Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đâyA. Hỏi hàm số đó là hàm số nào.[r]
(1)CHỦ ĐỀ HÀM SỐ LŨY THỪA – HÀM SỐ MŨ – HÀM SỐ LOGARIT Baøi 03 HAØM SOÁ MUÕ – HAØM SOÁ LOGARIT I HÀM SỐ LOGARIT Định nghĩa Cho a là số thực dương và a Hàm số y log a x gọi là hàm số logaritt số a Đạo hàm hàm số lôgarit y log a x y ' ; x ln a y log a u x y ' y ln x y ' ; x u' u ln a Khảo sát hàm số lôgarit Tập xác định Tập xác định hàm số logarit y log a x a 0, a 1 là 0; Chiều biến thiên a : Hàm số đồng biến a : Hàm số nghịch biến Tiệm cận Trục tung Oy là đường tiệm cận đứng Đồ thị Đồ thị qua điểm M 1;0 , N a;1 và nằm phía bên phải trục tung II HÀM SỐ MŨ Định nghĩa Cho a là số thực dương và a Hàm số y a x gọi là hàm số mũ số a Đạo hàm hàm số mũ y ex y ' ex ; ya u x y a x y ' a x ln a ; y ' a u ln au ' Khảo sát hàm số mũ Tập xác định Tập xác định hàm số mũ y a x a 0, a 1 là Chiều biến thiên a : Hàm số luôn đồng biến a : Hàm số luôn nghịch biến Tiệm cận Trục hoành Ox là đường tiệm cận ngang Đồ thị Đồ thị qua điểm 1;0 , 1;a và nằm phía trên trục hoành Nhận xét Đồ thị hàm số y a x và đồ thị hàm số y log a x đối xứng với qua đường thẳng y x A BÀI TẬP TRẮC NGHIỆM: Phần 1: Nhận biết – Thông hiểu Câu Tìm mệnh đề đúng các mệnh đề sau: A Đồ thị hàm số y = a x và đồ thị hàm số y = log a x đối xứng qua đường thẳng y = x B Hàm số y = a x với < a < đồng biến trên khoảng (−∞; +∞) C Hàm số y = a x với a > nghịch biến trên khoảng (−∞; +∞) D Đồ thị hàm số y = a x với a > và a ≠ luôn qua điểm M (a;1) Câu Tập giá trị hàm số y= a x (a > 0; a ≠ 1) là: A (0; +∞) Câu B [0; +∞) C \{0} D Với a > và a ≠ Phát biểu nào sau đây không đúng? A Hai hàm số y = a x và y = log a x có cùng tập giá trị B Hai hàm số y = a x và y = log a x có cùng tính đơn điệu C Đồ thị hai hàm số y = a x và y = log a x đối xứng qua đường thẳng y = x Trang 1/12 (2) D Đồ thị hai hàm số y = a x và y = log a x có đường tiệm cận Câu Cho hàm số= y ( ) x − Phát biểu nào sau đây là đúng? A Hàm số nghịch biến trên khoảng (−∞; +∞) B Hàm số đồng biến trên khoảng (0; +∞) Câu C Đồ thị hàm số có đường tiệm cận ngang là trục tung D Đồ thị hàm số có đường tiệm cận đứng là trục hoành Tập xác định hàm số= y (2 x − 1) 2017 là: A D = Câu Câu Câu 1 C = D ; +∞ 2 1 D D = \ 2 Tập xác định hàm số= y (3 x − 1) −2 là: D \ ± A.= 3 B D = ± 3 ; +∞ C D = −∞; − ∪ 3 1 ; D − 3 Tập xác định hàm số y = ( x − x + 2) − e là: A D = (−∞;1) ∪ (2; +∞) B D = \{1; 2} C D = (0; +∞) D D = (1; 2) Tập xác định hàm số y log 0,5 ( x + 1) là: = A D = (−1; +∞) Câu 1 B = D ; +∞ 2 B.