www.facebook.com/hocthemtoan
Phần i : căn bậc hai I. Các bài toán nhỏ về CBH Bài 1: Tính a) 520 b) ( ) 3:486278 c) 1825 d) ( )( ) 1212 + e) 312 f) 38.2 g) ( ) ( ) 46 2534 + h) ( ) 878 2 i) 01,0. 64 49 .144 k) ( ) 2.503218 + l) 1622001850 + m) 3521 106 + + n) 15 526 p) ( )( ) ( )( ) 32325353 ++ q) 45 36 : 15 3 Bài 2: Tính: a) ( ) 3:122273487 + b) 7:7 7 16 7 1 + c) 23 1 23 1 + + d) 35 35 35 35 + + + e) ( ) 32 12 22 3 323 + + + + + f) 526526 ++ Bài3 : Tính a) 14 6 5 14 6 5+ + . b) 25 1 25 1 + + c) 322 32 322 32 + ++ + d) 232 12 + + = A 222 1 + = B ; 123 1 + = C Ii. Rút gọn tổng hợp và các câu hỏi phụ Bài 1. Cho biểu thức: + + += 1 2 1 1 : 1 1 aaaa a a a a P a. Rút gọn P. b. Tìm a sao cho P>1. c. Cho 3819a = . Tính P. H ớng dẫn: a. 1 1 ++ = a aa P ; b. 1 > a ; c. 33 3924 = P . Bài 2. Cho biểu thức 3 3 1 2 32 1926 + + + + = x x x x xx xxx P a. Rút gọn P. b. Tính giá trị của P khi 347x = c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó. H ớng dẫn: a. 3 16 + + = x x P b. 22 33103 + = P c. P min =4 khi x=4 Bài 3. Cho biểu thức + + + + + = xx x x x xx x x x x P 2 3 2 2 : 4 424 22 2 a. Rút gọn P. b. Tìm các giá trị của x để P>0 c. Tìm các giá trị của x để P= -1 d. Với giá trị nào của x thì PP > H ớng dẫn: a. 3 4 = x x P b. x>9 c. 16 9 = x Bài 4. Cho biểu thức + + + = 13 23 1: 19 8 13 1 13 1 x x x x xx x P a. Rút gọn P. b. Tìm các giá trị của x để 5 6 P = H ớng dẫn: a. 1x3 xx P + = b. 25 9 ;4x = Bài 5. Cho biểu thức + + + = 1 1: 1 1 1 2 x x xxxxx x P a. Rút gọn P. b. Tìm các giá trị của x để P<0 H ớng dẫn: a. xx x P ++ = 1 1 b. x>1 Bài 6. Cho biểu thức + + + + + + + = 65 2 3 2 2 3 : 1 1 xx x x x x x x x P a. Rút gọn P. b. Tìm các giá trị của x để P<0 c. Tìm các số m để có các giá trị của x thỏa mãn: ( ) 2)1x(m1xP +=+ d. Với giá trị nào của x thì P đạt giá trị nhỏ nhất? . Tìm giá trị nhỏ nhất ấy. H ớng dẫn: a. 1x 2x P + = b. 40 < x c. 2 1 0 m Bài 7. Cho biểu thức + + + + + + + = 1 1 1 1 : 1 11 1 x x x x x x x x x x P a. Rút gọn P. b. Tìm giá trị của P khi 2 32 x = c. So sánh P với 2 1 d. Tìm x để ( ) min1PP 2 + H ớng dẫn: a. x x P 4 12 + = c. P> 2 1 Bài 8. Cho biểu thức + + + = a a aa a a aa P 1 1 . 1 1 a. Rút gọn P. b. Tính a để 347P < H ớng dẫn: a. ( ) 2 1 aP = b. 1;1313 +<< aa Bài 9. Cho biểu thức x x x x xx x P + + + = 3 12 2 3 65 92 a. Rút gọn P. b. Tìm các giá trị của x để P<1 c. Tìm các giá trị của x để P có giá trị nguyên. H ớng dẫn: a. 3 1 + = x x P b. 4;90 < xx c. x=1;16;25;49 Bài 10. Cho biểu thức + + + + = 1 2 11 1 : 1 1 1 1 x x x xx x x x P a. Rút gọn P. b. Tìm giá trị của P khi 2 347 = x c. Tìm các giá trị của x để 2 1 P = H ớng dẫn: a. ( ) 2 1 4 + = x x P b. 20312 = P c. 21217 = x Bài 11. Cho biểu thức + + ++ + = a a a aa a a a P 1 1 . 