1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Đề ( có ĐA) luyện thi ĐHCĐ số 1 ppt

6 324 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 182,7 KB

Nội dung

www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Câu I. 1) Khảo sát sỷồ biến thiên và vẽ đồ thị (C) của hàm số y= x-x+1 x-1 2 . 2) Tìm trên trục Oy các điểm từ đó thể kẻ đỷợc ít nhất một tiếp tuyến đến đồ thị (C). 3) Xác định a để đồ thị (C) tiếp xúc với parabol y = x 2 +a. Câu II. Cho hệ phỷơng trình xyxym xym ++ = += 22 1) Giải hệ vớim=5. 2) Với giá trị nào của m thì hệ nghiệm? Câu III. 1) Cho bất phỷơng trình x 2 + 2x(cosy + siny) + 1 0. Tìm x để bất phỷơng trình đ ợc nghiệm đúng với mọi y. 2) Giải phỷơng trình lỷợng giác sin x(tgx + 1) = 3sinx(cosx - sinx) + 3 2 Câu IVa. Trong mặt phẳng với hệ trục tọa độ Đềcác vuông góc, cho elip E) : x 9 + y 4 22 =1, www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ___________________________________________________________ Câu 1 1) Bạn đọc tự giải nhé! 2) Lấy A(0, b) là một điểm trên Oy. Đờng thẳng qua A, với hệ số góc k phơng trình : y = kx + b. Ta 2 xx1 1 yx x1 x1 + ==+ ; 2 1 y' 1 (x 1) = Hoành độ tiếp điểm của đờng thẳng y = kx + b với đồ thị (C) là nghiệm của hệ 2 1 xkxb x1 1 1k (x 1) +=+ = 2 11 x1 xb x1 (x 1) += + 2 b x2(1b)x(1b)0+ ++= (1) y b = 0 : (1) trở thành 2x + 1 = 0 1 x 2 = y b 0 : (1) nghiệm khi 2 '(1b) b(1b)0= + + b 1 (b 0) Thành thử các điểm trên Oy từ đó thể đợc ít nhất một tiếp tuyến đến đồ thị (C) là các điểm tung độ b 1. 3) Hoành độ tiếp điểm của parabol 2 yx a =+ với đồ thị (C) là nghiệm của hệ : 2 o 2 1 xxa x1 1 12x (x 1) +=+ = Từ phơng trình thứ hai, suy ra : 2 x(2 x 5x 4) 0+= x = 0. Thay vào phơng trình đầu thì đợc a = - 1. Câu II. Đặt S = x + y, P = xy, ta đi đến hệ : 2 SP m S2Pm += = 1) Với m = 5 ta đợc : 2 SP5 S2P5 += = P = 5 S 2 S2S150+ = S = 5, S = 3. Với S = 5, ta P = 10, loại vì điều kiện 2 S4P không đợc nghiệm đúng. Với S = 3, ta P = 2 và đợc x2, y1, = = x1 y2. = = 2) Trong trờng hợp tổng quát, P = m - S 2 S2S3m0+ = . www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ___________________________________________________________ Để phơng trình nghiệm, cần phải : 1 '13m0 m 3 = + . Khi đó gọi 1 S và 2 S là các nghiệm : 1 S113m= + , 2 S113m= + + . a) Với 1 SS= 1 PmS= , điều kiện 2 S4P trở thành 2 (1 13m) 4(m1 13m)++ +++ (m 2) 2 1 3m+ + , không đợc nghiệm vì 1 m 3 m + 2 > 0. b) Với 2 SS= 2 PmS= , điều kiện 2 S4P trở thành : 2 ( 1 1 3m) 4(m 1 1 3m)+ + + + 21 3m m 2+ + . Vì m + 2 > 0, thể bình phơng hai vế của bất phơng trình này và đi đến 2 0m 8m 0m8 . Cùng với 1 m 3 suy ra đáp số : 0 m 8. Câu III. 1) Hiển nhiên với x = 0 bất phơng trình đợc nghiệm với mọi y. Xét x > 0 2 1x cosy sin y 2x + + . Hàm f (y) = cosy + siny giá trị lớn nhất bằng 2 , giá trị nhỏ nhất bằng 2 , vậy phải : 2 2 1x 2x22x10 2x + + 0x 21< , x21+ . Xét x < 0 2 1x cosy sin y 2x + + 2 2 1x 2x22x10x21 2x + + + , 21x0+< . Tóm lại các giá trị phải tìm là : x21 , 21x 21+ , 21x+ hay : |x| 2 1+ , |x| 2 1 2) Điều kiện : xk 2 + ( k Z). Chia