Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 56 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
56
Dung lượng
2,17 MB
Nội dung
Trường……………………………… Khoa………………………… Lý thuyết luyện thi đại học mơn tốn LÝ THUYẾT TỐN LTĐH Cao Hồng Nam KHẢO SÁT HÀM SỐ Vấn đề 1: ÔN TẬP – CÔNG THỨC I Tam thức bậc hai: a b c x , ax bx c a a b c x , ax bx c a Cho phương trình : ax2 + bx + c = Giả sử phương trình có nghiệm x1 ; x thì: b c S x1 x ; P x1.x a a a Pt có nghiệm phân biệt a Pt có nghiệm kép a Pt vô nghiệm b c a Pt có nghiệm trái dấu P Pt có nghiệm dấu P Pt có nghiệm phân biệt dương P S Pt có nghiệm phân biệt âm P S II Đa thức bậc ba: Cho phương trình : ax3 + bx2 + cx + d = Giả sử phương trình có nghiệm x1; x ; x thì: b c S x1 x x ; x1.x x x x x1 ; a a d P x1.x x a III Đạo hàm: BẢNG ĐẠO HÀM (kx) ' k (ku) ' k.u ' (x ) ' .x 1 (u ) ' .u '.u ( x)' 1 u' ( u)' x u ' ' 1 x x u' 1 u u (sin x) ' cos x (sin u) ' u '.cos u (cos x) ' sin x (cos u) ' u '.sin u (tan x) ' (cot x) ' cos x 1 sin x (ex ) ' ex (ln x) ' (cot u) ' u' cos u u ' sin u (eu ) ' u '.eu x log a x ' (tan u) ' (ln u) ' x ln a (a x ) ' a x ln a u' u loga u ' u' u ln a (a u ) ' u '.a u ln a Quy tắc tính đạo hàm (u v) = u v (uv) = uv + vu u uv vu (v 0) v2 v yx yu.ux Đạo hàm số hàm thông dụng y ax b ad bc y' cx d cx d y ax bx c adx 2aex be cd y' dx e dx e Trang LÝ THUYẾT TOÁN LTĐH Cao Hoàng Nam Vấn đề 2: CÁC BƢỚC KHẢO SÁT HÀM SỐ Các bƣớc khảo sát biến thiên vẽ đồ thị hàm số Tìm tập xác định hàm số Xét biến thiên hàm số: o Tính y o Tìm điểm đạo hàm y khơng xác định o Tìm giới hạn vơ cực, giới hạn vơ cực tìm tiệm cận (nếu có) o Lập bảng biến thiên ghi rõ dấu đạo hàm, chiều biến thiên, cực trị hàm số Vẽ đồ thị hàm số: o Tìm điểm uốn đồ thị (đối với hàm số bậc ba hàm số trùng phương) – Tính y – Tìm điểm y = xét dấu y o Vẽ đường tiệm cận (nếu có) đồ thị o Xác định số điểm đặc biệt đồ thị giao điểm đồ thị với trục toạ độ (trong trường hợp đồ thị không cắt trục toạ độ việc tìm toạ độ giao điểm phức tạp bỏ qua) Có thể tìm thêm số điểm thuộc đồ thị để vẽ xác o Nhận xét đồ thị: Chỉ trục đối xứng, tâm đối xứng (nếu có) đồ thị y‟ = vơ nghiệm D‟ = b2 – 3ac < a>0 a0 a Các dạng đồ thị: y‟ = có nghiệm phân biệt D‟ = b2 – 3ac > a>0 a>0 a