= D \{ − 1} C D = (0; +∞) D (−∞; −1) Tìm x để hàm số = y log x + x − 12 có nghĩa A x ∈ (−∞; −4) ∪ (3; +∞) B x ∈ (−4;3) x ≠ −4 C x ≠ D x ∈ R x+3 là: 2− x B.= D \{ − 3; 2} Câu 10 Tập xác định hàm số y = log A D = (−3; 2) C D = (−∞; −3) ∪ (2; +∞) D D = [ − 3; 2] + ln( x − 1) là: 2− x B D= (1; +∞) C D = (0; +∞) D D = [1; 2] ex là: ex −1 B (0; +∞) C \{1} D D = (e; +∞) C D = (−1;1) D D = (−1; 2) C D = (e; +∞) D D= [1; +∞) C D = (2; +∞) D D = (0; +∞) Câu 11 Tập xác định hàm số y= A D = (1; 2) Câu 12 Tập xác định hàm số y = A D = \{0} Câu 13 Tập xác định y = −2 x + x − + ln A D = (1; 2] B D = [1; 2] là: x −1 Câu 14 Tập xác định hàm số y = ln(ln x) là : A D= (1; +∞) B D = (0; +∞) Câu 15 Tập xác định hàm số = y (3x − 9) −2 là A D = \{2} B D = \{0} Câu 16 Hàm số y = log x −1 x xác định và : Trang 2/12 (3) x > A B x > C x > D x ≠ x ≠ Câu 17 Đường cong hình bên là đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D đây Hỏi hàm số đó là hàm số nào? y O A y = ( 2) x B y = x x ( 2) −x C y = x D y = ( x − 1) C y ' = ( x − 1)3 D y ' = C y ' = 42 x ln D y ' = 2.42 x ln Câu 18 Hàm số y= ( x − 1) có đạo hàm là: A y ' = 3 ( x − 1) B y ' = ( x − 1)3 Câu 19 Đạo hàm hàm số y = 42 x là: A y ' = 2.42 x ln B y ' = 42 x.ln Câu 20 Đạo hàm hàm số y log x, x > là: = B y ' = x ln C y ' = x ln x ln Câu 21 Hàm số y log 0,5 x ( x ≠ 0) có công thức đạo hàm là: = A y ' = A y ' = x ln 0,5 B y ' = x ln 0,5 C y ' = x ln 0,5 D y ' = D ln x x ln 0,5 Câu 22 Đạo hàm hàm số y = sin x + log x ( x > 0) là: x ln − cos x + D y ' = x ln 3 x ln y ' cos x + C.= x ln = y ' cos x + A − cos x + B y ' = Câu 23 Cho hàm số = f ( x) ln ( x + 1) Đạo hàm f / ( ) bằng: A B C D Câu 24 Cho hàm số f ( x) = e 2017 x Đạo hàm f / ( ) bằng: A B C e D e 2017 Câu 25 Cho hàm số f ( x) = xe x Gọi f / / ( x ) là đạo hàm cấp hai f ( x ) Ta có f / / (1) bằng: A 3e B −3e C e3 D −5e Câu 26 Đường cong hình bên là đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D đây Hỏi hàm số đó là hàm số nào? Trang 3/12 (4) y O x A y = log x B y = log x C y = log 2 x D y = log ( x ) Câu 27 Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A Hàm số y = xα có tập xác định là D = B Đồ thị hàm số y = xα với α > không có tiệm cận C Hàm số y = xα với α < nghịch biến trên khoảng (0; +∞) D Đồ thị hàm số y = xα với α < có hai tiệm cận Câu 28 Trong các mệnh đề sau mệnh đề nào đúng? A Đồ thị hàm số lôgarit nằm bên phải trục