1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Day them ve loga va pt mu rat hay

20 1K 9

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 708,5 KB

Nội dung

www.facebook.com/toihoctoan

GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH - LOGARIT I. BẤT PHƯƠNG TRÌNH Bài 1. Giải các bất phương trình sau : a. 2 4 15 13 4 3 1 1 2 2 x x x− + −     <  ÷  ÷     b. 2 1 2 3 2 5 7 5 3 2 2 2 2 2 2 x x x x x x− − − − − − + − > + − c. 1 1 3 3 3 84 x x + + > d. 1 1 1 2 16 x x−   >  ÷   GIẢI a. ( ) 2 4 15 13 4 3 2 2 2 1 1 3 4 15 13 4 3 4 12 9 0 2 3 0 2 2 2 x x x x x x x x x x − + −     < ⇔ − + > − ⇔ − + > ↔ − > → ≠  ÷  ÷     b. 2 1 2 3 2 5 7 5 3 2 2 2 2 2 2 x x x x x x − − − − − − + − > + − Nhân hai vế bất phương trình với 2 0 x > , bất phương trình trở thành : 3 3 3 5 3 7 5 3 3 3 3 8 1 2 2 16 4 1 19.2 2 . 8 .2 2 2 2 2 19.2 2 2 3 8 2 8 32 32 19. 3 x x x x x x x + −   ⇔ + − > + − ⇔ > ⇔ > = ↔ > → >  ÷   c. ( ) 1 1 1 1 3 84 1 1 3 3 84 3 27 1 84 3 3 1 0 0 1 28 x x x x x x x x + − + > ⇔ + > ⇔ > = ↔ > ⇔ > ⇔ < < d. 1 4 2 1 1 1 4 4 2 2 2 1 0 0 16 x x x x x x x x x x − − − − +   > ⇔ > ⇔ − > − ⇔ > ⇔ >  ÷   . Vì : 2 4x x− + >0 . Bài 2. Giải các bất phương trình sau : a. 1 1 1 5 25 x x+   <  ÷   b. 3 2 log 2 5 1 x+ < c. 2 2 40 1 4 3 2 1 3 3 x x x − − +   <  ÷   d. 2 2 9 8 3 7 1 7 7 x x x − − + −   <  ÷   GIẢI a. 1 2 2 1 1 1 2 2 2 5 5 5 1 1 0 0 0 25 x x x x x x x x x x x x − + + + +   < ⇔ < ⇔ + < − ⇔ + + < ⇔ < ↔ <  ÷   . Vì : 2 2x x+ + >0 . b. 3 2 log 0 2 3 2 2 5 1 5 log 0 0 1 2 0 2 2 x x x x + < = ⇔ < ⇔ < < ⇔ − < < + + c. 2 2 2 2 40 1 1 4 3 4 3 40 2 2 2 2 2 1 1 1 1 16 3 3 3 4 3 40 36 3 0 1 3 2 2 12 x x x x x x x x x x x x x − − + − +  < −    < ⇔ < ⇔ − + < ⇔ + − > ⇔   ÷    >   d. 2 2 2 2 9 8 3 7 9 8 3 7 2 2 2 1 3 1 7 7 7 9 8 3 7 16 8 3 0 7 4 4 x x x x x x x x x x x x − − + − + − −   < ⇔ < ⇔ + − < − ↔ + − < ⇔ − < <  ÷   Lê Quân 1 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT Bài 3. Giải các bất phương trình sau : a. 1 1 1 6.9 13.6 6.4 0 x x x − + ≤ b. 1 1 2x 1 3x 1 2 2 − + ≥ c. x x 3 9.3 10 0 − + − < d. x x x 5.4 2.25 7.10 0 + − ≤ GIẢI a. 1 2 1 1 1 1 2 0 3 3 3 0 6.9 13.6 6.4 0 6. 13. 6 0 2 3 2 2 2 3 2 6 13 6 0 x x x x x x t t t t t  >          = >  ÷ − + ≤ ⇔ − + ≤ ⇔ ⇔    ÷  ÷   ≤ ≤        − + ≤  1 1 2 3 3 1 1 1 1 3 2 2 x x x x ≤ −    ⇔ ≤ ≤ ⇔ − ≤ ≤ ↔  ÷  ≥    b. ( ) ( ) − +     >  >          > + > −       ≥ ⇔ ≥ ⇔ ⇔    <  − + <             ≥  − ≥  − +    − +     1 1 2x 1 3x 1 1 1 x x 2 2 x 2 3x 1 2x 1 1 1 2 2 1 1 x 2x 1 3x 1 x 2 2 5x 1 1 0 0 1 2x 3x 1 1 2x 3x 1   >   ⇔ < <    − < <  x 2 1 0 x 2 1 x 0 3 c. −  = > >   + − < ⇔ ⇔ ⇔ < < ↔ < <   < < − + <    x x x x 2 t 3 0 t 0 3 9.3 10 0 1 3 9 0 x 2 1 t 9 t 10t 9 0 d.    =       ÷ + − ≤ ⇔ + − ≤ ⇔     ÷  ÷      − + ≤  x x x x x x 2 5 t 25 5 5.4 2.25 7.10 0 5 2. 7 0 2 4 2 2t 7t 5 0 >     ⇔ ⇔ ≤ ≤ ↔ ≤ ≤   ÷ ≤ ≤     x t 0 5 5 1 0 x 1 5 2 2 1 t 2 Bài 4. Giải các bất phương trình sau : a. x 1 x 1 1 3 1 1 3 + ≥ − − b. 2 x x 1 x 5 5 5 5 + + < + c. x x x 25.2 10 5 25− + > d. x x 2 x 9 3 3 9 + − > − GIẢI Lê Quân 2 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT a. ( ) ( ) + +  = >  ≥ ⇔ − ≥ ⇔ −  ≥ − − − −  − −  x x 1 x x 1 x t 3 0 1 1 1 1 0 2 4t 0 3 1 1 3 3 1 1 3 3t 1 1 t   ≤ < <   <−  ⇔ ⇔ ⇔    − ≤ <    ≤ < ≤ <     x x 3 1 1 0 t 3 x 1 3 3 log 2 x 0 1 1 t 1 3 1 2 2 b. 2 x x 1 x 5 5 5 5 + + < + . Nhân hai vế bất phương trình với 5 0 x > . ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 5 5 5 5 5 5 5 5.5 0 5 5 1 5 5 1 0 5 1 5 5 0 1 5 5 0 1 0 1 x x x x x x x x x x x x x x + ⇒ + < + ⇔ − + − < ⇔ − − − < ⇔ − − < ⇔ < < ⇔ < < ↔ < < c. ( ) ( ) ( ) ( ) ( ) ( ) − + > ⇔ − − − > ⇔ − − − >     − > >    >        − > < <         ⇔ − − > ⇔ ⇔ ⇔ ⇔ < <    <    − < <           >    − < >       x x x x x x x x x x x x x x x x x x x x 25.2 10 5 25 25.2 25 2 .5 5 0 25 2 1 5 2 1 0 2 1 0 2 1 x 0 25 5 0 5 25 x 2 2 1 25 5 0 0 x 2 x 0 2 1 0 2 1 x 2 25 5 0 5 25 d. ( ) +   − ≥    − < = >    − > − ⇔ ⇔   − ≥  − > −       − > −    2 x x x 2 x 2 2 2 t 9t 0 t 9 0 t 3 0 9 3 3 9 t 9 0 t 9t t 9 t 9t t 9  ≤ ∨ ≥    <   ⇔ ⇔ ≥ ⇔ ≥ ↔ ≥  ≥    >    x t 0 t 9 t 9 t 9 3 9 x 2 t 9 t 9 Bài 5. Giải các bất phương trình sau : a. 2 x x 1 5 25 − < < b. 2 x (x x 1) 1− + < c. x 1 2 x 1 (x 2x 3) 1 − + + + < d. 2 3 2 x 2x 2 (x 1) x 1 + − > − GIẢI a. −  − + >  < < ⇔ < − < ⇔− < − < ⇔ ⇔− < <  − − <   2 2 x x 2 2 2 x x 2 0 1 5 25 0 x x 2 2 x x 2 1 x 2 x x 2 0 Lê Quân 3 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT b.     < − + < − < < <        > > > < <        − + < ⇔ ⇔ ⇔ ⇔     < < ∨ >     − + > − >       <   < <       2 2 2 x 2 2 0 x x 1 1 x x 0 0 x 1 x 0 x 0 x 0 0 x 1 (x x 1) 1 x 0 x 0 x 1 x x 1 1 x x 0 x 0 x 0 x 0 c Do : + + 2 x 2x 3 >2 , cho nên : − + − + + < ⇔ < ⇔ − < < + x 1 2 x 1 x 1 (x 2x 3) 1 0 1 x 1 x 1 . d. + + +   < − <    < <      − > − −     − > − ⇔ ⇔     > − >         + − >   − > −      2 2 2 2 2 2 x 2x 2 3 3 2 x 2x 2 2 2 2 2 x 2x 2 3 0 x 1 1 1 x 2 luon dung (x 1) (x 