hai vế cho 2 cos x ta đợc phơng trình tơng đơng : 22 tg x(tgx 1) 3tg x(1 tgx) 3(1 tg x)+= + + 2 tg x(tgx 1) 3(tgx 1) 0+ += 2 (tgx 1)(tg x 3) 0+= tgx 1 tgx 3 = = xk 4 xk 3 = + = + ( k Z) www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Câu IVa. Cần để ý rằng các đỷờng thẳng (D), (D) vuông góc với nhau và chúng phỷơng trình tham số (D) : xbt yat = = (D) : xat ybt = = ' ' 1) Thay biểu thức của (D) vào phỷơng trình của (E), ta đỷợc các giá trị của tham số t ứng với các giao điểm M, N. Từ đó suy ra chẳng hạn (do sự trao đổi vai trò của M, N): M 6b 9a + 4b , 6a 9a + 4b ,N - 6b 9a + 4b ,- 6a 9a + 4b 22 22 22 2 2 . Tỷơng tự: P 6a 4a + 9b ,- 6b 4a + 9b ,Q - 6a 4a + 9b , 6b 4a + 9b 22 22 22 2 2 . 2) Tứ giác MPNQ là hình thoi, với diện tích S = 2OM.OP = 72(a + b ) (9a + 4b )(4a + 9b ) 22 2222 . (1) 3) Để ý rằng các phỷơng trình của (D) và (D) dạng thuần nhất (hay đẳng cấp) đối với a, b, tức là thay cho a và b, ta viết ka và kb với k ạ 0. Do vậy, thể coi rằng a 2 +b 2 = 1. Khi đó (1) trở thành S= 72 (4 + 5a )(4 + 5b ) = 72 36 + 25a b 72 6 = 12, 22 22 dấu=chỉcóthểxảyrakhiab=0,tứclàhoặca=0hoặcb=0.(Khi đó cặp đỷờng thẳng (D) và (D) trùng với cặp hệ trục tọa độ). 4) Vẫn với giả thiết a 2 +b 2 = 1, theo trên ta có S= 72 36 + 25a b 22 suyraminS= 144 13 , xảy ra khi |a| = |b|, tức là cặp đỷờng thẳng (D), (D) là cặp các phân giác y x = 0 của hệ trục tọa độ Oxy. Câu IVb. (Hình bên) 1) BK AC, BK AM ị BK (ACM) ịBK CM. Cùng với BH CM, suy ra (BKH) CM ị BN CM. 2) Do (BKH) CM ị KH CM. Vậy K là trực tâm tam giác CMN, và ta đỷợc MK CN. Cùng với BK CN ị (BMK) CN ị BM CN. 3) Vì K là trực tâm tam giác CMN, nên AM.AN = AK.AC Vậy khi M di chuyển trên d, tích AM.AN không đổi ị MN==AM+ANnhỏnhất khi AM = AN. Khi đó AM 2 = AK.AC, AM là đỷờng cao trong tam giác vuông CMK, cạnh huyền CK, K là điểm đối xứng của K qua A. www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Vì 2|ab| Ê a 2 +b 2 = 1 suy ra a 2 b 2 Ê 1 4 , dấu = chỉ xảy ra khi |a| = |b|, vậy S 72 36 + 25 4 = 144 13 , www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ và hai đỷờng thẳng (D):ax-by=0, (D):bx+ay=0, với a 2 +b 2 >0. 1) Xác định các giao điểm M, N của (D) với (E), và các giao điểm P, Q của (D) với (E). 2) Tính theo a, b diện tích tỷỏ giác MPNQ. 3) Tìm điều kiện đối với a, b, để diện tích ấy lớn nhất. 4) Tìm điều kiện đối với a, b, để diện tích ấy nhỏ nhất. Câu IVb. Trong mặt phẳng (P) cho tam giác ABC với cả ba góc nhọn. Trên đỷờng thẳng (d) vuông góc với mặt phẳng (P) tại A, lấy một điểm M. Dỷồng BN CM BH CM, .Đỷờng thẳng KH cắt (d) tại N. 1) Chỷỏng minh : BN CM 2) Chỷỏng minh : BM CN 3) Hãy chỉ cách dỷồng điểm M trên (d) sao cho đoạn MN ngắn nhất. . đồ thị (C) là nghiệm của hệ 2 1 xkxb x1 1 1k (x 1) +=+ = 2 11 x1 xb x1 (x 1) += + 2 b x 2 (1 b)x(1b)0+ ++= (1 ) y b = 0 : (1 ) trở. 1 S và 2 S là các nghiệm : 1 S 113 m= + , 2 S 113 m= + + . a) Với 1 SS= 1 PmS= , điều kiện 2 S4P trở thành 2 (1 13 m) 4(m1 13 m)++ +++ (m

Ngày đăng: 21/01/2014, 05:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w