Mục tiêu: - Kiến thức: Ôn tập cho học sinh các bài tập giải bài toán bằng cách lập phương trình gồm cả giải bài toán bằng cách lập hệ phương trình - Kỹ năng: Tiếp tục rèn kỹ năng cho họ[r]
Giáo án Đại Số - Năm học 2017 - 2018 Tuần Ngày soạn: 15/8/2017 Ngày dạy: 23/8 Tiết §1 CĂN BẬC HAI A MỤC TIÊU: - Kiến thức: Học sinh hiểu khái niệm bậc hai số khơng âm, kí hiệu bậc hai số học số không âm, phân biệt bậc hai dương bậc hai âm số dương, định nghĩa bậc hai số - Kĩ năng: HS biết tim bậc hai, tìm bậc hái số học (khai phương) số không âm, viết kí hiệu bậc hai; từ biết liên hệ phép khai phương với quan hệ thứ tự dùng liên hệ để so sánh bậc hai - Thái độ: Thấy tầm quan trọng bậc hai có nhìn đắn, nghiêm túc B.CHUẨN BỊ: * GV: Giáo Án; SGK * HS: Kiến thức bậc hai học C.TIẾN TRÌNH LÊN LỚP: I/ Ổn định tổ chức: * Nắm sỉ số lớp II/ Kiểm tra cũ: * Giới thiệu nội dung chương trình qui định môn III/ Bài mới: 1/ Đặt vấn đề: Ở lớp ta học khái niệm bậc hai số Vậy kiến thức học bậc hai cịn có tính chất Vấn đề nghiên cứu qua hôm chương 2/Triển khai mới: a> Hoạt động 1: Căn bậc hai số học HOẠT ĐỘNG CỦA THẦY VÀ TRÒ *GV: Ở lớp ta học khái niệm bậc hai số em cho biết : -Căn bậc hai số a khơng âm số x có tính chất gì? - Số dương a có hai bậc hai ? -Số có bậc hai mấy? * HS: đứng chổ trả lời – gv ghi tóm tắt lên bảng NỘI DUNG Căn bậc hai số học Ta biết: *Căn bậc hai số a không âm số x cho x2 = a *Số dương a có hai bậc hai hai số đối nhau: Số dương kí hiệu √ a số âm kí hiệu - √ a *Số có bậc hai số 0, ta viết √ = * Tìm bậc hai số + Căn bậc hai (=3) - (= -3) 32 = (-3)2 = Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 ?1 Tìm bậc hai số sau a ; b ; c 0,25; + Căn bậc hai d * GV: Viết đề lên bảng * HS: Bốn em lên bảng trình bày cịn lại thực chổ nêu nhận xét ( ) () = ?2 Tìm CBHSH số sau a 49; b 64; c 81; d 1,21 *GV: Viết đề lên bảng giải mẩu câu *HS: Xung phong lên bảng thực – lớp làm *GV: Khi biết bậc hai số học số ta dể dàng xác định bậc hai chúng Theo em ta xác định nhue nào? *HS: Trả lời … ?3 *Tìm CBH số sau a 64; b 81; c.1,21 *GV: Theo em ?2 ?3 khác nào? *HS: Trả lời thực 2 3 +Căn bậc hai 0,25 là: * GV: Qua ví dụ em nêu định nghĩa bậc hai số học số? * HS: Đứng chổ nêu định nghĩa sgk * GV: với a ta có: +Nếu x = √ a ta suy gì? +Nếu x x2 = a ta suy gì? * HS: Đứng chổ nêu…… * GV: Trình bày ý bên ( ) 0, 25 (0,5) 0, 25 ( 0,5) (0,5)2 = 0,25 (- 0,5)2 = 0,25 +Căn bậc hai √ ( √ )2 = (- √ )2 = * ĐỊNH NGHĨA: (sgk) *Chú