Tổng hợp zê-ô-lit

Một phần của tài liệu ỨNG DỤNG PHƯƠNG PHÁP hủy pô SI TRÔN để NGHIÊN cứu ẢNH HƯỞNG của sắt TRONG cấu TRÚC một vài vật LIỆU zê ô LIT (Trang 33)

Ngày nay, các loại zê-ô-lit tổng hợp được sử dụng phổ biến hơn zê-ô-lit tự nhiên vì tinh thể có độ tinh khiết hơn và kích thước các kênh và lỗ rỗng đồng bộ hơn. Nhiều loại zê-ô-lit được nghiên cứu tổng hợp tạo ra sự đa dạng về đặc tính hóa học và kích thước lỗ rỗng, cũng như độ bền nhiệt.

Thông thường, zê-ô-lit được tổng hợp bằng phương pháp thủy nhiệt, gồm các giai đoạn chính: chuẩn bị hóa chất và tạo hy-đrô-gen (hydrogel) a-lu-mi-nô-si-li-cat, già hóa, kết tinh, lọc, rửa, sấy. Dung dịch để tạo gel a-lu-mi-nô-si-li-cat gồm dung dịch a- lu-mi-nat và si-li-cat (có thể dùng NaAl OH( ) ,4 Na SiO2 3 ) và các hy-drô-xit kiềm

(NaOH), có thể có thêm các gốc hữu cơ.

Các loại zê-ô-lit khác nhau được tổng hợp tùy thuộc chủ yếu vào các tác nhân sau: o Thành phần của hỗn hợp phản ứng: tỉ số Si/Al, OH-, các ca-ti-ôn vô cơ. Thứ

nhất, việc tăng tỉ số Si/Al ảnh hưởng mạnh đến đặc điểm lí tính của zê-ô-lit. Thứ hai, thành phần OH-làm giảm thời gian phản ứng bằng cách làm cho Si-lic chuyển từ trạng thái rắn sang lỏng nhanh hơn. Thứ ba, các ca-ti-ôn vô cơ đóng vai trò như các tác nhân định hướng cấu trúc và làm cân bằng điện tích của khung. Như vậy, thành phần của hỗn hợp phản ứng ảnh hưởng đến cấu trúc tinh thể và số lượng sản phẩm.

o Bản chất của các chất phản ứng và điều kiện ban đầu của chúng: việc tổng hợp zê-ô-lit với các chất hữu cơ cũng như các chất vô cơ đã được tiến hành, chỉ ra rằng các chất vô cơ tạo ra nhiều bề mặt bị hy-đrô-xin hóa hơn, còn các chất hữu cơ dễ dàng làm xác nhập các kim loại vào trong mạng tinh thể.

o Nhiệt độ tổng hợp: tốc độ của quá trình kết tinh tỉ lệ thuận với nhiệt độ (trong khi đó tốc độ phản ứng trong dung dịch ban đầu tỉ lệ nghịch với nhiệt độ). o Thời gian tổng hợp: các tham số của quá trình kết tinh phải được điều chỉnh

sao cho làm tối thiểu thời gian cần thiết (để làm tối thiểu các sản phẩm không mong muốn) để đạt được trạng thái tinh thể mong muốn.

o Độ pH của hỗn hợp phản ứng: quá trình zê-ô-lit hóa được tiến hành trong điều kiện môi trường ba-zơ kiềm (pH>10).

o Các tác nhân khác: việc tổng hợp có thể được tiến hành theo kiểu liên tục hay bán liên tục, để tăng cường dung lượng cũng như làm cho tương thích với các ứng dụng công nghiệp.

CHƯƠNG 2: TỔNG QUAN VỀ PHƯƠNG PHÁP HỦY PÔ-SI-TRÔN 2.1. Sự tạo thành và sự hủy pô-si-trôn

2.1.1. Pô-si-trôn, hạt phản vật chất

Pô-si-trôn (Positron) là một phản hạt của ê-lec-trôn được Đi-rắc mô tả lần đầu tiên và được An-đê-sân chứng minh sự tồn tại từ những năm 1930. Pô-si-trôn có khối lượng, spin và momen từ giống như ê-lec-trôn (tức có 31