1) (x 1) x 1 x 2 x 1 1 x 2x 3 0 (x 1) (x 1)  < <   < < ⇔ ⇔   >   <− ∨ >    <− ∨ >     1 x 2 1 x 2 x 2 x 3 x 2 x 3 x 0 Bài 6. Giải bất phương trình : a. 1 x x x 2 1 2 0 2 1 − + − ≤ − b. 2 65 3 1 3 1 2 + −+ > x xx c. ( ) ( ) 12log log 5,0 5,0 2 25 08,0 − − −         ≥ x x x x d. 12 3 1 .9 3 1 /12/2 >       +       + xx GIẢI a. ( ) ( ) ( ) −  = > >   < < < < <   + −   ≤ ⇔ ⇔ ⇔ ⇔ ⇔ + −    − + +   ≥ > ≥− ≤ ≥       −−   x x 1 x x 2 x x t 2 0 t 0 0 t 1 0 2 1 x 0 2 1 2 0 t 1 t 2 t t 2 t 2 x 1 02 1 0 2 2 t(t 1)t t 1 b. ( ) 2 2 5 6 2 2 2 2 2 5 6 2 1 1 3 3 5 6 2 3 5 6 2 3 x x x x x x x x x x x x x + − + + + − > −   > ⇔ < ⇔ + − < + ⇔  + − < +   2 2 10 10 x x x >−  ⇔ →− < <  <  c Vì : 2 2 2 8 2 2 5 5 2 0,08 100 25 5 2 2 − −       = = = = =  ÷  ÷  ÷  ÷  ÷       ( ) ( ) ( ) ( ) 0,5 1 0,5 2 0,5 log 2 1 log log 2 1 log 1 1 2 2 5 2 5 2 5 2 0,08 log log 2 1 2 2 2 x x x x x x x x x x x x − − − − − − − − −       ≥ ⇔ ≥ ⇔ − ≥ −  ÷  ÷  ÷  ÷  ÷  ÷       Lê Quân 4 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT 1 3 1 0 1 2 2 2 1 3 0 2 1 1 3 1 2 3 2 1 1 2 2 1 2 1 0 1 2 x x x x x x x x T x x x x    < <    < − <        >     < ≤ − < <     ⇔ ⇔ ⇔ → < <     >    = ∅ − >            ≥ − > < ≤       d. 2/ 2 1/ 1 2 1 0 0 1 1 1 1 9. 12 3 1 3 4 3 3 3 3 3 12 0 x x x x t t t x t t t t + −    > = >            ÷ + > ⇔ ⇔ ⇔ > ⇔ > → < −      ÷  ÷  ÷  ÷ < − ∨ >           + − >  Bài 7. Giải bất phương trình : a. ( ) ( ) 14347347 ≥++− xx b. 010.725.24.5 ≤−+ xxx c. 3 33 8154154 x xx ≥++− d. ( ) ( ) 1 1 1 2525 + − − −≥+ x x x GIẢI a. ( ) ( ) ( ) ( ) ( ) ( ) 2 2 7 4 3 7 4 3 14 2 3 2 3 14 2 3 2 3 14 x x x x x x     − + + ≥ ⇔ − + + ≥ ⇔ − + + ≥  ÷  ÷     ( ) ( ) ( ) ( ) ( ) 2 2 2 2 3 0 2 3 2 3 0 0 7 4 3 2 1 2 14 1 0 7 4 3 14 2 3 2 3 x x x t t t x x t t t t t −   = + > + ≤ +  > < ≤ − ≤ −    ⇔ ⇔ ⇔ ⇔ ⇔      ≥ − + ≥ ≥ +      + ≥ + ≥ +    b.    =       ÷ + − ≤ ⇔ + − ≤ ⇔     ÷  ÷      − + ≤  x x x x x x 2 5 t 25 5 5.4 2.25 7.10 0 5 2. 7 0 2 4 2 2t 7t 5 0 >     ⇔ ⇔ ≤ ≤ ↔ ≤ ≤   ÷ ≤ ≤     x t 0 5 5 1 0 x 1 5 2 2 1 t 2 c. ( ) ( ) 3 3 3 4 15 4 15 8 2 x x x x − + + ≥ = d. ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 1 1 5 2 5 2 5 2 5 2 1 1 1 0 1 1 x x x x x x x x x x x − − − − − + + −   + ≥ − ⇔ + ≥ + ⇔ − ≥ − ⇔ − + ≥  ÷ + +   ( ) ( ) 2 1 1 2 0 1 1 x x x x x − ≤ < − − +  ⇔ ≥ ⇔  ≥ +  Bài 8. Giải bất phương trình : Lê Quân 5 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT a. 02515.349 12212 222 ≥+− +−−+− xxxxxx b. 1 23 23.2 2 ≤ − − + xx xx c. ( ) ( ) 025353 2 22 21 22 ≤−−++ −+ −− xx xxxx d. 04.66.139.6 222 222 ≤+− −−− xxxxxx GIẢI a. 