1 1 12 3 3 a. Rút gọn P. b.Xét dấu biểu thức a1P H ớng dẫn: a. 1 = aP b. aP 1 <0 Bài 12. Cho biểu thức + + + + + = 1 2 1 3 . 111 a a a a a a aa aa aa aa P a. Rút gọn P. b. Với giá trị nào của a thì 7aP += c. Chứng minh rằng với mọi giá trị của a (thỏa mãn điều kiện xác định) ta đều có P>6. H ớng dẫn: a. a aa P 242 ++ = b. a=4. Bài 13. Cho biểu thức + + = 3 2 2 3 6 9 :1 9 3 x x x x xx x x xx P a. Rút gọn P. b. Tìm các giá trị của x để P<0 H ớng dẫn: a. 2 3 = x P b. 40 < x Bài 14. Cho biểu thức + + + + = 1 3 22 : 9 33 33 2 x x x x x x x x P a. Rút gọn P. b. Tìm x để 2 1 P < c. Tìm giá trị nhỏ nhất của P. H ớng dẫn: a. 3x 3 P + = b. 9x0 < c. P min = -1 khi x=0 Bài 15. Cho biểu thức ++ + + + = 1 1 1 1 1 2 :1 xxx x xx x P a. Rút gọn P. b. Hãy so sánh P với 3. H ớng dẫn: a. x xx P 1 ++ = b. P>3 Bài 16. Cho biểu thức + + + + + = 1 1 12 2 1 2 393 xx x x x xx xx P a. Rút gọn P. b. Tìm các giá trị nguyên của x để P nguyên. c. Tìm các giá trị của x để xP = H ớng dẫn: a. 1 1 + = x x P b. x=4;9 c. 223x += Bài 16: Cho M = 6 3 a a a + + a. Rút gọn M. b. Tìm a để / M / 1 c. Tìm giá trị lớn nhất của M. Bài 17: Cho biểu thức : C = 3 3 4 5 4 2 : 9 3 3 3 3 x x x x x x x x x x + + ữ ữ ữ ữ + a) Rút gọn C b) Tìm giá trị của C để / C / > - C c) Tìm giá trị của C để C 2 = 40C. Bài 18: Cho biểu thức : M = 25 25 5 2 1 : 25 3 10 2 5 a a a a a a a a a a + ữ ữ ữ ữ + + a) Rút gọn M b) Tìm giá trị của a để M < 1 c) Tìm giá trị lớn nhất của M. Bài 19: Cho biểu thức 4 3 2 4 : 2 2 2 x x x x P x x x x x + = + ữ ữ ữ ữ a) Rút gọn P b) Tìm các giá trị của x để P > 0 c) Tính giá trị nhỏ nhất của P d) Tìm giá trị của m để có giá trị x > 1 thoả mãn: ( ) 4123 = xmpxm Bài 20: Cho biểu thức P = ( ) ( ) ( ) 2 2 2 1 3 2 1 2 1 1 3 1 a a a a a a a + + a) Rút gọn P. b) So sánh P với biểu thức Q = 2 1 1 a a Bài 21: 1/ Cho biểu thức + + + = 1x x x1 4x :x 1x 2x P + + = 1 2 1 1 : 1 22 1 1 x xxxxx x x P + + = 2 3 1: 3 1 32 4 x x x x xx xx P A = 3 1 1 1 8 : 1 1 1 1 1 m m m m m m m m m m + ữ ữ ữ ữ + a) Rút gọn A. b) So sánh A với 1 Bài 22 Cho biểu thức : P = 3 1 2 : 2 2 2 2 1 1 x x x x x x x x x x + + + + ữ ữ ữ ữ + + a) Rút gọn P b) Chứng minh rằng P > 1 c) Tính giá trị của P, biết 2 3x x+ = d) Tìm các giá trị của x để : ( ) ( )( ) 4222522 +=++ xxpx Bài 23 Cho biểu thức : P = ( ) 2 1 1 1 : . 1 1 1 x x x x x x x x x x x + + ữ ữ ữ ữ + + a. Rút gọn P b. Xác định giá trị của x để (x + 1)P = x -1 c) Biết Q = 1 3x P x + . Tìm x để Q max. Bài 24 : Cho biểu thức : P = 2 1 . 