Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 56 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
56
Dung lượng
2,17 MB
Nội dung
Trường……………………………… Khoa………………………… Lý thuyếtluyệnthiđạihọcmôntoánLÝ THUY Cao Hoàng Nam Trang 1 KHẢO SÁT HÀM SỐ Vấn đề 1: ÔN TẬP – CÔNG THỨC I. Tam thức bậc hai: x , 2 ax bx c 0 a b 0 c0 a0 0 x , 2 ax bx c 0 a b 0 c0 a0 0 2 + bx + c = 0 Gi s g trình có 2 nghim 12 x ;x thì: 12 b S x x ; a 12 c P x .x a Pt có 2 nghim phân bit a0 0 Pt có nghim kép a0 0 Pt vô nghim a0 a0 b0 0 c0 Pt có 2 nghim trái du P0 Pt có 2 nghim cùng du 0 P0 Pt có 2 nghim phân bi 0 P0 S0 Pt có 2 nghim phân bit cùng âm 0 P0 S0 II. Đa thức bậc ba: 3 + bx 2 + cx + d = 0 Gi s m 1 2 3 x ;x ;x thì: 1 2 3 b S x x x ; a 1 2 2 3 3 1 c x .x x .x x .x ; a 1 2 3 d P x .x .x a III. Đạo hàm: BẢNG ĐẠO HÀM (kx)' k (ku)' k.u' 1 (x )' .x 1 (u )' .u'.u . 1 ( x)' 2x u' ( u)' 2u ' 2 11 xx ' 2 1 u' uu (sinx)' cosx (sinu)' u'.cosu (cosx)' sin x (cosu)' u'.sinu 2 1 (tan x)' cos x 2 u' (tanu)' cos u 2 1 (cot x)' sin x 2 u' (cotu)' sin u xx (e )' e uu (e )' u'.e 1 (ln x)' x u' (lnu)' u a 1 log x ' xlna a u' log u ' ulna xx (a )' a .lna uu (a )' u'.a .lna Quy tắc tính đạo hàm (u v) = u v (uv) = uv + vu 2 u u v v u vv (v 0) x u x y y .u Đạo hàm của một số hàm thông dụng 1. 2 ax b ad bc y y' cx d cx d 2. 22 2 ax bx c adx 2aex be cd y y' dx e dx e LÝ THUY Cao Hoàng Nam Trang 2 Vấn đề 2: CÁC BƢỚC KHẢO SÁT HÀM SỐ. 1. Các bƣớc khảo sát sự biến thiên và vẽ đồ thị của hàm số Tìm tnh ca hàm s. Xét s bin thiên ca hàm s: o Tính y. o m to hàm y bng 0 hoc không xnh. o Tìm các gii hn ti vô cc, gii hn vô cc và tìm tim cn (nu có). o Lp bng bin thiên ghi rõ du co hàm, chiu bin thiên, cc tr ca hàm s. V th ca hàm s: o m un c th i vi hàm s bc ba và hàm s ). Tính y. m t = 0 và xét du y. o V ng tim cn (nu có) c th. o nh mt s c bit c th m c th vi các trc to ng h th không ct các trc to hoc vic tìm to m phc tp thì có th b qua). Có th tìm thêm mt s m thu th có th v o Nhn xét v th: Ch ra tr i xi xng (nu có) c th. 2. Hàm số bậc ba 32 y ax bx cx d (a 0) : Tnh D = R. th luôn có mm un và nhm un i xng. Các d th: m phân bit 2 3ac > 0 a > 0 a < 0 m kép 2 3ac = 0 a > 0 a < 0 m 2 3ac < 0 a > 0 a < 0 3. Hàm số trùng phƣơng 42 y ax bx c (a 0) : Tnh D = R. th luôn nhn trc tung làm tri xng. Các d th: m phân bit ab < 0 a > 0 a < 0 1 