tung B Đồ thị hàm số lôgarit nằm bên trái trục tung C Đồ thị hàm số mũ nằm bên phải trục tung D Đồ thị hàm số mũ nằm bên trái trục tung Câu 29 Chọn phát biểu sai các phát biểu sau? A Đồ thị hàm số logarit nằm bên trên trục hoành B Đồ thị hàm số mũ không nằm bên trục hoành C Đồ thị hàm số lôgarit nằm bên phải trục tung D Đồ thị hàm số mũ với số mũ âm luôn có hai tiệm cận Câu 30 Đường cong hình bên là đồ thị hàm số bốn hàm số liệt kê bốn phương án A, B, C, D đây Hỏi hàm số đó là hàm số nào? y O x 1 1 − x− C y = 3 Câu 31 Tìm a để hàm số y = log a x ( < a ≠ 1) có đồ thị là hình bên dưới: A y = log 0,5 x B y = log x −3 x + D y = y O x Trang 4/12 (5) A a = B a = C a = D a = Phần 2: Vận dụng thấp 10 − x x − 3x + A D = (−∞;1) ∪ (2;10) B D= (1; +∞) C D = (−∞;10) Câu 32 Tìm tập xác định D hàm số y = log = y Câu 33 Tìm tập xác định D hàm số log ( x − 2) − ? D (29; +∞) B.= D [29; +∞) A = D D = (2;10) C D = (2; 29) = (2; +∞) D D C y ' = xe − x D.= y ' (2 x − 2)e x Câu 34 Tính đạo hàm hàm số = y ( x + x )e − x ? A y ' =− ( x + 2)e − x B = y ' ( x + 2)e − x Câu 35 Tìm tất các giá trị thực tham số m để hàm số y = ln( x − 2mx + 4) có tập xác định D= ? m > B C m > −2 D −2 ≤ m ≤ A −2 < m < m < −2 2017 Câu 36 Cho tập D = (3; 4) và các hàm số f ( x) = , g ( x) log x −3 (4 − x) , h( x) = 3x −7 x +12 = x − x + 12 D là tập xác định hàm số nào? A f ( x) và f ( x) + g ( x) B f ( x) và h( x) C g ( x) và h( x) D f ( x) + h( x) và h( x) Câu 37 Biết hàm số y = x có đồ thị là hình bên y y = 2x O x Khi đó, hàm số y = x có đồ thị là hình nào bốn hình liệt kê bốn A, B, C, D đây ? y y 1 O Hình x O x Hình Trang 5/12 (6) y y O x x O Hình Hình A Hình B Hình C Hình −x Câu 38 Cho hàm số = y ex + e Nghiệm phương trình y ' = ? D Hình B x = C x = D x = ln A x = −1 Câu 39 Tìm tất các giá trị thực a để hàm số y = log a x ( < a ≠ 1) có đồ thị là hình bên y O x ? B a = A a = C a = D a = Câu 40 Tìm giá trị lớn hàm số f ( x) = x e x trên đoạn [ −1;1] ? A e B e D C 2e Câu 41 Cho hàm số y = log ( x ) Khi đó, hàm số y = log ( x ) có đồ thị là hình nào bốn hình liệt kê bốn phương án A, B, C, D đây: y y x O Hình O x Hình Trang 6/12 (7) y y x O x O Hình Hình A Hình B Hình C Hình D Hình Phần 3: Vận dụng cao Câu 42 Tìm điều kiện xác định phương trình log ( x − 1) + log ( x − 1) = 25 ? A x > B x ≠ D x ∈ C x ≥ Câu 43 Tìm giá trị lớn và giá trị nhỏ hàm số y = trên [ −2; 2] ? | x| A max y = 4; y = − = y 1;= miny C max max y 4;= miny B.= 4 D.