1 1 2 1 2 1 x x x x x x x x x x x x x x + + + ữ ữ + a) Rút gọn P b) Tìm giá trị lớn nhất của A = 5 3 . x P x x + c) Tìm các giá trị của m để mọi x > 2 ta có: ( ) ( ) . 1 3 1P x x m x x+ + > + Bài 25: Toán rút gọn. Cho biểu thức a/ Rút gọn P b/ Tìm x để P < 0 ; c/ Tìm x để P < 1 Bài 26: Cho biểu thức a/ Rút gọn P b/ Tìm x để P < 1 c / Tìm x để P đạt giá trị nhỏ nhất Bài 27: Cho biểu thức + + + ++ + = 1xx 2x x1 1 1xx 1x :xP + + + + + = 1 2: 3 2 2 3 65 2 x x x x x x xx x P a. Rút gọn P b. Tìm x để P < 1 c. Tìm x để đạt giá trị nhỏ nhất. Bài 28: Cho biểu thức a/ Rút gọn P b/ Tìm x để 2 5 1 P Bài 29: Cho biểu thức a/ Rút gọn P b/ Tìm x để P = 7 Bài 30: Cho biểu thức: 1x 2x 2x 3x 2xx 3)x3(x P + + + + + = a/ Rút gọn P b/ Tìm x để 4 15 P < Bài 31. Cho biểu thức: + = 2x x x 2x : x2 3 x2x 4x P a/ Rút gọn P ; b/ Tìm x để x3 - 3xP = b/ Tìm các giá trị của a để có x thoả mãn : ax1)xP( +>+ Bài 32: Cho biểu thức: + + + + + = 1 x1 1 x 2x 2x 1x 2xx 3)x3(x P a/ Rút gọn P b/ Tìm các giá trị x nguyên để P nguyên ; c/ Tìm các giá trị của x để xP = Câu 33 : Cho biểu thức : ++ + + = 1 2 :) 1 1 1 2 ( xx x xxx xx A a) Rút gọn biểu thức . b) Tính giá trị của A khi 324 += x Câu 34 Cho biểu thức : 2 2 2 1 2 1 .) 1 1 1 1 ( x x xx A + + = 1) Tìm điều kiện của x để biểu thức A có nghĩa . 2) Rút gọn biểu thức A . 3) Giải phơng trình theo x khi A = -2 . Câu 35 Cho biểu thức : 1 1 1 1 1 A= : 1- x 1 1 1 1x x x x + + ữ ữ + + a) Rút gọn biểu thức A . b) Tính giá trị của A khi x = 7 4 3+ c) Với giá trị nào của x thì A đạt giá trị nhỏ nhất . Câu 36 Cho biểu thức : A = 1 1 2 : 2 a a a a a a a a a a + + ữ ữ + a) Với những giá trị nào của a thì A xác định . b) Rút gọn biểu thức A . c) Với những giá trị nguyên nào của a thì A có giá trị nguyên . Câu 37 Cho biểu thức : P = ( ) 3 1 4 4 a > 0 ; a 4 4 2 2 a a a a a a + + + a) Rút gọn P . b) Tính giá trị của P với a = 9 . Câu 38 Rút gọn biểu thức : P = 1 1 2 ( 0; 0) 2 2 2 2 1 x x x x x x x + + Câu 39 Cho biểu thức: N = ( ) 2 x y 4 xy x y y x x y xy + + ;(x, y > 0) 1) Rút gọn biểu thức N. 2) Tìm x, y để N = 2. 2005 . Câu 40 Cho biểu thức: N = a a a a 1 1 a 1 a 1 + + ữ ữ ữ ữ + 1) Rút gọn biểu thức N. 2) Tìm giá trị của a để N = -2004. Câu 41 Cho biểu thức: P = a 3 a 1 4 a 4 4 a a 2 a 2 + + + (a 0; a 4) a) Rút gọn P. b) Tính giá trị của P với a = 9. Câu 42 Rút gọn biểu thức: P = x 1 x 1 2 2 x 2 2 x 2 x 1 + + (x 0; x 1). Câu 43 Cho biểu thức: A = ( ) 2 x 2 x 1 x x 1 x x 1 : x 1 x x x x + + ữ ữ + . 1) Rút gọn A. 2) Tìm x nguyên để A có giá trị nguyên. Câu 44 Rút gọn biểu thức : A = 1 1 3 1 a 3 a 3 a + ữ ữ + với a > 0 và a 9. Câu 45 Rút gọn biểu thức sau : A = ( ) x x 1 x 1 x x x 1 x 1 + ữ ữ + với x 0, x 1. Câu 46 Cho biểu thức P = 1 x x 1 x x + + , với x > 0 và x 1. 