Với mong muốn giúp các em học sinh làm quen, luyện tập cũng như hệ thống lại kiến thức đã học một cách nhanh chóng và hiệu quả. TaiLieu.VN gửi đến các em Chuyên đề Số nguyên tố, hợp số - Toán lớp 6, tài liệu bao gồm kiến thức cần nhớ và một số dạng toán số nguyên tố, hợp số giúp cho các em học sinh ôn tập dễ dàng.
CHUYÊN ĐỀ HSG VÀ TOÁN CHUYÊN 6 CHUYÊN ĐỀ.SỐ NGUYÊN TỐ, HỢP SỐ A KIẾN THỨC CẦN NHỚ Định nghĩa số nguyên tố, hợp số 1) Số ngun tố là những số tự nhiên lớn hơn 1, chỉ có 2 ước số là 1 và chính nó. Ví dụ: 2, 3, 5, 7, 11, 13, 17, 19 2) Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước. Ví dụ: 4 có 3 ước số: 1 ; 2 và 4 nên 4 là hợp số. 3) Các số 0 và 1 khơng phải là só ngun tố cũng khơng phải là hợp số. 4) Bất kỳ số tự nhiên lớn hơn 1 nào cũng có ít nhất một ước số ngun tố. Một số tính chất ● Có vơ hạn số ngun tố. Nếu số ngun tố p chia hết cho số ngun tố q thì p q Nếu tích abc chia hết cho số ngun tố p thì ít nhất một thừa số của tích abc chia hết cho số ngun tố p. Nếu a và b khơng chia hết cho số ngun tố p thì tích ab khơng chia hết cho số ngun tố p . ● Nếu A là hợp số thì A có ít nhất một ước ngun tố khơng vượt q A Chứng minh Vì n là hợp số nên n ab với a, b ,1 a b n và a là ước nhỏ nhất của n Thế thì n a Do đó a n Phân tích số thừa số ngun tố: Phân tích một số tự nhiên lớn hơn 1 ra thừa số ngun tố là viết số đó dưới dạng một tích các thừa số ngun tố. + Dạng phân tích ra thừa số ngun tố của mỗi số ngun tố là chính số đó. + Mọi hợp số đều phân tích được ra thừa số ngun tố, phân tích này là duy nhất nếu khơng tính thứ tự các thừa số. 1 | TÀI LIỆU WORD TỐN THCS , THPT CHẤT - ĐẸP - TIỆN CHUN ĐỀ.QUAN HỆ CHIA HẾT TRONG TẬP HỢP SỐ Chẳng hạn A a b c , trong đó a, b, c là các số nguyên tố và , , , N* Khi đó số các ước số của A được tính bằng 1 1 1 Tổng các ước số của A được tính bằng a +1 b 1 c 1 a 1 b 1 c 1 Số nguyên tố Hai số a và b nguyên tố cùng nhau khi và chỉ khi a, b Các số a, b, c nguyên tố cùng nhau khi và chỉ khi a, b,c Các số a, b, c đôi một nguyên tố cùng nhau khi và chỉ khi a, b b,c c,a Cách nhận biết số nguyên tố Cách Chia số đó lần lượt cho các số ngun tố từ nhỏ đến lớn: 2; 3; 5; - Nếu có một phép chia hết thì số đó khơng là số ngun tố. - Nếu thực hiện phép chia cho đến lúc thương số nhỏ hơn số chia mà các phép chia vẫn có số dư thì số đó là số ngun tố. Cách - Một số có hai ước số lớn hơn 1 thì số đó khơng phải là số ngun tố. - Nếu A là hợp số thì A có ít nhất một ước ngun tố khơng vượt q A - Với quy tắt trên trong một khoảng thời gian ngắn, với các dấu hiệu chia hết thì ta nhanh chóng trả lời được một số có hai chữ số nào đó là ngun tố hay khơng. B MỘT SỐ DẠNG TOÁN SỐ NGUYÊN TỐ, HỢP SỐ Dạng 1: Chứng minh số số nguyên tố hay hợp số Bài toán 1. Nếu p và p là các số ngun tố thì p là số ngun tố. 2 CHUN ĐỀ HSG VÀ TỐN CHUN 6 Hướng dẫn giải Xét p 3k ( k nguyên) thì p 8 , là hợp