nghim phân bit ab > 0 a > 0 a < 0 4. Hàm số nhất biến ax b y (c 0,ad bc 0) cx d : Tnh D = d R\ c . y x 0 I y x 0 I y x 0 I y x 0 I LÝ THUY Cao Hoàng Nam Trang 3 th có mt tim cng là d x c và mt tim cn ngang là a y c m ca hai tim ci xng c th hàm s. Các d th: ad – bc > 0 ad – bc < 0 5. Hàm số hữu tỷ 2 ax bx c y a'x b' ( a.a' 0, t không chia ht cho mu) Tnh D = b' R\ a' . th có mt tim cng là b' x a' và mt tim cm ca hai tim cn là tâm i xng c th hàm s. Các d th: y = 0 có 2 nghim phân bit a0 a0 y = 0 vô nghim a0 a0 CÁC BÀI TOÁN LIÊN QUAN KHẢO SÁT HÀM SỐ Vấn đề 1. SỰ TIẾP XÚC GIỮA HAI ĐƢỜNG, TIẾP TUYẾN CỦA ĐƢỜNG CONG Ý nghĩa hình học của đạo hàm o hàm ca hàm s y = f(x) tm x 0 là h s góc ca tip tuyn v th (C) ca hàm s t m 0 0 0 M x ;f(x ) . p tuyn ca (C) tm 0 0 0 M x ;f(x ) là: y y 0 = f (x 0 ).(x x 0 ) (y 0 = f(x 0 )) Dạng 1: Lập phƣơng trình tiếp tuyến của đƣờng cong (C): y = f(x) Bài toán 1: Vip tuyn ca (C): y =f(x) tm 0 0 0 M x ;y Nu cho x 0 thì tìm y 0 = f(x 0 ). Nu cho y 0 thì tìm x 0 là nghim c trình f(x) = y 0 . Tính y = f (x). Suy ra y(x 0 ) = f (x 0 ). p tuyn là: y y 0 = f (x 0 ).(x x 0 ) Bài toán 2: Vip tuyn ca (C): y =f(x), bit có h s c. Cách 1: Tìm to tim. Gi M(x 0 ; y 0 ) là tim. Tính f (x 0 ). có h s góc k f (x 0 ) = k (1) Gic x 0 và tính y 0 = f(x 0 ). T a . Cách 2: u kin tip xúc. ng thng có dng: y = kx + m. tip xúc vi (C) khi và ch khi h trình sau có nghim: f(x) kx m f '(x) k (*) Gii h c m. T trình ca . 0 x y 0 x y Lí THUY Cao Hong Nam Trang 4 Chỳ ý: H s gúc k ca tip tuyn cú th c cho giỏn ti to vi chic honh gúc thỡ k = tan song song vng thng d: y = ax + b thỡ k = a vuụng gúc vng thng d: y = ax + b (a 0) thỡ k = 1 a to vng thng d: y = ax + b mt gúc thỡ ka tan 1 ka Bi toỏn 3: Vip tuyn ca (C): y = f(x), bit i qua m AA A(x ;y ) . Cỏch 1: Tỡm to tim. Gi M(x 0 ; y 0 ) l tiú: y 0 = f(x 0 ), y 0 = f (x 0 ). p tuyn ti M: y y 0 = f (x 0 ).(x x 0 ) AA A(x ;y ) nờn: y A y 0 = f (x 0 ).(x A x 0 ) (1) Gi1c x 0 . T via . Cỏch 2: Dựng u kin tip xỳc. ng thng AA A(x ;y ) v cú h s gúc k: y y A = k(x x A ) tip xỳc vi (C) khi v ch khi h trỡnh sau cú nghim: AA f(x) k(x x ) y f '(x) k (*) Gii h c x (suy ra k). T t p tuyn . Dng 2: Tỡm iu kin hai ng tip xỳc u kin c ng (C 1 ): y = f(x) v (C 2 ): y = g(x) tip xỳc nhau l h trỡnh sau cú nghim: f(x) g(x) f '(x) g'(x) (*) Nghim ca h (*) l ca ti