1. Trang chủ
  2. » Giáo Dục - Đào Tạo

200 Câu hình học tọa độ cực hay.

67 1,9K 11

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 67
Dung lượng 2,08 MB

Nội dung

Trần Sĩ Tùng PP toạ độ trong không gian Trang 1 TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Câu 1. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(–1;1;3) và mặt phẳng (P): xyz–32–50+=. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P). · (Q) đi qua A, B và vuông góc với (P) Þ (Q) có VTPT P nnAB,(0;8;12)0 éù == ¹ ëû u uurr rr Þ Qyz():23110+-=. Câu hỏi tương tự: a) Với A(1; 0; 1), B(2; 1; 2), 2330Pxyz(): +++=. ĐS: Qxyz():220-+-= Câu 2. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm AB (2;1;3),(1;2;1)- và song song với đường thẳng xt dyt zt 1 :2 32 ì =-+ ï = í ï = î . · Ta có BA (1;3;2)= u ur , d có VTCP u (1;2;2)=- r . Gọi n r là VTPT của (P) Þ nBA nu ì ^ í ^ î u ur r rr Þ chọn nBAu,(10;4;1) éù == ëû u ur rr Þ Phương trình của (P): xyz104190-+-=. Câu 3. Trong không gian với hệ toạ độ Oxyz, cho 2 đường thẳng d 1 () và d 2 ()có phương trình: xyz d 1 112 (); 231 -+- ==, xyz d 2 413 (): 693 ==. Lập phương trình mặt phẳng (P) chứa (d 1 ) và d 2 () . · Chứng tỏ (d 1 ) // (d 2 ). (P): x + y – 5z +10 = 0 Câu 4. Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình: xyzxyz 222 26420++-+ =. Viết phương trình mặt phẳng (P) song song với giá của véc tơ v (1;6;2)= r , vuông góc với mặt phẳng xyz():4110 a ++-= và tiếp xúc với (S). · (S) có tâm I(1; –3; 2) và bán kính R = 4. VTPT của () a là n (1;4;1)= r . Þ VTPT của (P) là: [ ] P nnv ,(2;1;2)==- r rr Þ PT của (P) có dạng: xyzm220-++=. Vì (P) tiếp xúc với (S) nên dIP(,())4= m m 21 3 é =- Û ê = ë . Vậy: (P): xyz2230-++= hoặc (P): xyz22210-+-=. Câu 5. Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; –1; 1) và hai đường thẳng xyz d 1 1 (): 123 + == và xyz d 2 14 (): 125 ==. Chứng minh rằng điểm Mdd 12 ,, cùng nằm trên một mặt phẳng. Viết phương trình mặt phẳng đó. · d 1 qua M 1 (0;1;0)- và có u 1 (1;2;3)= r , d 2 qua M 2 (0;1;4) và có u 2 (1;2;5)= r . uu 12 ;(4;8;4)0 éù = ¹ ëû r rr , MM 12 (0;2;4)= uuuuu ur Þ uuMM 1212 ;.0 éù = ëû uuuuu ur rr Þ dd 12 , đồng phẳng. Gọi (P) là mặt phẳng chứa dd 12 , Þ (P) có VTPT n (1;2;1)=- r và đi qua M 1 nên có phương trình xyz220+-+=. Kiểm tra thấy điểm MP(1;–1;1)()Î . www.VNMATH.com PP toạ độ trong không gian Trần Sĩ Tùng Trang 2 Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Câu 6. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d: xyz33 221 == và mặt cầu (S): xyzxyz 222 22420++ +=. Lập phương trình mặt phẳng (P) song song với d và trục Ox, đồng thời tiếp xúc với mặt cầu (S). · (S) có tâm I(1; 1; 2), bán kính R = 2. d có VTCP u (2;2;1)= r . (P) // d, Ox Þ (P) có VTPT [ ] nui,(0;1;2)==- r rr Þ PT của (P) có dạng: y zD20-+=. (P) tiếp xúc với (S) Û dIPR(,()) = Û D 22 14 2 12 -+ = + Û D 325-= Û D D 325 325 é =+ ê =- ë Þ (P): yz23250-++= hoặc (P): yz23250-+-=. Câu 7. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): xyzxy 222 2440+++ = và mặt phẳng (P): xz30+-=. Viết phương trình mặt phẳng (Q) đi qua điểm M(3;1;1)- vuông góc với mặt phẳng (P) và tiếp xúc với mặt cầu (S). · (S) có tâm I(–1; 2; 0) và bán kính R = 3; (P) có VTPT P n (1;0;1)= r . PT (Q) đi qua M có dạng: AxByCzABC 222 (3)(1)(1)0,0-+-++=++¹ (Q) tiếp xúc với (S) Û dIQRABCABC 222 (,())43=Û-++=++ (*) QP QPnnACCA()().00^Û=Û+=Û=- rr (**) Từ (*), (**) Þ BAABBAAB 2222 53287100-=+Û-+= Û A BAB274=Ú=- · Với AB 2= . Chọn B = 1, A = 2, C = –2 Þ PT (Q): xyz2290+ = · Với AB 74=- . Chọn B = –7, A = 4, C = –4 Þ PT (Q): xyz47490 = Câu hỏi tương tự: a) Với Sxyzxyz 222 ():24450++-+-+=, PxyzM():2650,(1;1;2)+-+= . ĐS: Qxyz():2260++-= hoặc Qxyz():1110250-+-=. Câu 8. Trong không gian với hệ trục Oxyz, cho mặt cầu (S): xyzxyz 222 –242–30++++=. Viết phương trình mặt phẳng (P) chứa trục Ox và cắt mặt cầu (S) theo một đường tròn có bán kính r 3= . · (S) có tâm I(1; –2; –1), bán kính R = 3. (P) chứa Ox Þ (P): ay + bz = 0. Mặt khác đường tròn thiết diện có bán kính bằng 3 cho nên (P) đi qua tâm I. Suy ra: –2a – b = 0 Û b = –2a (a ¹ 0) Þ (P): y – 2z = 0. Câu 9. Trong không gian với hệ trục Oxyz, cho mặt cầu (S): xyzxyz 222 222–10+++-+= và đường thẳng xy d xz 20 : 260 ì = í = î . Viết phương trình mặt phẳng (P) chứa d và cắt mặt cầu (S) theo một đường tròn có bán kính r 1= . · (S) có tâm I(1;1;1) , bán kính R = 2. PT mặt phẳng (P) có dạng: axbyczdabc 222 0(0)+++=++¹. Chọn MNd(2;0;2),(3;1;0)-Î. www.VNMATH.com Trần Sĩ Tùng PP toạ độ trong không gian Trang 3 Ta có: MP NP dIPRr 22 () () (,()) ì Î ï Î í ï =- î Û abcabdab abcabdab ,2(),3(1) 177,2(),3(2) é ==-+= ê =-=-+= ë + Với (1) Þ (P): xyz40+ = + Với (2) Þ (P): xyz717540-+-= Câu 10. Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng xyz 1 1 : 211 D - == - , xyz 2 1 : 111 D - == và mặt cầu (S): xyzxyz 222 –224–30++++=. Viết phương trình tiếp diện của mặt cầu (S), biết tiếp diện đó song song với hai đường thẳng D 1 và D 1 . · (P): yz3320+++= hoặc (P): yz3320++-= Câu 11. Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S) có phương trình xyzxyz 222 246110++-+ = và mặt phẳng ( a ) có phương trình 2x + 2y – z + 17 = 0. Viết phương trình mặt phẳng ( b ) song song với ( a ) và cắt (S) theo giao tuyến là đường tròn có chu vi bằng p 6 p = . · Do ( b ) // ( a ) nên ( b ) có phương trình 2x + 2y – z + D = 0 (D ¹ 17) (S) có tâm I(1; –2; 3), bán kính R = 5. Đường tròn có chu vi 6 p nên có bán kính r = 3. Khoảng cách từ I tới ( b ) là h = Rr 2222 534-=-= Do đó D D D D (loaïi) 222 2.12(2)3 7 4512 17 22(1) + + é =- =Û-+=Û ê = ë ++- Vậy ( b ) có phương trình xyz22––70+=. Câu hỏi tương tự: a) yzxyzSx 22 246110 2 (): ++++ = , xyz():22190+-+= a , p 8 p = . ĐS: xyz():2210+-+= b www.VNMATH.com PP toạ độ trong không gian Trần Sĩ Tùng Trang 4 Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Câu 12. Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) qua O, vuông góc với mặt phẳng (Q): xyz0++= và cách điểm M(1; 2; –1) một khoảng bằng 2 . · PT mặt phẳng (P) qua O nên có dạng: A xByCz 0++= (với ABC 222 0++¹). · Vì (P) ^ (Q) nên: A BC1.1.1.0++= Û CAB= (1) · dMP(,())2= Û ABC ABC 222 2 2 +- = ++ Û A BCABC 2222 (2)2()+-=++ (2) Từ (1) và (2) ta được: ABB 2 850+= Û B AB 0(3) 850(4) é = ê += ë · Từ (3): B = 0 Þ C = –A. Chọn A = 1, C = –1 Þ (P): xz0-= · Từ (4): 8A + 5B = 0. Chọn A = 5, B = –8 Þ C = 3 Þ (P): xyz5830-+=. Câu 13. Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng D : xyz13 114 == và điểm M(0; –2; 0). Viết phương trình mặt phẳng (P) đi qua điểm M, song song với đường thẳng D, đồng thời khoảng cách d giữa đường thẳng D và mặt phẳng (P) bằng 4. · Phương trình mp (P) đi qua M(0; –2; 0) có dạng: axbyczb20+++= ( abc 222 0++¹) D đi qua điểm A(1; 3; 0) và có một VTCP u (1;1;4)= r Ta có: abc P ab dAPd abc 222 40 () 5 4 (;()) ì ++= ï ì D + Û íí = = î ï ++ î P Û ac ac 4 2 ì = í =- î . · Với ac4= . Chọn acb4,18==Þ=- Þ Phương trình (P): xyz48160-+-=. · Với ac2=- . Chọn acb2,12==-Þ= Þ Phương trình (P): xyz2240+-+=. Câu hỏi tương tự: a) Với xyz Md 1 :;(0;3;2),3 114 D - ==-=. ĐS: Pxyz():2280+ = hoặc Pxyz():48260-++=. Câu 14. Trong không gian với hệ toạ độ Oxyz, cho đường thẳng xt dyt z ():12 1 ì = ï =-+ í ï = î và điểm A (1;2;3)- . Viết phương trình mặt phẳng (P) chứa đường thẳng (d) sao cho khoảng cách từ điểm A đến mặt phẳng (P) bằng 3. · (d) đi qua điểm M(0;1;1)- và có VTCT u (1;2;0)= r . Gọi nabc(;;)= r với abc 222 0++¹ là VTPT của (P) . PT mặt phẳng (P): axbyczaxbyczbc(0)(1)(1)00-+++-=Û+++-= (1). Do (P) chứa (d) nên: unabab.0202=Û+=Û=- rr (2) ( ) abcbc dAPbcbc abcbc 22 22222 3252 ,()3335235 5 -+++ =Û=Û=Û+=+ +++ ( ) bbccbccb 2 22 440202Û-+=Û-=Û= (3) Từ (2) và (3), chọn b 1=- Þ ac2,2==- Þ PT mặt phẳng (P): xyz2210 += . www.VNMATH.com Trần Sĩ Tùng PP toạ độ trong không gian Trang 5 Câu 15. Trong không gian với hệ toạ độ Oxyz, cho các điểm MNI(1;1;0),(0;0;2),(1;1;1) Viết phương trình mặt phẳng (P) qua A và B, đồng thời khoảng cách từ I đến (P) bằng 3 . · PT mặt phẳng (P) có dạng: axbyczdabc 222 0(0)+++=++¹. Ta có: MP NP dIP () () (,())3 ì Î ï Î í ï = î Û abcabdab abcabdab ,2,(1) 57,2,(2) é =-=-=- ê ==-=- ë . + Với (1) Þ PT mặt phẳng (P): xyz20-++= + Với (2) Þ PT mặt phẳng (P): xyz7520+++=. Câu 16. Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A (1;1;2)- , B(1;3;0) , C(3;4;1)- , D(1;2;1) . Viết phương trình mặt phẳng (P) đi qua A, B sao cho khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P). · PT mặt phẳng (P) có dạng: axbyczdabc 222 0(0)+++=++¹. Ta có: AP BP dCPdDP () () (,())(,()) ì Î ï Î í ï = î Û abcd abd bcdabcd abcabc 222222 20 30 3a42 ì -++= ï ++= ï í -++++++ = ï ï ++++ î Û bacada cabada 2,4,7 2,,4 é ===- ê ===- ë + Với bacada2,4,7===- Þ (P): xyz2470++-=. + Với cabada2,,4===- Þ (P): xyz240++-=. Câu hỏi tương tự: a) Với A BCD(1;2;1),(2;1;3),(2;1;1),(0;3;1) . ĐS: Pxyz():427150++-= hoặc Pxz():2350+-=. Câu 17. Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A (1;2;3) , B(0;1;2)- , C(1;1;1) . Viết phương trình mặt phẳng P() đi qua A và gốc tọa độ O sao cho khoảng cách từ B đến P() bằng khoảng cách từ C đến P(). · Vì O Î (P) nên Paxbycz():0++=, với abc 222 0++¹. Do A Î (P) Þ abc230++= (1) và dBPdCPbcabc(,())(,())2=Û-+=++ (2) Từ (1) và (2) Þ b 0= hoặc c 0= . · Với b 0= thì ac3=- Þ Pxz():30-= · Với c 0= thì ab2=- Þ Pxy():20-= Câu hỏi tương tự: a) Với A BC(1;2;0),(0;4;0),(0;0;3) . ĐS: xyz6340-++= hoặc xyz6340-+=. Câu 18. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A (1;1;1)- , B(1;1;2) , C(1;2;2) và mặt phẳng (P): xyz2210-++=. Viết phương trình mặt phẳng () a đi qua A, vuông góc với mặt phẳng (P), cắt đường thẳng BC tại I sao cho IBIC2= . · PT () a có dạng: axbyczd 0+++=, với abc 222 0++¹ Do A (1;1;1)() a -Î nên: abcd 0+-+= (1); P()() a ^ nên abc220-+= (2) IBIC2= Þ dBdC(,())2(;()) aa = Þ abcdabcd abcabc 222222 222 2 +++-+-+ = ++++ www.VNMATH.com PP toạ độ trong không gian Trần Sĩ Tùng Trang 6 abcd abcd 3360 (3) 5230 é -+-= Û ê -+-+= ë Từ (1), (2), (3) ta có 2 trường hợp sau : TH1 : abcd abcbacada abcd 0 13 220;; 22 3360 ì +-+= ï -+=Û==-= í ï -+-= î . Chọn abcd21;2;3=Þ=-=-=- Þ () a : xyz2230 = TH2 : abcd abcbacada abcd 0 33 220;; 22 5230 ì +-+= - ï -+=Û=== í ï -+-+= î . Chọn abcd23;2;3=Þ===- Þ () a : xyz23230++-= Vậy: () a : xyz2230 =hoặc () a : xyz23230++-= Câu 19. Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng dd 12 , lần lượt có phương trình xyz d 1 223 : 213 ==, xyz d 2 121 : 214 == - . Viết phương trình mặt phẳng cách đều hai đường thẳng dd 12 , . · Ta có d 1 đi qua A(2;2;3) , có d u 1 (2;1;3)= r , d 2 đi qua B(1;2;1) và có d u 2 (2;1;4)=- r . Do (P) cách đều dd 12 , nên (P) song song với dd 12 , Þ Pdd nuu 12 ,(7;2;4) éù == ëû r rr Þ PT mặt phẳng (P) có dạng: xyzd7240 += Do (P) cách đều dd 12 , suy ra dAPdBP(,())(,())= Û dd7.22.24.37.12.24.1 6969 + + = ddd 3 21 2 Û-=-Û= Þ Phương trình mặt phẳng (P): xyz144830 += Câu 20. Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng dd 12 , lần lượt có phương trình xt dyt z 1 1 :2 1 ì =+ ï =- í ï = î , xyz d 2 211 : 122 + == - . Viết phương trình mặt phẳng (P) song song với d 1 và d 2 , sao cho khoảng cách từ d 1 đến (P) gấp hai lần khoảng cách từ d 2 đến (P). · Ta có : d 1 đi qua A (1;2;1) và có VTCP u 1 (1;1;0)=- r d 2 đi qua B(2;1;1)- và có VTCP là u 2 (1;2;2)=- r Gọi n r là VTPT của (P), vì (P) song song với d 1 và d 2 nên nuu 12 ,(2;2;1) éù == ëû r rr Þ Phương trìnht (P): xyzm220+++=. m ddPdAP 1 7 (,())(;()) 3 + == ; m ddPdBP 2 5 (,()) (,()) 3 + == ddPddP 12 (,())2(,())= mm72.5Û+=+ mm mm 72(5) 72(5) é +=+ Û ê +=-+ ë mm 17 3; 3 Û=-=- + Với m 3=- Þ Pxyz():22–30++= + Với m 17 3 =- Þ Pxyz 17 ():22 0 3 ++-= www.VNMATH.com Trần Sĩ Tùng PP toạ độ trong không gian Trang 7 Câu 21. Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A (0;1;2)- , B(1;0;3) và tiếp xúc với mặt cầu (S): xyz 222 (1)(2)(1)2-+-++=. · (S) có tâm I(1;2;1)- , bán kính R 2= . PT mặt phẳng (P) có dạng: axbyczdabc 222 0(0)+++=++¹ Ta có: AP BP dIPR () () (,()) ì Î ï Î í ï = î Û abcabdab abcabdab ,,23(1) 38,,23(2) é =-= =+ ê =-= =+ ë + Với (1) Þ Phương trình của (P): xy10 = + Với (2) Þ Phương trình của (P): xyz83570 += Câu 22. Trong không gian với hệ tọa độ Oxyz, cho điểm A (2;1;1)- . Viết phương trình mặt phẳng (P) đi qua điểm A và cách gốc tọa độ O một khoảng lớn nhất. · Ta có dOPOA(,()) £ . Do đó dOPOA max (,()) = xảy ra OAP()Û^nên mặt phẳng (P) cần tìm là mặt phẳng đi qua A và vuông góc với OA. Ta có OA (2;1;1)=- u uur Vậy phương trình mặt phẳng (P): xyz260-+-= Câu 23. Trong không gian với hệ tọa độ Oxyz, cho điểm A(10; 2; –1) và đường thẳng d có phương trình: xyz11 213 == . Lập phương trình mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. · Gọi H là hình chiếu của A trên d Þ d(d, (P)) = d(H, (P)). Giả sử điểm I là hình chiếu của H lên (P), ta có A HHI³ Þ HI lớn nhất khi AI º . Vậy (P) cần tìm là mặt phẳng đi qua A và nhận AH uu ur làm VTPT Þ (P): xyz75770+ =. Câu 24. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d) có phương trình tham số { xtytzt2;2;22=-+=-=+ . Gọi D là đường thẳng qua điểm A(4;0;–1) song song với (d) và I(–2;0;2) là hình chiếu vuông góc của A trên (d). Viết phương trình của mặt phẳng chứa D và có khoảng cách đến (d) là lớn nhất. · Gọi (P) là mặt phẳng chứa D , thì Pd()() P hoặc Pd()()É . Gọi H là hình chiếu vuông góc của I trên (P). Ta luôn có IHIA£ và IHAH^ . Mặt khác ddPdIPIH HP (,())(,()) () ì == í Î î Trong (P), IHIA£ ; do đó maxIH = IAHAÛº. Lúc này (P) ở vị trí (P 0 ) ^ IA tại A. Vectơ pháp tuyến của (P 0 ) là ( ) nIA 6;0;3==- r uur , cùng phương với ( ) v 2;0;1=- r . Phương trình của mặt phẳng (P 0 ) là: xzxz2(4)1.(1)290 += =. Câu 25. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng xyz d 12 : 212 == và điểm A (2;5;3) . Viết phương trình mặt phẳng (P) chứa d sao cho khoảng cách từ A đến (P) là lớn nhất. · PT mặt phẳng (P) có dạng: axbyczdabc 222 0(0)+++=++¹. (P) có VTPT nabc(;;)= r , d đi qua điểm M(1;0;2) và có VTCP u (2;1;2)= r . www.VNMATH.com PP toạ độ trong không gian Trần Sĩ Tùng Trang 8 Vì (P) É d nên MP nu () .0 ì Î í = î rr Þ acd abc 20 220 ì ++= í ++= î Þ cab dab 2(2) ì =-+ í =+ î . Xét 2 trường hợp: TH1 : Nếu b = 0 thì (P): xz10-+= . Khi đó: dAP(,())0= . TH2: Nếu b ¹ 0. Chọn b 1= ta được (P): axyaza22(21)220+-+++=. Khi đó: dAP aa a 22 99 (,())32 845 13 22 22 ==£ ++ æö ++ ç÷ èø Vậy dAPmax(,())32= Û aa 11 20 24 +=Û=- . Khi đó: (P): xyz430-+-=. Câu hỏi tương tự: a) xyz dA 112 :,(5;1;6) 215 -+- == . ĐS: Pxyz():210+-+= b) xyz dA 12 :,(1;4;2) 112 -+ == - . ĐS: Pxyz():5134210+-+= Câu 26. Trong không gian toạ độ Oxyz, cho hai điểm M(0;1;2)- và N(1;1;3)- . Viết phương trình mặt phẳng (P) đi qua M, N sao cho khoảng cách từ điểm K(0;0;2) đến mặt phẳng (P) là lớn nhất. · PT (P) có dạng: A xByCzAxByCzBC(1)(2)020+++-=Û+++-= ABC 222 (0)++¹ NPABCBCABC(1;1;3)()3202-ÎÛ-+++-=Û=+ PBCxByCzBC():(2)20Þ++++-=; dKP B CBC B (,()) 22 424 = ++ · Nếu B = 0 thì d(K, (P)) = 0 (loại) · Nếu B 0¹ thì B dKP BCBC C B 222 11 (,()) 2 424 212 ==£ ++ æö ++ ç÷ èø Dấu “=” xảy ra khi B = –C. Chọn C = 1. Khi đó PT (P): xyz–30++=. www.VNMATH.com Trn S Tựng PP to trong khụng gian Trang 9 Dng 4: Vit phng trỡnh mt phng liờn quan n gúc Cõu 27. Trong khụng gian vi h to Oxyz, cho mt phng (a) cha ng thng (): xyz1 112 - == v to vi mt phng (P) : xyz2210 += mt gúc 60 0 . Tỡm ta giao im M ca mt phng (a) vi trc Oz. ã () qua im A (1;0;0) v cú VTCP u (1;1;2)= r . (P) cú VTPT n (2;2;1) Â = r . Giao im Mm(0;0;) cho A Mm(1;0;)=- uuu ur . ( a ) cú VTPT nAMumm,(;2;1) ộự ==- ởỷ uu urur r ( a ) v (P): xyz2210 += to thnh gúc 60 0 nờn : ( ) nnmm mm 2 2 111 cos,2410 22 245 Â ==-+= -+ rr m 22=- hay m 22=+ Kt lun : M(0;0;22)- hay M(0;0;22)+ Cõu 28. Trong khụng gian vi h to Oxyz, vit phng trỡnh mt phng (P) i qua giao tuyn d ca hai mt phng xy():210= a , xz():20 b = v to vi mt phng Qxyz():2210+= mt gúc j m 22 cos 9 j = ã Ly A Bd(0;1;0), (1;3;2)ẻ . (P) qua A ị PT (P) cú dng: A