= max y 4;= miny Câu 44 Chọn khẳng định đúng nói hàm số y = ln x x A Hàm số có điểm cực tiểu B Hàm số có điểm cực đại C Hàm số không có cực trị D Hàm số có điểm cực đại và điểm cực tiểu Câu 45 Hình bên là đồ thị ba hàm số y = log a x , y = log b x , y = log c x ( < a, b, c ≠ 1) vẽ trên cùng hệ trục tọa độ Khẳng định nào sau đây là khẳng định đúng? y y = logax y = logbx O x y = logcx A b > a > c B a > b > c C b > c > a y Câu 46 Tìm tất các giá trị thực tham số m để hàm số= D a > c > b + log x − m xác định 2m + − x trên ( 2;3) A ≤ m ≤ B < m ≤ C −1 < m < D −1 ≤ m ≤ Trang 7/12 (8) ) ( Câu 47 Cho hàm số = y x ln x + + x − + x Khẳng định nào sau đây là khẳng định đúng? A.Hàm số giảm trên khoảng (0; +∞) B.Hàm số tăng trên khoảng (0; +∞) C.Tập xác định hàm số là D = D.Hàm số có đạo hàm y '= ln x + + x Câu 48 Đối với hàm số y = ln A xy '+ = ey ( ) , Khẳng định nào sau đây là khẳng định đúng? x +1 B xy '− =−e y C xy '+ =−e y D xy '− =e y e x − e− x là: e x + e− x e2 x 4e x 2e x A y ' = x B C y ' = ' y = (e + 1) (e x + 1) (e x + 1) Câu 50 Cho hàm số y = x sin x Khẳng định nào sau đây là khẳng định đúng? Câu 49 Đạo hàm hàm số y = D y ' = A xy ''− y '+ xy = −2 sinx B xy ' 2sinx + yy '' − xy ' = + yy ' − xy ' 2sin = x C xy ' 2 xy cos x + sin x D xy ''+ y '−= 3e x (e x + 1) Câu 51 Hình bên là đồ thị ba hàm số y = a x , y = b x , y = c x ( < a, b, c ≠ 1) vẽ trên cùng hệ trục tọa độ Khẳng định nào sau đây là khẳng định đúng? y y = bx y = cx y = ax O A b > a > c B a > b > c x C a > c > b D c > b > a Trang 8/12 (9) B ĐÁP ÁN: Câu Chọn đáp án A Câu B sai vì hàm số y = a x với < a < nghịch biến trên khoảng (−∞; +∞) Câu C sai vì hàm số y = a x với a > đồng biến trên khoảng (−∞; +∞) Câu D sai vì đồ thị hàm số y = a x với a > và a ≠ luôn qua điểm M (a; a a ) M (0;1) không phải M (a;1) Câu Chọn đáp án A Với a > 0; a ≠ thì a x , x Suy tập giá trị hàm số y= a x (a > 0; a ≠ 1) là (0; +∞) Câu Chọn đáp án A Tập giá trị hàm số y = a x là (0; +∞) , tập giá trị hàm số y = log a x là Câu Chọn đáp án A Vì < − < nên hàm số= y Câu Câu ( ) −1 x nghịch biến trên khoảng (−∞; +∞) Chọn đáp án A Vì 2007 ∈ + nên hàm số xác định với x Chọn đáp án A Vì −2 ∈ − nên hàm số= y (3x − 1) −2 xác định 3x − ≠ ⇔ x ≠ ± Câu Câu Câu Chọn đáp án A x > Vì −e ∉ nên hàm số xác định x − 3x + > ⇔ x < Chọn đáp án A Hàm số log 0,5 ( x + 1) xác định x + > ⇔ x > −1 Chọn đáp án A x > Hàm số log x + x − 12 có nghĩa x + x − 12 > ⇔ x < −4 Câu 10 Chọn đáp án A x+3 x+3 > ⇔ −3 < x < Hàm