m c Dng 3: Tỡm nhng im trờn ng thng d m t ú cú th v c 1, 2, 3, tip tuyn vi th (C): y = f(x) Gi s d: ax + by +c = 0. M(x M ; y M ) d. ng thng qua M cú h s gúc k: y = k(x x M ) + y M tip xỳc vi (C) khi h sau cú nghim: MM f(x) k(x x ) y (1) f '(x) k (2) Th k t c: f(x) = (x x M ).f (x) + y M (3) S tip tuyn ca (C) v t M = S nghim x ca (3) Dng 4: Tỡm nhng im m t ú cú th v c 2 tip tuyn vi th (C): y = f(x) v 2 tip tuyn ú vuụng gúc vi nhau Gi M(x M ; y M ). ng thng qua M cú h s gúc k: y = k(x x M ) + y M tip xỳc vi (C) khi h sau cú nghim: MM f(x) k(x x ) y (1) f '(x) k (2) Th k t (2) vc: f(x) = (x x M ).f (x) + y M (3) Qua M v c 2 tip tuyn vi (C) (3) cú 2 nghim phõn bit x 1 , x 2 . Hai tip tuyi nhau f (x 1 ).f (x 2 ) = 1 T c M. Chỳ ý: Qua M v c 2 tip tuyn vi (C) sao cho 2 tim nm v hai phớa vi trc honh thỡ 12 (3)coự2 nghieọm phaõn bieọt f(x ).f(x ) < 0 Vn 2. S TNG GIAO CA CC TH 1. th (C 1 ): y = f(x) v (C 2 ): y = g(x). m ca (C 1 ) v (C 2 ) ta gii l m). S nghim cng s giao Lí THUY Cao Hong Nam Trang 5 m c th. 2. th hm s bc ba 32 y ax bx cx d (a 0) ct trc honh ti 3 m phõn bit 32 ax bx cx d 0 cú 3 nghim phõn bit. Hm s 32 y ax bx cx d cú ci, cc tiu v Cẹ CT y .y 0 . Vn 3. BIN LUN S NGHIM CA PHNG TRèNH BNG TH c f(x) = g(x) (1) S nghim c giao m ca (C 1 ): y = f(x) v (C 2 ): y = g(x) Nghim c m ca (C 1 ): y = f(x) v (C 2 ): y = g(x) bin lun s nghim c F(x, m) = 0 (*) b th ta bii (*) v mt trong cỏc dng sau: Dng 1: F(x, m) = 0 f(x) = m (1) m cng: (C): y = f(x) v d: y = m ng thi Ox D th (C) ta bin lun s m ca (C) v d. T nghim ca (1) Dng 2: F(x, m) = 0 f(x) = g(m) (2) Thc hi, cú th t g(m) = k. Bin lun lun theo m. c bit: Bin lun s nghim ca phng trỡnh bc ba bng th c c ba: 32 ax bx cx d 0 (a 0) (1) th (C) S nghim ca (1) = S m ca (C) vi trc honh Bi toỏn 1: Bin lun s nghim ca phng trỡnh bc 3 Trng hp 1: (1) ch cú 1 nghim (C) v m chung Cẹ CT f khoõng coự cửùc trũ (h.1a) f coự 2 cửùc trũ (h.1b) y .y >0 Trng hp 2m (C) tip xỳc vi Ox Cẹ CT f coự 2 cửùc trũ (h.2) y .y =0 Trng hp 3: (1) cú 3 nghim phõn bit (C) ct Ox tm phõn bit Cẹ CT f coự 2 cửùc trũ (h.3) y .y <0 Bi toỏn 2: Phng trỡnh bc ba cú 3 nghim cựng du Trng hp 1: (1) cú 3 nghi bit (C) ct Ox tm phõn bit cú honh Cẹ CT Cẹ CT f coự 2 cửùc trũ y .y < 0 x > 0, x > 0 a.f(0) < 0 (hay ad < 0) Trng hp 2: (1) cú 3 nghim cú õm phõn y c. x m c. A c. (C) c. (d) : y = m c. y C y CT x A c. LÝ THUY Cao Hoàng Nam Trang 6 bit (C) ct Ox tm phân bit có hoành âm CÑ CT CÑ CT f coù 2 cöïc trò y .y < 0 x < 0, x < 0 a.f(0) > 0 (hay ad > 0) Vấn đề 4. HÀM SỐ CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI 1. Đồ thị hàm số y = f x (hàm số chẵn) Gi (C): y f(x) và 1 (C ): y f x ta thc hin c sau: Bƣớc 1. V th (C) và ch gi li ph th nm phía bên phi trc tung. Bƣớc 2. Li xng ph th c 1 qua tr th (C 1 ). 2. Đồ thị hàm số y = f(x) Gi (C): y f(x) và 2 (C ): y f(x) ta thc hin c sau: Bƣớc 1. V th (C). Bƣớc 2. Gi li ph th ca (C) nm phía trên trc hoành. Li xng ph th nm i trc hoành ca (C) qua trc hoành ta th (C 2 ). 3. Đồ thị hàm số y = f x Gi 1 (C ): y f x , 2 (C ): y f(x) và 3 (C ): y f x . D th v (C 3 ) ta thc hin c v (C 1 ) ri (C 2 ) (hoc (C 2 ) ri (C 1 )). Vấn đề 5. ĐIỂM ĐẶC BIỆT TRÊN ĐỒ THỊ CỦA HÀM SỐ Dạng 1: Tìm cặp điểm trên đồ thị (C): y = f(x) đối xứng qua đƣờng thẳng d: y = ax + b Cơ sở của phƣơng phápi xng nhau qua d d là trung trc cn AB ng thng vuông góc vi d: y = ax + b có dng: : 1 y x m a m ca và (C): f(x) = 1 xm a (1) u kin c ct (C) ti 2 m phân bi A , x B là các nghim ca (1). Tìm to m I ca AB. T u kii xng qua d I c m x A , x B y A , y B A, B. Chú ý: i xng nhau qua trc hoành AB AB xx yy i xng nhau qua trc tung AB AB xx yy i xng thng y = b AB AB xx y y 2b i xng thng x = a AB AB x x 2a yy LÝ THUY Cao Hoàng Nam Trang 7 Dạng 2: Tìm cặp điểm trên đồ thị (C): y = f(x) đối xứng qua điểm I(a; b) Cơ sở của phƣơng pháp: i xng nhau qua I m ca AB. ng thng d qua I(a; b), có h s góc k có dng: y k(x a) b . m ca (C) và d: f(x) = k(x a) b (1) u ki d ct (C) tm phân bit A , x B là 2 nghim ca (1). T u kii xng qua I I là m cc k x A , x B . Chú ý: i xng qua gc to O AB AB xx yy Dạng 3: Khoảng cách Kiến thức cơ bản: 1. Khong cách gim A, B: AB = 22 B A B A (x x ) (y y ) 2. Khong cách t m M(x 0 ; y 0 ng thng : ax + by + c = 0: d(M, ) = 00 22 ax by c ab 3. Din tích tam giác ABC: S = 2 22 11 AB.AC.sinA AB .AC AB.AC 22 Nhận xét: Ngoài nh tp phng kt hp vi phn hình hc gii tíchnh lý Vi-et nên cn chú ý xem li các tính cht hình hc, các công c gii toán trong hình hc gii tích, áp dng thành thnh lý Vi-et trong tam thc bc hai. LƢỢNG GIÁC Vấn đề 1: ÔN TẬP I. Góc và cung lƣợng giác: 1. Giá trị lượng giác của một số góc: Α 0 6 4 3 2 Sinα 0 1 2 2 2 3 2 1 Cosα 1 3 2 2 2 1 2 0 Tanα 