ý: với a ta có: +Nếu x = √ a x2 = a +Nếu x x2 = a x = √ a Ta viết: x=√ a ⇔ x≥0 x 2=a ¿{ * Tìm CBHSH số sau a 49; b 64; c 81; d.1,21 Giải mẩu: 72 = 49 √ 49 = 64 = 82 = 64 81 9 0 92 = 81 * Phép tốn tìm bậc hai số học số không âm gọi phép khai phương * Tìm CBH số sau a 64; b 81; c.1,21 Giải mẩu: CBH 64 -8 Vì CBHSH 64 b.Hoạt động 2: So sánh bậc hai số học *GV: 2.So sánh bậc hai số học Với hai số không âm a b a < b Định lí: Với hai số khơng âm a b ta có: a < b ⇔ √ a< √b Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 √ a< √ b Ta chứng minh Với hai số khơng âm a b √ a< √ b a < b Như ta có định lí sau: c Hoạt động 3: Luyện Tập ?4 So sánh a √ 15 b √ 11 *GV: Viết đề lên bảng *HS: Xung phong lên bảng thực – lớp làm *GV: Trình bày ví dụ sgk So sánh a √ 15 16 > 15 nên Vậy > √ 15 b √ 11 11 > nên √ 11 > Ta có: √ 16 Ta có: √ 11 > > √ 15 √ Vậy ?5 2.Tìm số x khơng âm biết: 2.Tìm số x khơng âm biết: a √ x > b √ x < a √ x > *GV: Viết đề lên bảng √x > ⇔ √x > √1 *HS: Xung phong lên bảng thực – lớp Vì x ⇒ x> nên: √ x > √ làm b √ x < √x < ⇔ √x < √3 Ví dụ: Tìm bậc hai số học số sau Vì x nên: √ x < √ ⇒ x (nếu có): -16; 25; 3; < IV CỦNG CỐ: *Hệ thống lại kiến thức bậc hai số học; bậc hai cách so sánh bậc hai số học học Lưu ý học sinh thực tế giải tốn ta cịn có nhiều cách khác tùy theo cụ thể toán *Hướng dẩn học sinh sử dụng máy tính bỏ túi để tính giá trị gần x phương trình tập – sgk V HƯỚNG DẪN VỀ NHÀ: * Nắm vững kiến thức học hệ thống * Xem lại dạng toán giải lớp * Làm tập sgk tham khảo tập sbt * Xem trước bài: Căn Thức Bậc Hai Và Hằng Đẳng Thức √ A 2=| A| VI RÚT KINH NGHIỆM Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 Tuần Ngày soạn: 15/8/2017 Ngày dạy: 24/8 Tiết §2 CĂN THỨC BẬC HAI VÀ HẰNG ĐẲNG THỨC √ A 2=| A| A MỤC TIÊU: - Kiến thức: Hs hiểu thức, biểu thức dấu căn, hiểu điều kiện xác định (hay điều kiện có nghĩa) √ A , nắm biết vận dụng đẳng thức √ A 2=| A| để rút gọn biểu thức - Kĩ năng: Có kỉ tìm điều kiện xác định (hay điều kiện có nghĩa) √ A biểu thức A không phức tạp, sử dụng đẳng thức √ A 2=| A| để rút gọn biểu thức - Thái độ: Cẩn thận, sáng tạo biến đổi vận dụng công thức đẳng thức B.CHUẨN BỊ: * GV: Giáo Án; SGK, Bảng phụ * HS: Kiến thức bậc hai học C.TIẾN TRÌNH LÊN LỚP: I/ Ổn định tổ chức: * Nắm sỉ số lớp II/ Kiểm tra cũ: * HS1: So sánh √ 47 Tìm bậc hai 121, 224, 3, III/ Bài mới: 1/ Đặt vấn đề: Ở a √ a2 = 2a Vậy a số cách tìm √ a2 √ a2 có tính chất Bài học hôm giải vấn đề 2/Triển