9,108 10 m= × − kg , 19 1, 6 10 q= × − C, 1 2

s= , mô-men từ cùng hướng spin), nhưng có điện tích trái dấu: pô- si-trôn mang điện dương còn ê-lec-trôn thì mang điện âm. Cũng giống như ê-lec-trôn, pô-si-trôn khá bền trong chân không: thời gian sống của pô-si-trôn trong chân không rất lớn (thời gian sống trung bình là 1021 năm), nhưng trong vật chất thì gần như trái ngược, thời gian tồn tại của pô-si-trôn rất nhỏ chỉ lớn hơn 10-10s trước khi xảy ra sự hủy cặp giữa nó và ê-lec-trôn. Sự tương tác của pô-si-trôn với vật chất cũng có nhiều nét tương tự như của ê-lec-trôn, chẳng hạn quá trình tán xạ, quá trình nhiệt hóa, quá trình ngay sau nhiệt hóa và trước khuếch tán.

Tuy nhiên, hạt pô-si-trôn cũng có những nét đặc trưng khác biệt so với hạt ê-lec- trôn. Không thể nào theo dõi quá trình khuếch tán của một hạt ê-lec-trôn riêng lẻ trong số rất nhiều các ê-lec-trôn giống hệt nhau trong vật chất. Điều này lại có thể đối với mỗi pô-si-trôn sau khi nó bị nhiệt hóa và trước khi bị hủy. Tất cả các đặc tính của vật chất mà ảnh hưởng đến sự khuếch tán của pô-si-trôn, chẳng hạn như các trường lực bên trong, sự phân bố của các thành phần ngoại lai hay các khuyết tật, sự thay đổi trong không gian của các thành phần cấu trúc, về nguyên tắc đều có thể được đo đạc. Ngoài ra, bởi vì tích điện dương, các pô-si-trôn có thể tham gia vào nhiều quá trình mà ê-lec-trôn không thể. Chúng có thể bị bẫy tại các khuyết tật mạng tích điện dương, chẳng hạn như các lỗ trống đơn và các khuyết tật lỗ mở nhỏ khác, tại các chỗ ngoại lai.

Có thể coi pô-si-trôn có ba tương tác chính: o Tán xạ với hạt mang điện nói chung

o Tạo mu-ôn

o Hủy cặp với ê-lec-trôn để tạo ra cặp lượng tử gam-ma

2.1.2. Các nguồn pô-si-trôn

Trong kỹ thuật thực nghiệm pô-si-trôn, nguồn tạo ra pô-si-trôn đóng vai trò quan trọng. Pô-si-trôn không tồn tại sẵn trong nhân mà sinh ra do sự phân rã hạt nhân của các đồng vị phóng xạ, từ hiệu ứng tạo cặp đối với các phô-tôn (photon) có năng lượng đủ lớn hoặc từ các phản ứng hạt nhân.

Nguồn pô-si-trôn từ phân rã hạt nhân: Hạt nhân A

Z

X phân rã β+ tạo ra một pô-si-trôn và một nơ-tri-nô (neutrino) để hình thành một hạt nhân mới có cùng số khối: 1

A A Z Z

X X β+ γ

→ + +

Nguồn pô-si-trôn thông dụng nhất là nguồn đồng vị 22Na (có chu kỳ bán rã là T1/2=2,6 năm) theo phản ứng phân rã :

22Na 22Ne + + + (1.28 MeV) Phân rã từ nguồn đồng vị 22

Na cho xác suất phát ra pô-si-trôn cao 90,4% và nhiều thuận tiện khác. Trước tiên, sự phát ra lượng tử gam-ma 1,27 MeV gần như đồng thời với pô-si-trôn (có năng lượng cực đại 540 keV), nhờ vậy có thể đo được thời gian sống của pô-si-trôn bằng phổ kế gam-ma (gamma) trùng phùng. Hơn nữa, việc tìm nguồn Na khá dễ dàng từ các dung dịch muối của Natri, chẳng hạn từ Na-tri-clo-rua hoặc Na-tri-a-xe-tat. Thêm vào đó, chu kỳ bán rã khá dài 2,6 năm, giá cả hợp lí nên phù hợp với mục đích sử dụng trong phòng thí nghiệm.