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 5 0 15 25 9 34.15 25 0 9 34. 25. 0 3 9 9 25 34 9 0 x x x x x x x x x x x x t t t − − − − + − − +     = >      ÷ − + ≥ ⇔ − + ≥ ⇔     ÷  ÷      − + ≥  2 2 2 2 2 2 2 2 5 1 0 1 0 0 2 0 2 2 0 3 9 9 1 2 2 0 1 3 1 3 2 2 5 5 25 25 3 3 x x x x t t x x x x x x t t t x x x x x − − −     ≤ < ≤ >    ÷ ≤ ∨ ≥ ≤ ∨ ≥   − ≤       ⇔ ⇔ ⇔ ⇔ ⇔ ⇔       ≥ ≤ ∨ ≥ − − ≤ − ≤ ≤ + − ≥ −            ≥  ÷  ÷       b. 2 2 3 3 0 2.3 2 2.3 2 3 3.2 2 1 1 0 0 0 3 3 2 3 2 3 2 0 3 1 1 2 x x x x x x x x x x x x x x t t t + +   − >   ÷ − − −    ≤ ⇔ − ≤ ⇔ ≤ ⇔ ≤ ⇔ −  − − − ≤    − −   ÷   3 2 0 3 1 3 0 log 3 1 3 2 x t x t >    ⇔ ⇔ < ≤ ⇔ < ≤   ÷ < ≤    c. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 3 0 9 3 6.9 13.6 6.4 0 6. 13. 6 0 2 2 3 4 2 3 2 6 13 6 0 2 1 0 2 3 3 1 1 2 1 1 1 3 2 2 2 1 2 1 0 2 x x x x x x x x x x x x x x t t t t t x R x x x x x x x x − − − − − − −  >     = >       ÷ − + ≤ ⇔ − + ≤ ⇔ ⇔      ÷  ÷ ≤ ≤        − + ≤  ∈   − + ≥     ⇔ ≤ ≤ ⇔ − ≤ − ≤ ⇔ ⇔ ⇒ − ≤ ≤    ÷ − ≤ ≤ − − ≤       d. ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 1 2 2 3 5 3 5 2 0 3 5 3 5 2.2 x x x x x x x x x x x x − − − − + − − + + − − ≤ ⇔ + + − ≤ 2 2 2 2 3 5 3 5 2 2 2 x x x x − −     + − ⇔ + ≤  ÷  ÷  ÷  ÷     2 2 2 2 2 2 3 5 0 0 0 3 5 2 1 1 2 0 2 2 2 1 0 1 2 0 x x x x t t x t x x x t t t t − −    +  = >  ÷ >   =   ÷  +    ⇔ ⇔ ⇒ = ⇔ = ↔ − = →  ÷     ÷ = − + ≤      + − ≤   Bài 9.Giải các bất phương trình sau : Lê Quân 6 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT a. 8log2 16 1 4 1 4 1 >       −       − xx b. 12 3 1 .9 3 1 /12/2 >       +       + xx c. ( ) 88 1214 −>− −− xx exxex d. 2 6 6 log x log x 6 x 12+ ≤ GIẢI a. 1 1 2 2 4 1 4 2 1 1 1 1 1 1 2log 8 3 4. 3 4 16 4 4 4 4 1 0 1 1 3 1 3 log 3 0 4 4 4 3 0 x x x x x x x x t t x t t − −             − > ⇔ − > ⇔ − >  ÷  ÷  ÷  ÷  ÷  ÷                = >     ÷ ⇔ ⇔ < < ⇔ < < ⇔ < <     ÷    − + <  2/ 2 1/ 1 2 1 0 0 1 1 1 1 . 9. 12 3 1 3 4 3 3 3 3 3 12 0 x x x x t t b t x t t t t + −    > = >            ÷ + > ⇔ ⇔ ⇔ > ⇔ > → < −      ÷  ÷  ÷  ÷ < − ∨ >           + − >  c. ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 1 2 1 4 3 1 1 3 1 1 1 1 3 3 1 3 1 1 3 3 8 8 8 8 0 8 0 0 0 8 0 8 0 2 8 0 1 0 0 8 0 8 0 x x x x x x x x x x x x e x x e x x e e x x x e x e x e x e x x x x e x x x e x e x x − − − − − − − − − − − − > − ⇔ − − − > ⇔ − + − >     − < − <       + < + < < −        ⇔ − + > ⇔ ⇔ ⇔    >   − > − >          + > + >       d. ( ) + ≤ ⇔ + ≤ ⇔ ≤ ⇔ ≤ 2 2 2 6 6 6 6 6 6 log x log x log x log x log x log x 2 6 6 x 12 6 6 12 6 6 log x 1 ⇔ − ≤ < ⇔ ≤ ≤ 6 1 1 log x 1 x 6 6 Bài 10 . Giải các bất phương trình sau : a. 62.3.23.34 212 ++<++ + xxxx xxx b. ( ) ( ) x xx x xx x 2 log2242141 2 1272 22 +−−≤       −+−+ c. xx xxxxxxx 3.43523.22352 222 +−−>+−− GIẢI a. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 1 2 2 2 2 2 4 3 . 3 2.3 . 2 6 4 2.3 . 3 . 2 3.3 6 0 2 3 2 3 2 3 3 2 0 3 2 2 3 0 x x x x x x x x x x x x x x x x x x x x x x + + + < + + ⇔ − + − + − < ⇔ − + − + − < ⇔ − + + < Lê Quân 7 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT 2 2 3 3 2 0 3 2 0 3 2 2 3 0 3 1 log 2 log 2 2 3 2 0 3 2 2 3 0 3 1 2 x x x x x x x x x x x x x x   ≥       − <  <       + + <     − < < −  ⇔ ⇔ ⇒ > ↔ >     − >       > + + >        < − ∨ > −     b. ( ) ( ) 2 2 2 2 2 2 7 12 0 7 12 0 3 2 2 2 7 12 1 14 2 24 2 log : 14 2 24 0 7 12 0 4 0 1 0 1 x x x x x x x x x x dk x x x x x x x x x   − + ≥ − + ≥ =      + − + − ≤ − − + ↔ − − ≥ ⇔ − + ≤ ⇔    ÷  =      < ≠ < ≠   - Với :x=3: PT ( ) 3 3 3 2 2 2 4 4 2 2. 1 2.log log log 0 1 3 3 3 9 9 3   ⇔ − ≤ ↔ − ≤ → + ≥  ÷   . Ta lại có : 2 3 3 3 3 3 3 3 3 3 3 3 3 2 4 2 4 4 1 64 log log log 3 log . 9 log 4 . log 0 9 3 9 9 91 9     ⇔ + = + = = = <  ÷  ÷     . Không thỏa mãn điều kiện (1) , nên : x=3 không là nghiệm . - Với x=4 : PT trở thành : 2 2 2 1 2 1 2.log 0 4 2 2   − ≤ ⇔ − ≤  ÷   . Bất phương trình đúng . Vậy nghiệm của bất phương trình là : x=4 . ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 . 2 5 3 2 2 .3 2 5 3 4 .3 2 .3 2 5 3 2 5 3 4 .3 2 0 2 5 3 2 .3 1 2 2 .3 1 0 2 .3 1 2 5 3 2 0 x x x x x x x c x x x x x x x x x x x x x x x x x x x x x x x − − + > − − + ⇔ − − − − − + − < ⇔ − − − + − < ⇔ − − − + < ⇔ - Do tập xác định của bất phương trình là : 2 1 1 2 5 3 0 2 ;2 3 3 x x x D   − − ≥ ⇔ − ≤ ≤ → = −     - Xét : ( ) ( ) ( ) 2 .3 1 '( ) 2 3 3 ln 3 2.3 1 ln3 x x x x f x x f x x x= − → = + = + . * Với x thuộc 1 ;0 3   − ⇒     f'(x)<0 . Hàm số ngịch biến . Nhưng f0)=-1<0. Cho nên 2 2 2 1 ( ) 2 .3 1 0 ;0 2 5 3 2 0 2 5 3 2 5 2 0 3 x f x x x x x x x x x x x   = − < ∀ ∈ − ⇒ − − + > ⇔ − − > − ⇔ − − <     5 41 5 41 2 2 x − − − + → < < . Kết hợp với tập xác định nghiệm bất phương trình : 1 ;0 3 T   = −     * Với : [ ] 0;2 '( ) 0x f x∈ ⇒ > . Hàm f(x) đồng biến . Với f(2)=2.2. 