khai mới: Hoạt động 1: Căn thức bậc hai HOẠT ĐỘNG CỦA THẦY VÀ TRÒ ?1 Hình chử nhật ABCD có đường chéo AC = cm cạnh BC = x cm cạnh AB = √ 25− x (cm) Vì ? *GV: Vẽ hình nêu vấn đề ?1 lên bảng *HS: Thảo luận đứng chổ trả lời vấn đề *GV: Ghi câu trả lời học sinh lên bảng bên khẳng định NỘI DUNG Căn thức bậc hai Trong tam giác vuông ABD theo Pitago ta có AB = √ 25− x * Ta gọi: + thức bậc hai 25 - x2 Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 + 25 - x2 biểu thức lấy *GV: Vậy em nêu cách tổng quát ?2 - thức bậc hai? *HS: Nêu sgk *GV: Theo em với điều kiện A √ A có nghĩa ( học sinh khơng trả lời giáo viên dùng câu hỏi cho học sinh liên tưởng đến bậc hai số) *HS: Nêu sgk *GV: Nêu ví dụ sgk Với giá trị x √ 5− x xác định? *GV: Để tìm điều kiện xác định √ 5− x trước hết phải xác định biểu thức lấy *HS: Một em lên bảng trình bày Hoạt động 2: Định lí √ a2=|a| -2 -1 * √ A xác đaịnh ( hay có nghĩa) A lấy giá trị không âm * VD: Với giá trị x √ 5− x xác định? √ 5− x xác định – 2x hay 2x 5 ⇒ x Vậy: √ 5− x xác định x Hằng đẳng thức ?3 - Điền số thích hợp vào bảng sau a a2 *Tổng quát: Với A biểu thức đại số người ta gọi √ A thức bậc hai A, A gọi biểu thức lấy hay biểu thức dấu √ A 2=| A| *ĐỊNH LÍ: Với số a, ta có: √ a2=|a| √ a2 *GV: Cho học sinh thực theo nhóm *HS: Các nhóm trình bày kết *GV: Qua toán em rút nhận xét gì? *HS: Đứng chổ trả lời *GV: Trên sở câu trả lời học sinh khẳng định định lí *GV: Nêu cách chứng minh √ a2=|a| ? *HS: Để chứng minh √ a2=|a| ta phải chứng minh (|a|) =a2 với số a Ví dụ 2: Tính a √ 122 ; b √ ( −7 )2 *Chứng minh: + Nếu a |a|=a nên ta có: 2 (|a|) =a + Nếu a |a|=− a nên ta có: 2 (|a|) =a Do đó: (|a|)2=a2 với số a Vậy: √ a2=|a| Ví dụ 2: Tính a √ 122 = |12|=12 b √ ( −7 )2 = |−7|=7 Ví dụ 3: Rút gọn a √ ( √2 −1 )2 ; b √ ( 2− √5 )2 Ví dụ 3: Rút gọn *GV: Ghi ví dụ ví dụ lên bảng a √ ( √2 −1 )2 = |√ 2− 1|= √2 −1 yêu cầu lớp thực Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 *HS: Em làm xong cho xung phong lên bảng trình bày *GV: lưu ý học sinh sử dụng định lí: √ a2=|a| đặc biệt đưa số từ giá trị tuyệt đối ngồi Hoạt động 3: Định lí √ A 2=| A| *GV: Định lí : Với số a, ta có: √ a2=|a| vẩn trường hợp tổng quát *HS: Đọc ý sgk *GV: Viết ví dụ lên bảng Ví dụ 4: Rút gọn a √ ( x −2 )2 với x b √ a với a < *HS: Suy nghĩ – làm phút lớp Ai làm xong lên bảng trình bày *GV: lưu ý học sinh sử dụng đẳng thức √ A 2=| A| kết hợ với điều kiện cho toán biểu thức lấy để phá giá trị