Sơ đồ phân rã của đồng vị phóng xạ 22Na được minh họa ở hình 2.1. Theo đó, 90,4% các phân rã bằng cách phát ra pô-si-trôn và một ê-lec-trôn nơ-tri-nô của trạng thái kích thích 22Ne và trở lại trạng thái cơ bản sau 3,7 ps sau khi phát ra một lượng tử gam-ma 1,274 MeV. Khả năng bẫy ê-lec-trôn (electron capture – EC) chỉ đạt xác xuất 9.5% và quá trình chuyển trực tiếp về trạng thái cơ bản của Ne chỉ đạt 0,1%.

Hình 2.1: Sơ đồ phân rã của đồng vị phóng xạ 22Na

Ngoài nguồn đồng vị 22

Na, các nguồn đồng vị khác (64

Cu, 58Co,…) cũng có thể được sử dụng, nhưng không phổ biến. Các pô-si-trôn được tạo ra từ phản ứng phân rã có phân bố năng lượng rộng lên đến cỡ 540 keV và có thể xuyên sâu vào trong vật liệu.

Để đo thời gian sống của pô-si-trôn và độ dãn nở Đôp-le cần nguồn có hoạt độ yếu (khoảng 8.105 Bq là đủ). Phương pháp chiếu pô-si-trôn và đo góc tương quan cần nguồn mạnh hơn.

Trong một số trường hợp người ta còn tạo ra nguồn nội, nhất là khi nghiên cứu về kim loại đồng (Cu) và các hợp kim của nó. Nguồn nội được tạo ra trong Cu bằng cách bắn nơ-trôn (neutron) vào 63Cu để tạo ra 64Cu, sau đó 64Cu phát pô-si-trôn có năng lượng cực đại 0,65 MeV với chu kỳ bán rã 12,9 giờ.

Một số nguồn pô-si-trôn và cách tạo ra các nguồn được trình bày trong bảng 2.1.

Bảng 2.1: Một số nguồn pô-si-trôn và cách tạo nguồn Nguồ n Cách tạo Chu kỳ bán rã Phần trăm e+ Emax (MeV) 22Na 27Al (3He, 2 ) 22Na 24Mg (d, ) 22Na 2,6 năm --- 89 --- 0,54 ---

11C 11B (p, n) 11C 20,4 phút 99 0,96 18F 18O (p,n) 18F 110 phút 97 0,635 55 Co 58Ni (p, ) 55Co 18,2 giờ 60 1,50 57 Ni 56Fe (3He, 2n) 57Ni 36 giờ 50 0,85 58Co 58Ni (n,p) 58Co 71,3 ngày 15 0,48 64 Cu 63Cu (n, ) 64Cu 12,9 ngày 19 0,65 90 Nb 90Zr (p,n) 90Nb 14,7 ngày 54 1,50 68 Ge 66Zn ( , 2n) 68Ge 270 ngày 15 1,90 44Sc 45Sc (n, 2n) 44Sc 3,93 giờ 95 1,47

Nguồn pô-si-trôn từ phản ứng tạo cặp.

Sự tạo cặp ê-lec-trôn – pô-si-trôn từ các phô-tôn năng lượng cao là một cách khả thi để tạo ra pô-si-trôn sử dụng trong các hệ chiếu xạ, đặc biệt để nghiên cứu chất bán dẫn. Đối với nguồn này, khi năng lượng của tia gam-ma tới lơn hơn 1,002 MeV tương tác với vật chất sẽ sinh ra phản ứng tạo cặp ê-lec-trôn – pô-si-trôn trong điện trường của hạt nhân. Lúc này, gam-ma lượng tử bị hấp thụ hoàn toàn và truyền hết năng lượng cho cặp ê-lec-trôn – pô-si-trôn. Gam-ma để tạo cặp ê-lec-trôn – pô-si-trôn phổ biến là bức xạ Brem-tra-lung (Bremsstrahlung) được sinh ra khi chùm ê-lec-trôn năng lượng lớn bị hút bởi các hạt nhân tích điện dương.

Ngoài ra, nguồn pô-si-trôn cũng có thể tạo ra từ các phản ứng hạt nhân.

Stein (1974) đã đề xuất cách điều khiển chùm prô-tôn năng lượng cao bắn vào bia làm từ nguyên tố Bo-ron (Bo) để thu được chùm pô-si-trôn có thông lượng lớn.

