www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
_____________________________________________________
__________
Câu I. Xác định tham số a sao cho hàm số
y=-2x+2+a
x-4x+5
2
có cỷồc đại.
Câu II. Cho phỷơng trình
cos x + sin x
cos x - sin x
66
22
= 2m tg2x. (1)
1) Giải (1) khi m =
1
8
.
2) Với giá trị nào của m thì (1) có nghiệm ?
Câu III. 1) Cho ba số dỷơng a, b, c thỏa mãn điều kiện abc = 1.
Chỷỏng minh rằng
bc
ab+ac
+
ac
ba+ bc
+
ab
ca+ cb
3
2
22 22 22
.
2) Trong tất cả các tam giác nội tiếp trong cùng một đỷờng tròn cho trỷỳỏc, hãy tìm tam giác có tổng các bình phỷơng
các cạnh là lớn nhất.
Câu IVa.
Cho a > 0, và f(x) là một hàm chẵn, liên tục và xác định trên R.
Chỷỏng minh rằng với mọi x ẻ R, ta đều có
-b
b
x
0
b
f(x) dx
a+1
= f(x) dx.
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
________________________________________________________________________________
Câu I.Dox
2
-4x+5>0vớimọixnênhàmsốxácđịnh trên toàn bộ trục số. Ta có:
y=-2+
a(x - 2)
xx
2
45+
, y =
a
(x - 4x + 5)
23
.
Giả sử hàm đạt cực đại tại x
o
. Khi đó ta phải có :
yx
yx
'( )
''( )
0
0
0
0
=
<
ax
xx
a
()
0
0
2
0
2
45
2
0
+
=
<
a
xx
x
x
=
+
<
245
2
2
0
2
0
0
0
Điều đó chứng tỏ rằng a phải thuộc miền giá trị của hàm số:
f(x) =
2x-4x+5
2
x 2
với - Ơ <x<2.
Ta có : f(x) =
-2
(x - 2) x - 4x + 5
22
Miền giá trị của f(x) là khoảng (-Ơ ; -2). Vậy ta đỷợc đáp số là -Ơ <a<-2.
Câu II. Ta giải phần 2) trỷỳỏc. Ta biến đổi:
cos
6
x + sin
6
x = (cos
2
x + sin
2
x)(cos
4
x - sin
2
xcos
2
x + sin
4
x) =
= 1 - 3sin
2
xcos
2
x=1-
3
4
sin 2x
2
,
cos
2
x + sin
2
x = cos2x. Do đó phỷơng trình đỷợc viết lại:
1-
3
4
sin 2x
cos2x
=2m
sin2x
cos2x
2
.
Đặt điều kiện cos2x ạ 0tasẽđỷợc:
3sin
2
2x + 8msin2x-4=0.
Đặt t = sin2x thì -1<t<1(docos2x ạ 0) và ta có phỷơng trình:
3t
2
+8mt-4=0. (2)
Muốn (1) có nghiệm thì (2) phải có nghiệm t ẻ (-1;1).Rõràngt=0không thỏa (2) nên ta có thể chia cả hai vế của
(2) cho t sẽ đỷợc:
8m =
-3t + 4
t
2
. (3)
Hàm f(t) =
-3t + 4
t
2
có f =
-3 -
4
t
2
.
Dựa vào bảng biến thiên này, nhận thấy muốn (2) tức
(3) có nghiệm t ẻ (-1 ; 1) thì 8m < -1 hoặc 8m > 1,
tức là
m<
-
1
8
hoặc m >
1
8
.
1) Khi m =
1
8
,phỷơng trình vô nghiệm.
Câu III. 1) Ta có
P=
bc
a(b+c)
+
ac
b(a +c)
+
ab
c(a + b)
222
=
1
a
.
1
1
b
+
1
c
+
1
b
.
1
1
c
+
1
a
+
1
c
.
1
1
a
+
1
b
222
Đặt
1
a
=x
,
1
b
=y
,
1
c
=z
ta có xyz =
1
abc
=1
.