0 3 3 1 3 Cotα 3 1 3 3 0 2. Cung liên kết: (cos đối, sin bù, phụ chéo) x x 2 x + x 2 + x Sin sinx sinx cosx sinx cosx Cos cosx cosx sinx cosx sinx Tan tanx tanx cotx tanx cotx Cot cotx cotx tanx cotx tanx II. Công thức lƣợng giác: 1. Công thức cơ bản: 22 sin a cos a 1 tana.cota 1 2 2 1 1 tan a cos a 2 2 1 1 cot a sin a 2. Công thức cộng: cos( ) cos .cos sin .sin cos( ) cos .cos sin .sin sin( ) sins .cos cos .sin sin( ) sins .cos cos .sin tan tan tan( ) 1 tan .tan tan tan tan( ) 1 tan .tan LÝ THUY Cao Hoàng Nam Trang 8 3. Công thức nhân đôi, nhân ba: 2 2 2 2 cos2 cos sin 2cos 1 1 2sin (cos sin )(cos sin ) sin2 2sin .cos 3 cos3 4cos 3cos 3 sin3 3sin 4sin 4. Công thức hạ bậc: 22 1 cos2x cos x 1 sin x 2 (1 cosx)(1 cosx) 22 1 cos2x sin x 1 cos x 2 (1 cosx)(1 sin x) 5. Công thức biến đổi tổng thành tích: x y x y cosx cos y 2cos cos 22 x y x y cosx cosy 2sin sin 22 x y x y sin x sin y 2sin cos 22 x y x y sin x sin y 2cos sin 22 6. Công thức biến đổi tích thành tổng: 1 cos cos cos( ) cos( ) 2 1 sin sin cos( ) cos( ) 2 1 sin cos sin( ) sin( ) 2 Một số chú ý cần thiết: 4 4 2 2 sin x cos x 1 2.sin x.cos x 6 6 2 2 sin x cos x 1 3.sin x.cos x 8 8 4 4 2 4 4 2 2 2 4 4 42 sin x cos x (sin x cos x) 2sin x.cos x (1 2sin x.cos x) 2sin x.cosx 1 sin 2x sin 2x 1 8 Trong một số phương trình lượng giác, đôi khi ta phải sử dụng cách đặt như sau: Đặt t tanx : 2 22 2t 1 t sin2x ; cos2x 1 t 1 t Vấn đề 2: PHƢƠNG TRÌNH LƢỢNG GIÁC I. Phƣơng trình cơ bản: x k2 sin x sin k x k2 x k2 cosx cos k x k2 tanx tan x k k cot x cot x k k Trường hợp đặc biệt: sinx 0 x k ,k sinx 1 x k2 k 2 sinx 1 x k2 k 2 cosx 0 x k k 2 cosx 1 x k2 k II. Phƣơng trình bậc hai hay bậc n của một hàm lƣợng giác: 2 asin x bsinx c 0 (1) 2 acos x bcosx c 0 (2) 2 a tan x btanx c 0 (3) 2 acot x acot x c 0 (4) Cách giải: - III. Phƣơng trình a.sinx b.cosx c Cách giải: - 2 2 2 a b c : - 2 2 2 a b c : 22 ab 2 2 2 2 2 2 a b c sinx cosx a b a b a b 22 c cos .sin x sin .cosx ab 22 c sin(x ) ab Lƣu ý: 2 2 2 2 ba sin ;cos a b a b LÝ THUY Cao Hoàng Nam Trang 9 Biến thể: a.sinx b.cosx csin y dcosy 2 2 2 2 a b c d a.sinx b.cosx csin y c.cosy ) 2 2 2 a b c IV. Phƣơng trình 22 a.sin x b.sinx.cosx c.cos x d Cách giải: Cách 1: - Xét cosx 0 x k2 ,k 2 cosx 0 hay không?) - Xét cosx 0 x k2 ,k 2 2 cos x . P trình 22 a.tan x b.tanx c d(1 tan x) t tan x p. Cách 