số log có nghĩa 2− x 2− x Câu 11 Chọn đáp án A 2 − x > ⇒1< x < Hàm số y= + ln( x − 1) xác định 2− x x −1 > Câu 12 Chọn đáp án A ex xác định e x − ≠ ⇔ x ≠ ex −1 Câu 13 Chọn đáp án A Hàm số y = −2x + 5x − + ln xác định x −1 1 2 ≤ x ≤ −2x + 5x − ≥ ⇔ ⇒1< x ≤ x >1 x − > x < −1 Hàm số y = Trang 9/12 (10) Câu 14 Chọn đáp án A x > x > ⇔ ⇒ x >1 Hàm số y = ln(ln( x)) xác định ln x > x > Câu 15 Chọn đáp án A Vì −2 ∈ − nên hàm số = y (3x − 9) −2 xác định 3x − ≠ ⇔ x ≠ Câu 16 Chọn đáp án A x > x > x > Hàm số y = log x −1 x xác định x − > ⇔ x > ⇔ x ≠ x −1 ≠ x ≠ Câu 17 Chọn đáp án A Nhận thấy đây là đồ thị hàm số dạng y = a x Ta có A(0;1) và B(2; 2) thuộc đồ thị hàm số a = Suy ra, a = ⇒ a = Hàm số là y = a > Câu 18 Chọn đáp án A y = ( x − 1) ⇒ y ' = ( 2) x −1 − 1 ( x − 1) '.( x − 1) = ( x − 1) = 3 3 ( x − 1) Câu 19 Chọn đáp án A y = 42x ⇒ y ' = (2x) '.42x ln = 2.42x ln Câu 20 Chọn đáp án A = y log x ⇒ y=' Câu 21 Chọn đáp án A x ln = y log 0,5 x ⇒= y ' ( x ) ' = x ln 0,5 x ln 0,5 Câu 22 Chọn đáp án A y= sin x + log x3 ⇒ y=' cos x + Câu 23 Chọn đáp án A f ( x= ) ln( x + 1) ⇒ f '( x= ) Câu 24 Chọn đáp án A 3x = cos x + x ln x ln ( x + 1) ' 4x = ⇒ f '(0) = x4 + x +1 f ( x) = e 2017 x ⇒ f '( x) = 2.2017x.e 2017 x ⇒ f '(0) = Câu 25 Chọn đáp án A f ( x) =x.e x ⇒ f '( x) =e x + x.e x ⇒ f ''( x) =e x + e x + x.e x ⇒ f ''(1) =3e Câu 26 Chọn đáp án A 1 Nhận thấy đây là đồ thị hàm số y = log a x Điểm ; −1 thuộc đồ thị hàm số nên 2 1 1 −1 = log a ⇒ a −1 = ⇒ = ⇒ a = Hàm số là y = log x 2 a Câu 27 Chọn đáp án A Hàm số y = xα có tập xác định thay đổi tùy theo α Câu 28 Chọn đáp án A Trang 10/12 (11) Hàm số lôgarit xác định x > nên đồ thị hàm số nằm bên phải trục tung Câu 29 Chọn đáp án A Đồ thị hàm số lôgarit nằm bên phải trục tung và dưới, trên trục hoành Câu 30 Chọn đáp án A Nhận thấy đây là đồ thị hàm số y = log a x Điểm A(2; −1) thuộc đồ thị hàm số nên −1 = log a ⇒ a −1 = ⇒ = ⇒ a = 0,5 Hàm số y = log 0,5 x a y O x Câu 31 Chọn đáp án A Đồ thị hàm số qua A(2; 2) ⇒ = log a ⇒ a = ⇒ a = y O x Câu 32 Chọn đáp án A Hàm số xác định ⇔ 10 − x > ⇔ x < < x < 10 x − 3x + 2 Tập xác định D = ( −∞;1) ∪ ( 2;10 ) Câu 33 Chọn đáp án A x − > ⇔ x ≥ 29 Hàm số xác định log ( x − ) − ≥ ⇔ x − ≥ Tập xác định = D [ 29; +∞ ) Câu 34 Chọn đáp án A y = ( x + x ) e− x ⇒ y / = ( x + x ) e− x + ( e− x ) ( x + x ) / / ⇒ y / =( x + ) e − x − e − x ( x + x ) =− ( x + ) e− x Câu 35 Chọn đáp án A Hàm số có tập xác định là ⇔ x − 2mx + > 0, ∀x ∈ ⇔ ∆=' m − < ⇔ −2 < m < Câu 36 Chọn đáp án A Sử dụng điều kiện xác định các hàm số Câu 37 Chọn đáp án A Sử dụng lý thuyết phép suy đồ thị Câu 38 Chọn đáp án A y =ex + e − x ⇒ y / =e − e − x Suy y / = ⇔ e − e − x = ⇔ x = −1 Câu 39 Chọn đáp án A Nhận dạng đồ thị: - Dựa vào đồ thị thì hàm đã cho đồng biến ⇒ loại C và D Trang 11/12 (12) - Đồ thị đã cho qua điểm A ( 2; ) Thử với hai đáp án còn lại ⇒ loại B Câu 40 Chọn đáp án A / Trên đoạn [ −1;1] , ta có: f= ( x ) xe x ( x + ) ; f / ( x ) = ⇔ x = x = −2 (loại) Ta có: f (= −1) ; f= ( ) 0; f= (1) e e Suy ra: max f ( x ) = e [ −1;1] Câu 41 Chọn đáp án A Sử dụng lý thuyết phép suy đồ thị Câu 42 Chọn đáp án A x −1 > ⇔ x >1 x −1 ≠ Hàm số xác định ⇔ Tập xác định D= (1; +∞ ) Câu 43 Chọn đáp án A Đặt t = x , với x ∈ [ −2; 2] ⇒ t ∈ [ 0; 2] Xét hàm f ( t ) = 2t trên đoạn [ 0;2] ; f ( t ) đồng biến trên [ 0;2] ; y = f (t ) = max y max = f (t ) = [ −2;2] [ −2;2] [0;2] [0;2] Hoặc với x ∈ [ −2; 2] ⇒ x ∈ [ 0; 2] Từ đây, suy ra: 20 ≤ ≤ 22 ⇔ ≤ ≤ x x Câu 44 Chọn đáp án A Tập xác định D= ( 0; +∞ ) ; y /= − ln x / ; y = ⇔ x= e ln x Hàm y / đổi dấu từ âm sang dương qua x = e nên x = e là điểm cực tiểu hàm số Câu 45 Chọn đáp án A Do y = log a x và y = log b x là hai hàm dồng biến nên a, b > Do y = log c x nghịch biến nên c < Vậy c bé m log a x1 = m a = x1 Mặt khác: Lấy y = m , đó tồn x1 , x2 > để ⇒ m log b x2 = m b = x2 Dễ thấy x1 < x2 ⇒ a m < b m ⇒ a < b Vậy b > a > c Câu 46 Chọn đáp án A 2m + − x > x < 2m + ⇔ Hàm số xác định ⇔ x − m > x > m Suy ra, tập xác định hàm số= là D ( m; 2m + 1) , với m ≥ −1 m ≤ m ≤ ⇔ Hàm số xác định trên ( 2;3) suy ( 2;3) ⊂ D ⇔ 2m + ≥ m ≥ Câu 47 Chọn đáp án A Tập xác định D = ( ) Đạo hàm: y / =ln + + x ; y / =0 ⇔ + + x =1 ⇔ x =0 Lập bảng biến thiên : Trang 12/12 (13) x ∞ y' +∞ + y Câu 48 Chọn đáp án A ln y= 1 = − ln ( x + 1) ⇒ y / = − x +1 x +1 ln x 1 y x +1 , + = − + = = e e = x + x + x + x +1 Ta có: xy '+ =x − Câu 49 Chọn đáp án A e2 x − Ta biến đổi hàm số dạng y = x = ⇒ y/ e +1 (e 2x − 1) ( e x + 1) − ( e x + 1) ( e x − 1) = ( e2 x + 1) / / (e 4e x 2x + 1) Câu 50 Chọn đáp án A y= x sin x ⇒ y / = sin x + x cos x ⇒ y / / = cos x − x sin x Ta có: xy / / − y / = + xy x ( cos x − x sin x ) − ( sin x + x cos x ) + x ( x sin x ) = −2sin x Câu 51 Chọn đáp án A Do y = a x và y = b x là hai hàm đồng biến nên a, b > Do y = c x nghịch biến nên c < Vậy x bé a m = y1 Mặt khác: Lấy x = m , đó tồn y1 , y > để m b = y2 Dễ thấy y1 < y2 ⇒ a m < b m ⇒ a < b Vậy b > a > c Trang 13/12 (14)