xByCzB0++=. (P) qua B nờn: A BCB320++= ị A BC(22)=-+ ị PBCxByCzB():(22)0-+++= BCBC BCBC 222 2222 22 cos 9 3(22) j + == +++ BBCC 22 13850+=. Chn CBB 5 11; 13 =ị==. + Vi BC1== ị Pxyz():410-++= + Vi BC 5 , 1 13 == ị Pxyz():2351350-++=. Cõu 29. Trong khụng gian vi h ta Oxyz, cho hai im AB (1;2;3),(2;1;6) v mt phng Pxyz():230++-=. Vit phng trỡnh mt phng (Q) cha AB v to vi mt phng (P) mt gúc a tho món 3 cos 6 a = . ã PT mt phng (Q) cú dng: axbyczdabc 222 0(0)+++=++ạ. Ta cú: AQ BQ () () 3 cos 6 a ỡ ẻ ù ẻ ù ớ ù = ù ợ abcd bcd abc abc 222 230 2a60 23 6 141 ỡ -+-+= ù += ù ớ ++ ù = ù ++++ ợ abcbdb abcdb 4,3,15 ,0, ộ =-=-=- ờ =-==- ở ị Phng trỡnh mp(Q): xyz43150-++= hoc (Q): xy30 =. Cõu hi tng t: a) AB (0;0;1),(1;1;0) , POxy 1 ()(),cos 6 a =. S: (Q): xyz210-+-= hoc (Q): xyz210 += . www.VNMATH.com PP toạ độ trong không gian Trần Sĩ Tùng Trang 10 Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng xyz d xyz 30 : 240 ì ++-= í ++-= î . Viết phương trình mặt phẳng (P) chứa đường thẳng d và tạo với mặt phẳng (Oxy) một góc 0 60 a = . · ĐS: Pxyz():2220++ = hoặc Pxyz():2220 += Câu 31. Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng Pxyz():52510-+-= và Qxyz():48120 +=. Lập phương trình mặt phẳng R () đi qua điểm M trùng với gốc tọa độ O, vuông góc với mặt phẳng (P) và tạo với mặt phẳng (Q) một góc 0 45= a . · Giả sử PT mặt phẳng (R): axbyczdabc 222 0(0)+++=++¹. Ta có: R Pabc()()5250^Û-+= (1); · abc RQ abc 0 222 482 cos((),())cos45 2 9 =Û= ++ (2) Từ (1) và (2) Þ ac aacc ca 22 760 7 é =- +-=Û ê = ë · Với ac=- : chọn abc1,0,1===- Þ PT mặt phẳng R xz():0-= · Với ca7= : chọn abc1,20,7=== Þ PT mặt phẳng R xyz():2070++= Câu hỏi tương tự: a) Với PxyzQOyzM 0 ():20,()(),(2;3;1),45 =º-= a . ĐS: R xy():10++= hoặc R xyz():534230-+-= Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng có phương trình: xyz 1 111 : 113 D -+- == - và xyz 2 : 121 D == - . Viết phương trình mặt phẳng (P) chứa 1 D và tạo với 2 D một góc 0 30= a . · Đáp số: (P): xyz511240+++= hoặc (P): xyz220 =. Câu hỏi tương tự: a) Với xyz 1 2 : 111 D - == - , xyz 2 235 : 211 D + == - , 0 30= a . ĐS: (P): xyz2220 += hoặc (P): xyz240++-= b) xyz 1 11 : 211 D -+ == - , xyz 2 21 : 111 D -+ == - , 0 30= a . ĐS: (P): xyz(18114)21(152114)(3114)0++++ = hoặc (P): xyz(18114)21(152114)(3114)0-++ += Câu 33. Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và tạo với các trục Ox, Oy các góc tương ứng là 00 45,30 . · Gọi nabc(;;)= r là VTPT của (P). Các VTCP của trục Ox, Oy là ij(1;0;0),(0;1;0)== rr . Ta có: OxP OyP 2 sin(,()) 2 1 sin(,()) 2 ì = ï ï í ï = ï î Û ab cb 2 ì = í = î www.VNMATH.com

Ngày đăng: 21/01/2014, 19:33

TỪ KHÓA LIÊN QUAN

w