ying Zhang; Jie Feng; De-Sheng Xue (2007), An investigation of
thermal decomposition of β-FeOOH nanowire arrays assembled in AAO
[44] Mirna Habuda – Stanic et al., (2008),Arsenite and arsenate sorption by
hydrous ferric oxide/polymeric material, Desalination 229: 1-9.
[45] M. Ding; B.H.W.S. De Jong; S.J. Roosendaal and A. Vredenberg (2000),
XPS studies on the electronic structure of bonding between solid and
solutes: Adsorption of arsenate, chromate, phosphate, Pb2+ and Zn2+
ions on amorphous black ferric oxyhyrdoxide, Geochimica et
Cosmochimica Acta, Vol. 64. No. 7, 1209 – 1219.
[46] M. Dolores Merono; Julian Morales and Jose L. Tirado (1985), Thermal behaviour of synthetic akaganeite under different experimental
conditions, Thermochimica Acta, 92: 525 – 528.
[47] M. Streat, K. Hellgardt, N.L.R. Newton (2008), Hydrous ferric oxide as an adsorbent in water treatment. Part 1: Preparation and physical
characterization, Process safety and Enviromental Protection 86: 1–9.
[48] M. Streat, K. Hellgardt, N.L.R. Newton (2008), Hydrous ferric oxide as
an adsorbent in water treatment. Part 2: Adsorption studies, Process
safety and Enviromental Protection 86: 11 – 20.
[49] M. Streat, K. Hellgardt, N.L.R. Newton (2008), Hydrous ferric oxide as an adsorbent in water treatment. Part 3: Batch and mini-column
adsorption of arsenic, phosphorus, fluorine and cadmium ions, Process
safety and Enviromental Protection 86: 21 – 30.
[50] N.G. Holm; M.J. Dowler; T. Wadsten & G. Arrhenius (1983), β-
FeOOH.Cln (akaganeite) and Fe1-xO (wustite) in hot brine from the
Atlantis II deep (Red Sea) and the uptake of amino acids by synthetic β-
FeOOH.Cln, Geochim. Cosmochim. Acta 47: 1465-1470.
[51] N. Nagai; H. Hosoito; M. Kiyama; T. Shinyo & T. Takada (1980), The
thermal decomposition of intermediate products of β-FeO(OH), Ferrites
[52] P. Refait and J.M.R. Genin (1997), The machanisms of oxidation of
ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The
formation of akaganeite vs goethite, Corrosion Science, Vol. 39, No. 3:
539 – 553.
[53] Pushpa Kumari, Parul Sharma, Shalinni Srivastava, M.M. Srivastava (2006), Biosorption studies on shelled Moringa oleifera Lamarck seed
powder: Removal and recovery of arsenic from aqueous system, Int. J.
Miner. Process. 78, 131 – 139.
[54] R.J. Atkinson; A.M. Posner & J.P. Quirk (1977), Crystal nucleation and
growth in hydrolysing iron (III) chloride solutions, Clays Clay Min. 25:
49 – 56.
[55] R.M. Cornell (1992), Preparation and properties of Si substitued
akaganeite (β-FeOOH), Z.Pflanzenernahr. Bodenk. 155: 449 – 453.
[56] R.M.Cornell, U.Schwertmann (2003), TheIron oxides: Structure,
Properties, Reactions, Occurences and Uses, WILEY-VCH.
[57] S. Goni-Elizalde; M E. Garcia-Clavel (1988), Thermal Behaviour in air of iron oxyhydroxides obtained from the method of homogeneous
precipitation. Part II. Akaganeite sample, Thermochimica Acta, 129:
325 – 334.
[58] S. Music; A. Saric; S. Popovic (1997), Effects of urotropin on the
formation of β-FeOOH, Journal of Molecular Structure 410-411: 153 –
156.
[59] S. Music; A. Vertes; G.W. Simmons; I. Czakonagy & H.jr. Leidheiser (1982), Mossbauer spectroscopic study of the formation of Fe(III) oxyhydroxides and oxides by hydrolysis of aqueous Fe(III) salt solutions,
[60] S. Music; M. Gotic; N. Ljubesic (1995), Influence of sodium
polyanetholsulphonate on the morphology of β-FeOOH particles
obtained from the hydrolysis of a FeCl3 solution, Materials Letters 25:
69-74.
[61] S. Music; S. Krehula; S. Popovic (2004), Effect of HCl additiions on
forced hydrolysis of FeCl3 solutions, Materials Letters 58: 2640 – 2645.
[62] S. Music; S. Krehula; S. Popovic (2004), Thermal decomposition of β-
FeOOH, Materials Letters 58: 444 – 448.
[63] S. Music; S. Krehula; S. Popovic; Z. Skoko (2003), Some factors
influencing forced hydrolysis of FeCl3 solutions, Materials Letters 57:
1096 – 1102.
[64] S.T. Galbraith; T. Braid & J.R. Fryer (1979), Structural changes in β-
FeOOH caused by radiation damage, Acta Cryst. Ạ: 197-200.
[65] Shuwu Yang; Changjun Liu; Zhaokun Luan; Xianjia Peng; Haijing Ren; Jun Wang (2008),Arsenate removal from aqueous solutions using
modified red mud, Journal of Hazardous Materials 152: 486–492.
[66] T. Hiemstra & W.H. Van Riemsdijk (1999), Effect of different crystal faces on experimental interaction form and aggregation of hematite,
Langmuir 15: 8045-8051.
[67] T. Ishikawa & K. Inouye (1975), Role of chlorine in β-FeOOH on its
thremal change and reactivity to sulfur dioxide, Bull. Chem. Soc. Japan
48: 1580 – 1584.
[68] T. Ishikawa; S. Nitta; & S. Kondo (1986), Fourier-transformation infrared spectroscopy of colloid α-, β-, and γ- ferric oxide hydroxides, J. Chem. Soc. Faraday Trans. I. 82: 2401 – 2410.
[69] U. Schwertmann, R.M. Cornell (1991), Iron oxides in the laboratory, VCH Press. New York, p. 95.
[70] Wagner R. Meyer; Sandra H. Pulcinelli; celso V. Santilli; Aldo F. Craievich (2000), Formation of colloidal particles of hydrous iron oxide
by forced hydrolysis, Journal of Non-Crystalline Solids 273: 41 – 47.
[71] Wolf, R.H.H; Wrischer, M. & Sipalo-Zuljevic, J. (1967), Electron-
microscopic investigation of the formation of colloidal β-FeOOH during
slow hydrolysis of an aqueous ferric chloride solution at room
temparature, Kolloid Z. & Z.f.Polymer 215: 57 – 60.
[72] Xuejun Guo; Yonghua Du; Fuhua Chen; Hung-Such Park; Yaning Xie (2007), Mechanism of removal of arsenic by bead cellulose loaded with
iron oxyhydroxide (β-FeOOH): EXAFS study, Journal of Colloid and
Interface Science 314: 427 – 433.
[73] Yinghua Hu; Yan Shan; Kezheng Chen (2008), TG/DSC analysis of
Fe8(OOH)16Cl1,3 nanospindles, Materials Research Bulletin 43: 2703 –
2708.
[74] Zhong-Yong Yuan; Bao-Lian Su (2003), Surfactant-assisted
nanoparticle assembly of mesoporous β-FeOOH (akaganeite), Chemical
Physics Letters 381: 710 – 714.
[75] http://en.wikipedia.org/wiki/Congo_red