CHƯƠNG 8: LẬP LỊCH ĐIỀU HÀNH

Một phần của tài liệu Tổng hợp lý thuyết ôn thi quản trị điều hành (Trang 25)

- Số lần đặt hàng trong 1 năm là n= 6 lần

CHƯƠNG 8: LẬP LỊCH ĐIỀU HÀNH

Mục đích: sử dụng nguồn lực hợp lý và hiệu quả

Các phương pháp và kỹ thuật lập lịch sản xuất điều hành: 1. Phương pháp xếp thứ tự cơng việc

1.1 Sắp xếp nhiều cơng việc cho 1 máy:

Điều kiện doanh nghiệp hoặc phân xưởng chỉ cĩ 1 thiết bị, lao động hoặc 1 máy thực hiện.

Nguyên tắc Để xếp thứ tự các cơng việc này cĩ các nguyên tắc sau: - Ưu tiên theo thứ tự đặt hàng

(FCFS)

+ Khơng đạt hiệu quả cao trong các chỉ tiêu nhưng khơng phải là nguyên tắc xấu nhất.

+ Làm hài lịng khách hàng, là yếu tố quyết định thành cơng trong dịch vụ.

gian thực hiện ngắn (SPT) thời gian hồn thành thực tế bình quân một cơng việc.

+ Tuy nhiên khách hàng cĩ thể khơng hài lịng do đẩy việc cĩ thời gian thực hiện dài xuống dưới.

- Ưu tiên cơng việc cĩ thời gian thực hiện dài (LPT)

Kém hiệu quả nhất - Ưu tiên cơng việc cĩ thời

gian hồn thành theo kế hoạch sớm (EDD)

Rút ngắn thời gian trễ bình quân cho một cơng việc

2 chỉ tiêu cần tính:

o TG hồn thành thực tế bình quân 1 cơng việc = TổngTG hồn thành thực tế /S việc

o TG trễ bình quân 1 cơng việc = Tổng số ngày trễ /Số việc

 Ví dụ xem trong sách trang 266-269.

1.2 Sắp xếp n cơng việc cho 2 máy - ứng dụng nguyên tắc Johnson

Tmin [i] : thời gian ngắn nhất nằm trên máy thứ i (i=1,2,3…) Tmax [i] : thời gian dài nhất nằm trên máy thứ i (i=1,2,3…) T[i]: thời gian máy thứ i (i=1,2,3…)

Điều kiện Cĩ n cơng việc, 2 máy, mỗi cơng việc tiến hành trên 2 máy mới hồn tất, xong máy 1 đến máy 2

Nguyên tắc Bước 1: nhìn bao quát trên 2 máy, chọn thời gian ngắn nhất. + Nếu Tmin 1, ta bố trí cơng việc đầu.

+ Nếu Tmin 2, ta bố trí cơng việc cuối.

Bước 2:Loại trừ cơng việc vừa bố trí xong, trở lại Bước 1 cho đến hết Bước 3: Vẽ sơ đồ cơng việc, tính tổng thời gian sản xuất và chờ đợi.  Ví dụ xem trong sách trang 271.

1.3 Sắp xếp n cơng việc cho 3 máy - ứng dụng nguyên tắc

Điều kiện + Cĩ n cơng việc, 3 máy, mỗi cơng việc tiến hành trên máy mới hồn tất, xong máy 1 chuyển máy 2 rồi đến máy 3

Nguyên tắc Bước 1: xét điều kiện

Bước 2: lập ma trận mới [T1+T2, T2+T3]

Bước 3: sắp xếp cơng việc theo thời gian tăng dần Bước 4: áp dụng nguyên tắc Johnson để xếp thứ tự Bước 5: vẽ sơ đồ

Ví dụ xem trong sách trang 272 -273.

1.4 Sắp xếp n cơng việc cho m máy

- Mở rộng nguyên tắc Johnson N/3 thành N/m - Hoặc nguyên tắc SPT và EDD

xem sách trang 274

2. Phương pháp phân cơng cơng việc

Sử dụng thuật tốn Hungary để:

- Bài tốn cực tiểu: thời gian hao phí nhỏ nhất, tổng chi phí nhỏ nhất, định mức tiêu hao NVL thấp nhất

- Bài tốn cực đại: năng suất cao nhất, lợi nhuận cao nhất, thu nhập nhiếu nhất

- Bài tốn cĩ ơ cấm: ứng dụng trong trường hợp việc phân cơng bị khống chế về mặt thời gian hồn thành, khống chế về chi phí thực hiện, doanh thu lợi nhuận, hoặc trong trường hợp một số cơng việc cơng nhân khơng thực hiện được.

Điều kiện + Cĩ n cơng việc + n lao động (n máy)

+ mỗi lao động chỉ làm 1 việc + mỗi việc chỉ một lao động làm

Nguyên tắc Bước 1: dị từng dịng, tìm số nhỏ nhất của dịng, lấy tất cả các số trừ số nhỏ nhất đĩ.

Bước 2:dị từng cột, tìm số nhỏ nhất của cột, lấy tất cả các số trừ số nhỏ nhất đĩ

Bước 3:tiếp tục dị dịng, dịng nào chỉ cĩ 1 số 0, đánh dấu số 0 (0*) đĩ rồi gạch cột

Bước 4:tiếp tục dị cột, cột nào chỉ cĩ một số 0, đánh dầu số 0 đĩ rồi gạch dịng

Bước 3 và 4 lập đi lập lại cho đến khi mọi số 0 đều bị gạch, nếu số 0 được đánh dấu bằng với n thì bài tốn giải xong. Nếu khơng, qua Bước 5

Bước 5: Tìm số α là số nhỏ nhất nằm ngồi đường thẳng và xử lý như sau: - Giao điểm giữa 2 đường thẳng cộng α

- Số trên đường thẳng giữ nguyên - Số nằm ngồi đường thẳng trừ α

Ma trận mới được thiết lập, trở lại bước 3 và 4 cho đến khi bài tốn giải xong.

3. Kỹ thuật dùng để lập lịch sản xuất điều hành

3.1 Lịch trình tiến tới

3.2 Lịch trình lùi

3.3 Kiểm sốt đầu vào – đầu ra

3.4 Biểu đồ Gantt

3.5 Phương pháp sơ đồ PERT

Một phần của tài liệu Tổng hợp lý thuyết ôn thi quản trị điều hành (Trang 25)

Tải bản đầy đủ (DOCX)

(49 trang)
w