2 3 1− =35>0 , f(0)=-1<0 , f(0) 1 2BPT⇒ ⇔ − < . Do vậy : bất phương trình thỏa mãn Lê Quân 8 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT Tóm lại : Với mọi 1 ;2 3 x   ∈ −     , bất phương trình luôn đúng 1 ;2 3 T   ⇒ = −     II. BẤT PHƯƠNG TRÌNH LOGARIT Bài 1. Giải các bất phương trình sau : a. 0 5 34 log 2 2 3 ≥ −+ +− xx xx b. 0 2 1 loglog 2 3 6 >       + − + x x x c. 1 2 23 log > + + x x x d. ( ) 13log 2 3 >− − x xx GIẢI a. 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 0 0 4 3 3 2 1 0 0 5 5 0 4 0 4 4 3 2 5 2 1 0 4 3 4 3 5 log 0 1 5 5 4 5 4 3 1 0 5 5 4 3 1 0 5 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  ≤  ≤      − + − −  − ≥ ≥    − + − +    < ≤ < ≤      − + + − + −  − ≥  − + − + − + −   ≥ ⇔ ≥ ⇔ ⇔  + − + − < ≤      − + − ≥   − +    >     − +  − ≥   + −   2 2 2 2 3 0 1 5 2 2 4 5 5 3 2 0 5 5 5 8 0 5 x x x x x x x x x x x x          ≤ −    ≥    +    ⇔ ≤ ≤   < ≤     > − −    ≥     − +   >      − +  ≥   + −   b. 2 6 2 3 2 6 6 3 0 1 6 3 3 3 0 1 1 2 0 log 1 1 2 1 2 2 5 log log 0 0 2 6 3 2 1 3 1 3 2 1 2 log 1 5 0 2 2 x x x x x x x x x x x x x x x x x x x x x x +    +    − < < − < <    − < < −           < − −       + < < < <     −   + +     +  > ⇔ ⇔ ⇔   ÷   > + + > −        +   >       −  > −    >     − +     > +   <  +    +     6 3 2 6 5 5 2 3 2 3 5 2 x x x x x x x x  − < < −    < −   − < < −    < − ∨ > − ⇔ ⇔    − < < −  > −     − < < −   Lê Quân 9 GIẢI BÀI TẬP VỀ BẤT PHƯƠNG TRÌNH MŨ-LOGARIT c. 2 2 2 2 2 2 0 1 0 1 0 1 0 1 3 2 0 3 2 2 2 0 2 0 3 2 2 log 1 2 1 1 1 1 3 2 3 2 2 2 0 2 0 0 2 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x  < <       < < < < < <    +         < <  + < + − − > − − > +  +        > ⇔ ⇔ ⇔ ⇔     + > > > >              +     + > + − − < − − <       > >   +   1 2 1 2 T x x = ∅  ⇔ ⇒ < <  < <  d. ( ) 2 2 2 2 2 2 3 2 2 2 2 2 0 3 3 5 3 5 3 0 2 2 3 1 0 0 3 1 3 3 0 0 3 3 1 3 4 3 0 log 3 1 3 1 3 5 3 5 3 1 0 2 2 3 3 0 4 3 0 1 3 0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x − < <    − +  − >  < ∨ >     − + >      < − <   <  − >      < − < − < <        − + < − > ⇔ ⇔ ⇔     − > − +    − + <  < <    − > − >     − + >   < ∨   − >   3 0 3 x x x                >     < ∨ >       Kết hợp trên trục số ta có hệ thứ hai vô nghiệm , vậy nghiệm của bất phương trình là nghiệm của hệ thứ nhất : 3 5 0 2 3 5 3 2 x x  − < <   ⇔  + < <   Bài 2. Giải các bất phương trình sau : a. ( ) 2385log 2 >+− xx x b. ( ) ( ) 103 5log 35log 3 ≠<> − − avíi x x a a GIẢI Lê Quân 10

Ngày đăng: 01/01/2014, 17:55

TỪ KHÓA LIÊN QUAN

w