số. Xét p 3k thì p 8 , là hợp số. Vậy p 3k , mà p là số nguyên tố nên p Khi đó p 11 , là số nguyên tố. Bài toán Chứng minh rằng n là một số nguyên tố khi n Hướng dẫn giải 2 Ta có: n4 n4 4n2 4n2 n2 2n 2 n n n 2n n 1 1 n 1 1 Nếu n thì cả hai thừa số trên đều lớn hơn 1. Như vậy n là một số nguyên tố khi n Bài toán 3. Chứng minh rằng với mọi số tự nhiên n thì n n là hợp số. Hướng dẫn giải Ta có: n n n n 1 n3 n 1 . Mà n nên n n và suy ra n n là hợp số. Bài toán 4. Chứng minh rằng nếu n là số nguyên tố n thì n là hợp số Hướng dẫn giải Trong ba số nguyên 2n 1; 2n ; 2n có một số chia hết cho 3. Mặt khác, 2n khơng chia hết cho 3, do đó một trong hai số 2n 1; 2n phải có một số chia hết cho 3, nghĩa là một trong hai số 3 | TÀI LIỆU WORD TỐN THCS , THPT CHẤT - ĐẸP - TIỆN CHUN ĐỀ.QUAN HỆ CHIA HẾT TRONG TẬP HỢP SỐ này phải có một hợp số. Để cho 2n là số nguyên tố n nên chắn chắn rằng 2n là một hợp số. Bài toán 5. Cho p và p là các số nguyên tố. Chứng minh p là hợp số Hướng dẫn giải Vì p 1 là số nguyên tố nên p Nếu p thì p 25 là hợp số. Nếu p thì p p 1 p 1 Vì p và p 1 là các số nguyên tố lớn hơn 3 nên p 1 chia hết cho 3 hay p là hợp số. Bài toán 6. Chứng minh rằng với mỗi số nguyên dương n, luôn chọn được n 2020 n 2019 số nguyên dương liên tiếp mà tất cả đều là hợp số Hướng dẫn giải Xét A1 n 2020 n 2019 ! 2 A2 n2020 n2019 ! 33 An2020 n2019 1 n 2020 n 2019 ! n 2020 n 2019 n2020 n2019 Dãy A1 , A2 , , An2020 n2019 1 là các hợp số liên tiếp. Dạng 2: Chứng minh số toán có liên quan đến tính chất số ngun tố Bài tốn Chứng minh rằng nếu p và p là hai số ngun tố lớn hơn 3 thì tổng của chúng chia hết cho 12 4 CHUN ĐỀ HSG VÀ TỐN CHUN 6 Hướng dẫn giải Ta có : p p p 1 p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ, suy ra : p 1 p 1 (1) p , p 1, p là ba số ngun liên tiếpthể chứng minh p4 (mod 30) bằng cách áp dụng Định lí Fermat. Ta có p2 (mod 2), p2 (mod 3), p4 (mod 5) p4 (mod 30). Bài 144. Vì a, b, c đóng vai trị như nhau nên giả sử a b c Khi đó ab bc ca 3bc abc 3bc a a (vì a là số ngun tố). Với a , ta có 2bc 2b 2c bc bc 2(b c) c b b hoặc b 96 CHUYÊN ĐỀ HSG VÀ TOÁN CHUYÊN 6 Nếu b thì c c thỏa với c là số nguyên tố bất kì. Nếu b thì 6c 5c c c hoặc c Vậy các cặp số (a, b, c) cần tìm là (2, 2, p), (2, 2, 3), (2, 3, 5) và các hốn vị của chúng, với p là số ngun tố. Bài 145 Ta có a1 2, a2 , giả sử với n nào đó mà có số 5 là ước nguyên tố lớn nhất của số A 2.3.a an 1 thì A khơng thể chia hết cho 2, cho 3. Vậy chỉ có thể xảy ra A 5m với m , suy ra A 5m 1 Mà A 2.3.a3 an1 khơng chia hết cho 4 do a3 , , an 1 là các số lẻ, vơ lí. Vậy A khơng có ước ngun tố lớn nhất là 5, tức là ak , k * Bài 146. Với p ta có 2p p2 khơng là số ngun tố. Với p thì 2p p2 17 là số nguyên tố. Với p ta có p2 2p (p2 1) (2p 1) Vì p lẻ và p không chia hết cho nên p2 13 và p 13 , do đó 2p p2 là hợp số. Vậy, với p thì 2p p2 là số ngun tố. Bài 147 Ta có: n2003 