Khi đó
P=
x
y+z
+
y
z+x
+
z
x+y
222
Theo bđt Côsi ta có
x
y+z
+
y+z
4
2
x
y+z
.
y+z
4
=x (1)
22
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
________________________________________________________________________________
y
z+x
+
z+x
4
y (2) ,
z
x+y
+
x+y
4
z(3)
22
Cộng từng vế của (1), (2), (3) ta đỷợc
P+
x+y+z
2
x+y+z
P
1
2
(x+y+z)
3
2
3 xyz =
3
2
2) Gọi ABC là tam giác nội tiếp trong đ ờng tròn (O) bán kính R cho tr ớc. Ta phải tìm tam giác có
AB
2
+BC
2
+CA
2
lớn nhất. Dùng định lí hàm số sin ta có:
AB
2
+BC
2
+CA
2
=c
2
+a
2
+b
2
=4R
2
(sin
2
A + sin
2
B + sin
2
C).
Ta phải tìm giá trị lớn nhất của biểu thức:
S = sin
2
A + sin
2
B + sin
2
C=
3
2
-
1
2
(cos2A + cos2B + cos2C)
.
Muốn S lớn nhất thì S
1
= cos2A + cos2B + cos2C phải nhỏ nhất. Ta có:
S
1
= 2cos
2
A-1+2cos(B + C) cos(B - C) =
= 2cos
2
A - 2cosA.cos(B - C) - 1.
Vế phải là một tam thức bậc hai đối với cosA, hệ số của cos
2
A là d ơng nên tam thức có giá trị nhỏ nhất khi
cosA =
1
2
cos(B - C)
(1)
và S
1min
=
-
4a
=-
4cos (B - C) + 8
8
2
=
-
1
2
cos (B-C)-1
2
.
S
1min
phụ thuộc cos(B - C). Muốn có giá trị nhỏ nhất của S
1min
thì phải có cos
2
(B - C) = 1 hay cos (B - C) = 1 (không
lấy giá trị -1 vì B, C là 2 góc của tam giác), suy raB=C.Thay vào (1) ta đ ợc cosA = 1/2, tức làA=60
0
. Vậy tam
giác đều là tam giác có tổng AB
2
+BC
2
+CA
2
lớn nhất trong tất cả các tam giác nội tiếp trong đ ờng tròn (O).
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
________________________________________________________________________________
_
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
_______________________________________________________
Câu IVa. Đặt x = t thì dx = dt và
I =
bb
xt
bb
f(x) f( t)
dx dt
a1 a 1
= =
++
===
++ +
bbb
tx
tt x
bbb
f(t) a f(t) a f(x)
dt dt dx
a1 a1 a1
.
Suy ra
2I =
bb b
xx
xx x
bb b
f(x) a f(x) (a 1)f(x)
dx dx dx
a1 a1 a1
+
+= =
++ +
bb
b0
f(x)dx 2 f(x)dx
==
(vì f(x) chẵn). Vậy I =
b
0
f(x)dx
.
Câu Va.
1) Đa phơng trình elip về dạng chính tắc
22
xy
1
41
+=
;
suy ra
1
A( 2,0)
;
2
A
(2, 0).
Vậy
1
AN
có phơng trình :
11
NN
ANAN
yy xx
yyxx
=
4 (n
y) = n(2
x)
nx 4y + 2n = 0 (1)
Tơng tự
2
AM
có phơng trình là : mx + 4y 2m = 0
Tọa độ giao điểm I là nghiệm của hệ (1), (2)
2(m n)
x
mn
mn
y
mn
=
+
=
+
2) Ta có phơng trình của MN là
NN
MN MN
yy xx
yyxx
=
(n m) x 4y + 2 (m + n) = 0 (3)
Để MN tiếp xúc với elip (E) thì hệ
22
x4y4
(n m)x 4y 2(m n) 0
+=
++=
phải có nghiệm duy nhất.