Một cách tạo pô-si-trôn khác được quan sát trong phản ứng nghiên cứu Mu-nic (Munich) (Triftshaeuser 1995). Trong phản ứng 113Cd (n, ) 114Cd, ba lượng tử với tổng năng lượng 9,041 MeV được giải phóng và có thể được sử dụng cho phản ứng tạo cặp. Lợi thế của phương pháp này là tạo ra chùm pô-si-trôn có cường độ cao liên tục.

2.1.3. Tương tác của pô-si-trôn với vật chất, sự hủy pô-si-trôn

2.1.3.1. Tương tác của pô-si-trôn với vật chất

Khi gặp bề mặt vật chất, tùy thuộc vào năng lượng của pô-si-trôn tới, góc tới và vật liệu làm bia, pô-si-trôn có thể bị tán xạ trên bề mặt, hoặc đi sâu vào bên trong bia nhờ hiệu ứng mở kênh. Pô-si-trôn khi vào trong vật chất sẽ nhanh chóng bị mất năng lượng do quá trình nhiệt hóa, sau đó khuếch tán cho đến khi bị hủy.

Sự tán xạ ngược trên bia

Khi một chùm hạt bắn vào một bia rắn, một số hạt, sau khi va chạm đàn hồi hoặc không đàn hồi với các nguyên tử của bia, nảy ra khỏi bề mặt. Một số khác xuyên qua mặt kia của bia, số còn lại bị bẫy ở bên trong bia. Tỉ lệ các hạt bị bẫy, tán xạ ngược hay truyền qua tùy thuộc vào độ dày của bia. Đối với những bia dày, tỉ lệ các hạt tán xạ ngược có thể đạt được giá trị bão hòa của nó, thường gọi là hệ số tán xạ. Hệ số tán xạ này phụ thuộc vào từng loại hạt, năng lượng ban đầu của các hạt, số nguyên tử (Z) của bia và góc tới của các hạt đến bia.

Khi va chạm với ê-lec-trôn hoặc hạt nhân của nguyên tử, pô-si-trôn bị mất bớt năng lượng và thay đổi hướng. Tán xạ giữa pô-si-trôn tới với hạt nhân của bia gần như là tán xạ đàn hồi bởi vì sự chênh lệch lớn về khối lượng giữa chúng. Các tiết diện tán xạ đàn hồi của pô-si-trôn với các bia làm từ các vật liệu khác nhau đã được tính toán bởi Mau-ri-zi-ô Đa-pô (Maurizio Dapor) [14], cho thấy tiết diện tán xạ đàn hồi của pô-si-trôn nhỏ hơn của ê-lec-trôn, và tiết diện tán xạ góc lớn của pô-si-trôn lớn hơn của ê-lec-trôn. Sự khác biệt này được giải thích là do tương tác giữa hạt nhân bia với ê-lec-trôn là tương tác hút, còn đối với pô-si-trôn là tương tác đẩy. Các hạt nhân bia có số nguyên tử càng lớn thì xác xuất tán xạ ngược càng cao. Xác xuất tán xạ đàn hồi và

không đàn hồi cũng được tính toán lý thuyết bằng phương pháp mô phỏng Môn-te Cac-lô (Monte Carlo) bởi Giê-sen (Jesen) [28] và Ô-mut-lu (Ozmutlu) [43]. Trong công trình nghiên cứu của Mau-ri-zi-ô Đa-pô và An-tô-ni-ô Mi-ô-teo-lô (Antonio Miotello), số lượng trung bình của các va chạm góc lớn υ của các pô-si-trôn năng

lượng thấp (500 eV < E <5000 eV) tỉ lệ với hệ số tán xạ của pô-si-trôn và được tính toán gần đúng bởi biểu thức:

2

0 1 2

exp( lnE ln E)

υ = ξ ξ+ +ξ (2.1)

Trong đó, ξii( )Z , i=0,1, 2; Z là số nguyên tử của hạt nhân bia; E là năng lượng của pô-si-trôn tính theo đơn vị eV. Chẳng hạn khi Z=Al (bia làm bằng nhôm), các giá trị ξ ξ ξ0, 1, 2 có giá trị lần lượt là -4,4277; 1,0119; -0,0526 [13].