n2002 n2 (n2001 1) n(n2001 1) n2 n Với n ta có: n2001 n3 n2 n 1, Do đó: n2003 n2002 1n3 n và n2 n nên n2003 n2002 là hợp số. Với n thì n2003 n2002 là số nguyên tố. Bài 148 a) Giả sử 2p n3 (với n N) ; n là số lẻ nên n 2m 1(m N) , khi đó 2p (2m 1)3 p m(4m2 6m 3) 97 | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN CHUYÊN ĐỀ.QUAN HỆ CHIA HẾT TRONG TẬP HỢP SỐ Vì p là số nguyên tố nên m , suy ra p 13 Thử lại, 2p 2.13 27 33 Vậy p 13 b) Giả sử 13p n (n N); p suy ra n 13p n3 13p (n 1)(n2 n 1) 13 và p là các số nguyên tố, mà n và n2 n nên n 13 hoặc n p i) Với n 13 thì n 14 , khi đó 13p n3 2743 p 221 là số nguyên tố ii) Với n p thì n2 n 13 n 3, khi đó p là số nguyên tố. Vậy, với p 2, p 211 thì 13p là lập phương của một số tự nhiên. Bài 149. Bổ đề: Nếu số nguyên dương a là một ước số của tích A a1a2 an với N * và a , i 1, 2, , n thì a là hợp số. Chứng minh: Giả sử ngược lại, a là số ngun tố. Khi đó, do A a nên trong các số phải có ít nhất một số a j chia hết cho a, tức ta phải có a j a Điều này mâu thuẫn với tính chất của số a, do đó nó phải là hợp số. Trở lại tốn: Giả thiết của bài tốn có thể được viết dưới dạng như sau: 2 ac bd b d a c , hay a ac c b2 bd d Ta có ab cd ad bc ac b2 d bd a c2 ac b2 bd d bd a ac c 2 ac bd b bd d Do đó, ab + cd là ước của ac bd b2 bd d Theo bổ đề trên, để chứng minh ab + cd là hợp số, ta chỉ cần chứng minh được tính đúng đắn của hai bất đẳng thức: ab cd ac bd 1 98 CHUYÊN ĐỀ HSG VÀ TOÁN CHUYÊN 6 Và ab cd b2 bd d 2 Bất đẳng thức (1) hiển nhiên đúng do ta có ab + cd – ac – bd = (a – d)(b – c) > 0. Như vậy, ta chỉ cịn phải xét bất đẳng thức (2). Từ giả thiết, ta thấy nếu a 7 A là hợp số với mọi số tự nhiên n. 10 n1 1923 với mọi n Bài 155. ● Ta chứng minh 22 Ta có: 210 (mod 1 ) 210 n 1 (mod 22 ) 210 n1 22k ( k ). 10 n1 Theo Định lí Fermat: 222 (mod 23 ) 22 10 n1 Mặt khác: 22 10 n1 19 23 nên 22 n1 ● Ta chứng minh 23 Bài 156 Ta có m n1 32 19 là hợp số với mọi n * 511 với mọi n 3p 3p 3p 3p a.b với a ,b 4 a,b đều là số nguyên tố lớn hơn 1 nên m là hợp số Mà m p 1 p2 và p lẻ nên m lẻ và m (mod 3). Theo Định lí Fermat, ta có 9p 9 p (p,8) nên 9p 98 p m 1 10 n1 222k 2 (mod 23 ) 22 9p p 101 | TÀI LIỆU WORD TOÁN THCS , THPT CHẤT - ĐẸP - TIỆN 1923 ... lời được một? ?số? ?có hai chữ? ?số? ?nào đó là ngun tố hay khơng. B MỘT SỐ DẠNG TỐN SỐ NGUYÊN TỐ, HỢP SỐ Dạng 1: Chứng minh số số nguyên tố hay hợp số Bài tốn 1. Nếu p và p là các? ?số? ?ngun tố thì ... là? ?số? ?nguyên? ?tố. 2 CHUYÊN ĐỀ HSG VÀ TOÁN CHUYÊN? ?6 Hướng dẫn giải Xét p 3k ( k ? ?nguyên) thì p 8 , là? ?hợp? ?số. Xét p 3k thì p 8 , là? ?hợp? ?số. Vậy p 3k , mà p là? ?số? ?nguyên? ?tố nên ... các? ?hợp? ?số? ?phải nhận các giá trị 4 hoặc? ?6. Vì nếu a2 là? ?hợp? ?số? ?chẵn và a2 a2 a2 là tổng hai? ?hợp? ?số, trái với (1) Số? ?hợp? ?số? ?bằng? ?6? ?chỉ có thể là một vì nếu có hai? ?hợp? ?số? ?bằng? ?6? ?thì? ?6+ 6=4+4+4 Giả sử