tuyệt đối biểu thức lấy *GV: Cho học sinh làm tập sgk (nếu thời gian) ( √ 2> 1⇒ √2 −1>0 ) b √ ( 2− √5 )2 = |2 − √ 5|=− ( − √ )= √5 −2 ( √ 5>2⇒ √ − 2< ) * Chú ý: Một cách tổng quát: Với A biểu thức ta có : √ A 2=| A| có nghĩa là: + √ A 2=¿ A với A + √ A =¿ - A với A < Ví dụ 4: Rút gọn a √ ( x −2 )2 với x 2 √ ( x −2 ) = |x − 2| mà x ⇒ x–2 Vậy nên: √ ( x −2 )2 = |x − 2| = x – b √ a6 với a < √ a = √ ( a3 )2 =|a3| mà a < nên a3 < Vậy nên: √ a6 = √ ( a3 ) =|a3| = - a3 IV CỦNG CỐ: *Hệ thống lại kiến thức thức bậc hai; điều kiện tồn thức bậc hai đẳng thức √ A 2=| A| học Lưu ý học sinh thực tế giải toán cần vận dụng linh hoạt cẩn thận đẳng thức √ A 2=| A| , đặc biệt lưu ý phá giá trị tuyệt đối đẳng thức V HƯỚNG DẪN VỀ NHÀ: *Nắm vững kiến thức học hệ thống *Xem lại dạng toán giải lớp *Làm tập sgk tham khảo tập sbt *Chuẩn bị tiết sau luyện tập VI RÚT KINH NGHIỆM Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 Tuần Ngày soạn: 16/8/2017 Ngày dạy: 25/8 Tiết LUYỆN TẬP A MỤC TIÊU: - Kiến thức: Cũng cố khắc sâu kiên thức học bậc hai số; thức bậc hai; điều kiện tồn đẳng thức √ A 2=| A| Hiểu áp dụng giải tập sgk - Kĩ năng: Luyện kỷ vận dụng đẳng thức √ A 2=| A| việc giải toán khai phương - Thái độ: Rèn tính cẩn thận, sáng tạo linh hoạt biến đổi B.CHUẨN BỊ: *GV: Giáo Án; SGK, Bảng phụ * HS: Kiến thức thức bậc hai đẳng thức √ A 2=| A| C.TIẾN TRÌNH LÊN LỚP: I/ Ổn định tổ chức: * Nắm sỉ số lớp II/ Kiểm tra cũ: *HS1: Đ/N thức bậc hai? Điều kiện tồn tại? Tìm bậc hai √ a2 ( a 0) II/ Bài mới: 1/ Đặt vấn đề: Ở tiết trước nắm kiến thức: Căn bậc hai số; thức bậc hai; điều kiện tồn đẳng thức √ A 2=| A| Bài học hôm vận dụng kiến thức vào giải toán 2/Triển khai mới: Hoạt động 1: Chữa tập 9; 10 – sgk HOẠT ĐỘNG CỦA THẦY VÀ TRÒ * Bài tập Tìm x, biết: a √ x2 = 7; b √ x2=|−8| c √ x 2=6 d √ x2=|−12| *GV: Viết bốn câu lên bảng cho học sinh lên bảng trình bày *HS: Bốn em lên bảng trình bày lời giải *GV: Cho lớp nhận xét câu lưu ý học sinh nhớ lại kiến thức học lớp 7: |x|=a⇒ x=± a (a 0) để sử dụng tập Bài tập 10 Chứng minh đẳng thức: a ( √ 3− )2=4 −2 √ NỘI DUNG Bài tập a √ x2 = ⇔ b √ x2=|−8| |3 x|=8 |x| = ⇔ x = ⇔ √ ( x ) =8 ± ⇔ ⇔ c √ x 2=6 √ ( x )2=6 ⇔ ⇔ 2x = ± ⇔ |2 x|=6 ± x = d √ x =|−12| ⇔ √ ( x )2=12 ⇔ |3 x|=12 ⇔ 3x = ± 12 ⇔ x = ± ⇔ 3x = ± ⇔ x = Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa ± Giáo án Đại Số - Năm học 2017 - 2018 b √ − √ − √ 3=− *GV: Viết hai câu lên bảng cho học sinh lên bảng trình bày *HS: Hai em lên bảng trình bày lời giải *GV: Cho lớp nhận xét câu lưu ý học sinh cách chứng minh đẳng thức thơng thường ta biến đổi vế phức tạp thành vế đơn giản Bài tập 10 Chứng minh đẳng thức: a ( √ 3− )2=4 −2 √ Ta có: ( √ 3− )2 = ( √ )2 − √ 3+1 = - √ + = − √3 (đpcm) b √ − √ − √ 3=− √ − √ − √ 3=− Ta có: √ − 2√ ⇔ √ −2 √ 3=√ −1 (*) = √ 3− √3+1 2 = ( √3 ) − √ 3+1= ( √ −1 ) =|√ 3− 1| = √ 3− (vì √ >1 nên √ 3− >0) Hoạt động 2: Hướng dẩn giải tập 11;12 13 – sgk *Bài tập 11 Tính: a √ 16 √ 25+ √ 196 √49 b 36 : √ 32 18 − √ 169 *GV: Ghi đề tập 11 lên bảng hướng dẩn học sinh thực hiện: Ở biểu thức để tính giá trị ta phải thực theo thứ tự khai phương bậc hai để phá bỏ dấu thực phép tính Muốn khai phương bậc hai phải viét biểu thức dấu dạng bình phương vận dụng đẳng thức học để phá Câu c câu d nhà làm tương tự *Bài tập 12 Tìm x để thức sau có nghĩa: a √ x +7 d √ 1+ x *GV: Ghi đề tập 12 lên bảng hướng dẩn học sinh thực hiện: Để tìm điều kiện để thức dạng √ A có nghĩa ta giải bất phương trình : A ⇒ điều kiện biến Tuy nhiên cần xét kỷ biểu thức lấy số trường hợp đơn biệt câu d Câu b câu c nhà làm tương tự *Bài tập 12 Rút gọn biểu thức sau: a √ a2 −5 a Với : a < c √ a4 +3 a2 *GV: Ghi đề tập 13 lên bảng √ √ Bài tập 11 Tính: a √ 16 √ 25+ √ 196 √49 = √ √5 2+ √14 √7 = |4|.|5|+|14|.|7| = 4.5 + 14.7 = 118 b 36 : √ 32 18 − √ 169 = 36 : √ 32 − √ 14 = 36 : √ 22 32 32 − √ 142 = 36 : √ ( 3 )2 − √ 14 = 36 : |2 3|−|14| = 36 : 2.3.3 – 14 = 36 : 18 - 14 = 36 : = Bài tập 12 Tìm x để thức sau có nghĩa: a √ x +7 √ x +7 có nghĩa khi: 2x + ⇔ 2x -7 ⇔ x Vậy: √ x +7 có nghĩa khi: x d - 7 √ 1+ x có nghĩa khi: 1+ x2 Mà : 1+ x > ∀ x Vậy: √ 1+ x có nghĩa ∀ x Bài tập 12 Rút gọn biểu thức sau: a √ a2 −5 a Với : a < √ a2 −5 a = 2|a|−5 a = - 2a – 5a (a < 0) = -7a c √ a +3 a = √ ( a2 ) +3 a2 √ 1+ x Giáo viên: Bùi Tiến Lực – Trường THCS Mai Hóa Giáo án Đại Số - Năm học 2017 - 2018 hướng dẩn học sinh thực hiện: = |3 a2|+3 a2 Ở biểu thức để rút gọn ta mà 3a2 với ∀ a phải thực theo thứ tự khai ⇒|3 a 2|=3 a2 phương bậc hai để phá bỏ dấu Nên: |3 a2|+3 a2 = 3a2 +3a2 = 6a2 thực phép tính tiếp Vậy: a4 +3 a2 = 6a2 √ theo Muốn khai phương bậc hai phải viết biểu thức dấu dạng bình phương vận dụng đẳng thức học để phá Câu b câu d nhà làm tương tự IV CỦNG CỐ: Hệ thống lại kiến thức thức bậc hai; điều kiện tồn thức bậc hai đẳng thức √ A 2=| A| họcbằng bảng sau: ⇔ x≥0 * x = √a x 2=a ¿{ *Điều kiện để √ A có nghĩa A ⇔ A : A≥0 * √ A 2=| A| − A : A