2: Chú ý: phƣơng trình thuần nhất bậc 3 hay bậc 4 đối với sin và cos V. Phƣơng trình a(sinx cosx) b.sinx.cosx c 0 Cách giải: t sinx cosx t 2 Do t 2sin x 4 Ta có: 2 2 2 t sin x cos x 2sinx.cosx 2 t1 sin x.cosx 2 2 t1 a.t b c 0 2 Chú ý: a(sinx cosx) b.sinx.cosx c 0 t sin x cosx 2 sin x 4 . VI. Phƣơng trình A.B 0 Cách giải: - A.B 0 A0 A.B 0 B0 Vấn đề 3: KĨ THUẬT NHẬN BIẾT Xut hin 3 Xut hin 3 và góc ng giác ln dng bin th c Xut hin góc ln thì dùng công thc tng các góc nh. Xut hin các góc có cng thêm k ,k ,k 42 thì có th dùng công thc tng thành tích, tích thành tng hoc cung liên kt, hoc công thc c làm mt các k ,k ,k 42 Xut hin 2 ho còn li nhóm c (sinx cosx) trit 2 vì t sin x cos x 2 sin x 4 c n kh kh c hai theo sin (hoc cos) v tích c nht. Chú ý: Góc ln là góc có s Ta ch s dng công th bài toán v sinx, 2 sin x hoc cosx, 2 cos x . Vấn đề 4: GIẢI TAM GIÁC I. Công thức sin, cos trong tam giác: Do A B C nên: a. sin(A B) sinC b. cos(A B) cosC Do A B C 2 2 2 2 nên: a. A B C sin( ) cos 2 2 2 [...]... Chú ý: Đề thiđạihọc thường sử dụng các tính chất đối xứng tâm (điểm), đối xứng trục (đường) – liên quan đến Phép biến hình 11 Ngồi ra sự kết hợp giữa các tính chất của đường tròn và tam giác cũng là dạng tốn rất thường gặp Trang 33 LÝTHUYẾT TỐN LTĐH Cao Hồng Nam 2 Vectơ tích có hướng c a, b vng góc vơi hai vectơ a và b 3 a, b a b sin(a, b) HÌNH HỌC TỌA ĐỘ... một đường tròn có tâm là trung điểm OH được gọi là đường tròn Euler Trang 21 LÝTHUYẾT TỐN LTĐH 2 Kiến thức hình học 11: Cao Hồng Nam Quan hệ song song: Bài 1: ĐƢỜNG THẲNG SONG SONG VỚI MẶT PHẲNG Định nghĩa: Một đường thẳng và một mặt phẳng được gọi là song song nếu chúng khơng có điểm chung a a / / (P) a (P) (P) Định lý: ĐL1: Nếu đường thẳng d khơng nằm trên mặt phẳng (P) và song song với đường... TÍCH – THỂ TÍCH Cầu Diện tích V Stp Sxq Sđáy V R 2 h Trang 29 Sxq Rl Stp Sxq 2Sđáy 4 3 R 3 Nón Sxq 2Rh S 4R 2 Thể tích Trụ 1 V R 2 h 3 LÝTHUYẾT TỐN LTĐH Cao Hồng Nam HÌNH HỌC TỌA ĐỘ OXY 6 Vấn đề 1: TỌA ĐỘ PHẲNG I Định lý: Cho A(x A , yA ), B(x B , yB ) , a (a1 ,a 2 ) 1 AB (x B x A ; yB yA ) 2 AB AB (x B x A )2 (yB yA ) 2 3 a a12 a 2 2 7... tuyệt đối đã nêu ở trên f (x) g(x) dx Nếu tích S giới hạn bởi x = f(y) và x = g(y) thì ta đổi vai trò x cho y trong cơng thức trên Trang 19 LÝTHUYẾT TỐN LTĐH Cao Hồng Nam Chun đề: HÌNH HỌC KHƠNG GIAN I Kiến