Từ (3) có
nm mn
yx
42
+
=+
;
thay vào phơng trình (E) và biến đổi ta có :
2222 2
(n m) 4 x 4(n m )x 4(m n) 16 0
+ + ++=
(4)
Để hệ có nghiệm duy nhất thì (4) phải có nghiệm duy nhất, tức là :
_
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
_______________________________________________________
' = 64(1
mn) = 0 mn = 1.
Vậy để MN tiếp xúc với (E) thì mn = 1.
Điểm I có tọa độ
2(m n)
x
mn
=
+
(5)
mn
y
mn
=
+
(6)
Từ (5) ta có :
Do mn = 1, từ (6)
1
y
mn
=
+
; thế vào (7) ta có
22
x416y=
2
2
x
4y 1
4
+ =
.
Vậy tọa độ của I thỏa mãn phơng trình :
2
2
x
4y 1
4
+ =
.
Vậy tập hợp điểm I là elip
2
2
x
4y 1
4
+=
.
Câu IVb.
1) N A'D N (AA'D) ;
N BC N (ABC). Vậy N thuộc giao của 2 mặt phẳng (AA'D) và (ABC). Hiển nhiên A, M
cũng thuộc giao tuyến đó. Vậy A, M, N thẳng hàng.
2) Gọi H, H' tơng ứng là hình chiếu của A và M trên (BCD)
MH' // AH AH và MH' cũng nằm trong (ANH)
=
MH' MN
AH AN
(1)
Mặt khác : (do MA' // AD)
MN MA'
AN AD
=
(2)
Từ (1) và (2)
MH' MA'
AH AD
=
MBCD
ABCD
V
MH' MA'
VAHAD
==
(3)
3) Tơng tự nh phần 2) ta chứng minh đợc :
MACD
ABCD
V
MB'
VBD
=
, (4)
MABD
ABCD
V
MC '
VCD
=
(5)
Cộng theo vế (3), (4) và (5) ta đợc
MA' MB' MC'
1
AD BD CD
++=
.
www.khoabang.com.vn Luyệnthi trên mạng Phiên bản 1.0
_______________________________________________________________
Câu Va.
Trong mặt phẳng với hệ tọa độ trỷồc chuẩn xOy, cho elip(E)
xy
22
4+
=4,
và hai điểm M(-2, m), N(2, n).
1) Gọi A
1
,A
2
là các đỉnh trên trục lớn của (E). Hãy viết phỷơng trình các đỷờng thẳng A
1
NvàA
2
M, và xác định tọa
độ giao điểm I của chúng.
2) Cho MN thay đổi sao cho nó luôn tiếp xúc với (E). Tìm tập hợp điểm I.
Câu IVb.
Cho hình chóp tam giác D.ABC, M là một điểm nằm trong tam giác ABC. Các đỷờng thẳng qua M, song song với AD, BD,
CD theo thỷỏ tỷồ cắt các mặt (BCD), (ACD), (ABD) tại A, B, C.
1) Gọi N là giao điểm của DA và BC. Hãy chỷỏng tỏ rằng 3 điểm A, M, N là thẳng hàng.
2) Chỷỏng tỏ rằng tỉ số giữa thể tích các hình chóp M.BCD và A.BCD bằng MA/AD.
3) Chỷỏng minh rằng tổng
MA'
AD
+
MB'
BD
+
MC'
CD
không phụ thuộc vào vị trí của M trong tam giác ABC.
. 0tasẽđỷợc:
3sin
2
2x + 8msin2x-4=0.
Đặt t = sin2x thì -1<t<1(docos2x ạ 0) và ta có phỷơng trình:
3t
2
+8mt-4=0. (2 )
Muốn (1 ) có nghiệm thì (2 ) phải có nghiệm t ẻ (- 1;1).Rõràngt=0không. xúc với (E) thì mn = 1.
Điểm I có tọa độ
2(m n)
x
mn
=
+
(5 )
mn
y
mn
=
+
(6 )
Từ (5 ) ta có :
Do mn = 1, từ (6 )
1
y
mn
=
+
; thế vào (7 ) ta có
22
x416y=