1) Rút gọn biểu thức sau P. 2) Tính giá trị của biểu thức P khi x = 1 2 . Câu 47 Cho biểu thức : Q = x 2 x 2 x 1 . x 1 x 2 x 1 x + + ữ ữ + + , với x > 0 ; x 1. a) Chứng minh rằng Q = 2 x 1 ; b) Tìm số nguyên x lớn nhất để Q có giá trị nguyên Bài 48: Cho A= 1 1 1 4 . 1 1 a a a a a a a + + + ữ ữ ữ + với x>0 ,x 1 a. Rút gọn A b. Tính A với a = ( ) ( ) ( ) 4 15 . 10 6 . 4 15+ ( KQ : A= 4a ) Bài 49: Cho A= 3 9 3 2 1 : 9 6 2 3 x x x x x x x x x x + ữ ữ ữ ữ + + với x 0 , x 9, x 4 . a. Rút gọn A. b. x= ? Thì A < 1. c. Tìm x Z để A Z (KQ : A= 3 2x ) Bài 50: Cho A = 15 11 3 2 2 3 2 3 1 3 x x x x x x x + + + + với x 0 , x 1. a. Rút gọn A. b. Tìm GTLN của A. c. Tìm x để A = 1 2 d. CMR : A 2 3 ≤ . (KQ: A = 2 5 3 x x − + ) Bµi 51: Cho A = 2 1 1 1 1 1 x x x x x x x + + + + − + + − víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. T×m GTLN cña A . ( KQ : A = 1 x x x + + ) Bµi 52: Cho A = 1 3 2 1 1 1x x x x x − + + + − + víi x ≥ 0 , x ≠ 1. a . Rót gän A. b. CMR : 0 1A ≤ ≤ ( KQ : A = 1 x x x − + ) Bµi 53: Cho A = 5 25 3 5 1 : 25 2 15 5 3 x x x x x x x x x x − − + − − − + ÷ ÷ ÷ ÷ − + − + − víi x ≥ 0 , x ≠ 9. x ≠ 25 a. Rót gän A. b. T×m x Z ∈ ®Ó A Z ∈ ( KQ : A = 5 3x + ) Bµi 54: Cho A = 2 9 3 2 1 5 6 2 3 a a a a a a a − + + − − − + − − víi a ≥ 0 , a ≠ 9 , a ≠ 4. a. Rót gän A. b. T×m a ®Ó A < 1 c. T×m a Z ∈ ®Ó A Z ∈ ( KQ : A = 1 3 a a + − ) Bµi 55: Cho A= 7 1 2 2 2 : 4 4 2 2 2 x x x x x x x x x x − + + − + − − ÷ ÷ ÷ ÷ − − − − + víi x > 0 , x ≠ 4. a. Rót gän A. b. So s¸nh A víi 1 A ( KQ : A = 9 6 x x + ) Bµi 56: Cho A = ( ) 2 3 3 : x y xy x y x y y x x y x y − + − − ÷ + ÷ − − + víi x ≥ 0 , y ≥ 0, x y≠ a. Rót gän A. b. CMR : A ≥ 0 ( KQ : A = xy x xy y − + ) Bµi 57 Cho A = 1 1 1 1 1 . 1 1 x x x x x x x x x x x x x x − + + − − + − + ÷ ÷ ÷ − + − + Víi x > 0 , x ≠ 1. a. Rót gän A. b. T×m x ®Ó A = 6 ( KQ : A = ( ) 2 1x x x + + ) Bµi 58 Cho A = ( ) 4 3 2 : 2 2 2 x x x x x x x x − + ÷ + − ÷ ÷ ÷ − − − víi x > 0 , x ≠ 4. a. Rót gän A b. TÝnh A víi x = 6 2 5 − (KQ: A = 1 x− ) Bµi 59 Cho A= 1 1 1 1 1 : 1 1 1 1 2x x x x x + − + ÷ ÷ − + − + víi x > 0 , x ≠ 1. a. Rót gän A b. TÝnh A víi x = 6 2 5 − (KQ: A = 3 2 x ) Bµi 60 Cho A= 3 2 1 1 4 : 1 1 1 1 x x x x x x + + − − ÷ ÷ ÷ − + + − víi x ≥ 0 , x ≠ 1. a. Rót gän A. . nhất Câu 1 : Trong mặt phẳng toạ độ cho điểm A ( -2 , 2 ) và đờng thẳng (D) : y = - 2(x +1) . a) Điểm A có thuộc (D) hay không ? b) Tìm a trong hàm số y. Cho hàm số y = (m 1)x + m + 3. 1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Tìm giá trị của m để đồ thị của hàm