Các phương pháp thực nghiệm pô-si-trôn để nghiên cứu cấu trúc của vật chất đòi hỏi cần phải giảm sự hủy của pô-si-trôn tán xạ ngược xảy ra bên ngoài mẫu vì sự hủy này làm sai lệch phổ hủy bên trong. Có thể tránh được điều này nếu sử dụng buồng đo có độ rộng đủ lớn và che chắn các đầu dò ghi nhận bức xạ hủy, hoặc sử dụng hệ đo trùng phùng.

Sự mở kênh tương tác

Các hạt khi chuyển động ngang ứng với các góc nhỏ dọc theo một trục tinh thể đơn sẽ chịu tác dụng bởi một hợp lực tán xạ gây bởi các nguyên tử của tinh thể đó. Các trường cực mạnh có thể bẫy các hạt này dọc theo một trục hoặc mặt phẳng, gọi là sự mở kênh (sự xoi rãnh – channeling).

Hình 2.2: Nguyên lí của sự mở kênh trong tinh thể. Khi một chùm hạt chạm đến tinh thể dưới một góc nhỏ theo trục của nó, một hạt sẽ tương tác đồng thời với nhiều nguyên tử của tinh thể và do đó có thể bị bẫy ở vùng hẹp xung quanh trục

(hay mặt phẳng) gọi là kênh. Số lượng lớn các nguyên tử tinh thể tham gia (khoảng 1000) sinh ra trường cực lớn. Cường độ điện trường có thể đạt giá trị

E=10 TV/m (Tera-Volt/mét) và từ trường có thể lên đến B=30kT (kilo-Tesla).

Sự mở kênh của pô-si-trôn và ê-lec-trôn là một hiện tượng vật lí lí thú, các hạt được mở kênh di chuyển nhấp nhô như hình gợn sóng khi đi vào vật liệu (hình 2.2), nhờ đó sinh ra nhiều bức xạ xoi rãnh. Nếu các hạt được mở kênh có năng lượng lớn (cỡ 10 GeV) có thể sinh ra bức xạ xoi rãnh có cường độ lớn tương đương cường độ bức xạ Xin-crô-trôn (Synchrotron).

Sự mở kênh của pô-si-trôn trong các miền năng lượng khác nhau đã được nghiên cứu từ rất sớm. An-đê-sân (Andersen), Au-gợt-ti-ni-ac (Augustyniak) và U-gơ-hoi (Uggerhoj) đã tiến hành đo sự tán xạ góc lớn (40-100) của các pô-si-trôn 1 MeV trong vàng (Au), nghiên cứu cấu trúc vật liệu nhờ vào nhiễu xạ Bragg [9]. Nghiên cứu sau đó của Pê-đê-sân (Pedersen), An-đê-sân và Au-gợt-ti-ni-ac cho thông tin cấu trúc tốt hơn với chùm pô-si-trôn 1,2 MeV trong Si [44], mặc dù trong tất cả các thí nghiệm này, việc thiếu nguồn pô-si-trôn có cường độ đủ mạnh dẫn đến một khoảng năng lượng rộng và do đó tương ứng với một độ phân giải góc kém. Thí nghiệm với pô-si- trôn 10-50 keV trong Si của Kiu (Schultz) và cộng sự cho hiệu ứng mở kênh, nhưng không thu được thông tin cấu trúc [47]. Niu-phơ (Neufert), Ki-bồ (Schiebel) và Clau- nit-dơ (Clausnitzer) thí nghiệm truyền qua MgO và Si với chùm pô-si-trôn và ê-lec- trôn 5-45 MeV và chỉ quan sát được các sóng nhiễu xạ từ các ê-lec-trôn [41]. Công bố của Ha-ke-na-sen (Haakenaasen) cùng cộng sự khi nghiên cứu các hiệu ứng mở kênh lượng tử của pô-si-trôn năng lượng 1 MeV cho rằng khi chùm pô-si-trôn trong miền năng lượng MeV, cường độ 106 s-1với một góc mở kênh tới hạn, tốc độ đếm gam-ma

Một phần của tài liệu ỨNG DỤNG PHƯƠNG PHÁP hủy pô SI TRÔN để NGHIÊN cứu ẢNH HƯỞNG của sắt TRONG cấu TRÚC một vài vật LIỆU zê ô LIT (Trang 33)

Tải bản đầy đủ (PDF)

(85 trang)