thức cơ bản: 1 Kiến thức hình học 9 – 10: 1.1 Hệ thức lƣợng trong tam giác vng: Cho tam giác ABC vng tại A có đường cao AH, đường trung tuyến AM Ta có: AB2 AC2 BC2 AH2 BH.CH...LÝ THUYẾT TỐN LTĐH A B C ) sin 2 2 2 II Định lí hàm số sin: a b c 2R SinA SinB SinC III Định lí hàm số cosin: a 2 b2 c2 2bccos A IV Cơng thức đƣờng trung tuyến: Cao Hồng Nam ĐẠI SỐ b cos( 2b 2 2c2 a 2 4 V Cơng thức đƣờng phân giác: A 2bc.cos 2 la bc VI Các cơng thức tính diện... ngoại tiếp tam giác ABC 1.2 Hệ thức lƣợng trong tam giác thƣờng: Cho tam giác ABC có các cạnh lần lượt là a, b, c, đường trung tuyến AM Định lý hàm cos: a2 = b2 + c2 - 2bc.cosA cos A b2 c2 a 2 2bc Định lý hàm sin: a b c 2R sin A sin B sin C Định lý đƣờng trung tuyến: 2 ma AM 2 2(b 2 c2 ) a 2 4 1.3 Các cơng thức tính diện tích: Tam giác ABC: 1 SABC BC.AH p.r 2 abc 1 AB.AC.SinA... b Dạng 5: Phƣơng trình dạng: x a 2 b 2a x b x a 2 b 2a x b cx m Cách giải: Đặt t x b điều kiện: t 0 Trang 12 LÝTHUYẾT TỐN LTĐH Đưa phương trình về dạng: t a t a c(t 2 b) m Dạng 6: Phƣơng pháp tham số, hằng số biến thi n 6x 2 10x 5 4x 1 6x 2 6x 5 0 c Sử dụng ẩn phụ đưa về hệ đối xứng, hệ nửa đối xứng: Dạng 1: Phƣơng trình dạng x n a b... P Q Định lý: ĐL1: Điều kiện cần và đủ để 2 mặt phẳng song song là trong mặt phẳng này chứa 2 đường thẳng cắt nhau cùng song song với mặt phẳng kia ĐL2: Nếu 2 mặt phẳng song song với nhau thì mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia a, b (P) (P) / /(Q) a b I a / /(Q), b / /(Q) (P) / /(Q) a (P) P a b I Q a a / /(Q) Trang 22 P Q LÝTHUYẾT TỐN LTĐH... 900 Định lý: ĐL1: Nếu một mặt phẳng chứa một đường thẳng vng góc với một mặt phẳng khác thì hai mặt phẳng đó vng góc với nhau ĐL2: Nếu hai mặt phẳng (P) và (Q) vng góc với nhau thì bất cứ đường thẳng a nào nằm trong (P), vng góc với giao tuyến của (P) và (Q) đều vng góc với (Q) Q a (P) (Q) (P) a (Q) a P (P) (Q) (P) (Q) d a (P), a d P a (Q) a d Trang 23 Q LÝTHUYẾT TỐN... góc với mặt phẳng đáy Hình chóp cụt: là hình đa diện tạo ra từ hình chóp có hai đáy là hai đa giác đồng dạng nằm trong hai mặt phẳng song song, các mặt bên là các hình thang Trang 26 LÝTHUYẾT TỐN LTĐH 3 Kiến thức hình học 12: Cao Hồng Nam Diện tích – thể tích khối đa diện: Diện tích xung quanh: bằng tổng diện tích các mặt bên Diện tích tồn phần: bằng tổng diện tích xung quanh và diện tích đáy 1