1. Trang chủ
  2. » Cao đẳng - Đại học

De thi HSG Toan 7 Ngoc

9 12 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 205,58 KB

Nội dung

cạnh bên AI nhỏ nhất Ta có AI=AD AH AH là đường vuông góc kẻ từ A đến BC Xảy ra dấu đẳng thức khi và chỉ khi D H Vậy khi D là chân đường vuông góc hạ tự A xuống BC thì IJ nhỏ nhất.. [r]

(1)ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG TRƯỜNG THCS THỊ TRẤN LỚP: 7A Năm học: 2014-2015 Môn thi: Toán - THCS (Thời gian 120 phút không kể thời gian giao đề) Bài (3đ) Tìm x  Z cho a) x  2 2 2 b) (x  20)(x  15)(x  10)(x  5)  Bài (4đ) Tìm tất các cặp số nguyên (m,n) thỏa mãn m n a)  2048 b) 3m  4n  mn 16 Bài (4đ) 2 a) Cho x, y, z, t là số khác và thỏa mãn các điều kiện sau: y xz, z yt y3  z  x x  3 3 3 y  z  t  y  z  t t và Chứng minh rằng: b) Cho: x+y – z = a – b, x - y + z = b – c và - x+y + z = c – a Chứng minh : x + y + z = Bài (4đ) 2015 a) Cho đa thức f(x) x  2000x Tính giá trị đa thức x=1999 2014  2000x 2013  2000x 2012   2000x  b) Cho đa thức f(x) ax  bx  c Chứng tỏ rằng: f( 2).f(3) 0 13a  b  2c 0 Bài (5đ) Cho tam giác ABC, đường cao AH Vẽ phía ngoài tam giác ABC các tam   giác vuông cân ABD, ACE ABD ACE 90 a) Qua C vẽ đường thẳng vuông góc với BE cắt đường thẳng AH K Chứng minh CD vuông góc với BK b) Chứng minh ba đường thẳng AH, BE, CD đồng quy Cho điểm B và C nằm trên đoạn thẳng AD cho AB=CD Lấy điểm M tùy ý mặt phẳng Chứng minh rằng: MA  MD MB  MC Bài (2 điểm): Tìm cặp số nguyên (x; y) biết: x + y = x.y Bài (4 điểm) a/ Tìm đa thức bậc hai f(x) biết : f(0)=10; f(1)=20 và f(3)=58 2 b/ Chứng minh m  mn  n 9 với m,n là các số tự nhiên thì m, n chia hết cho - HẾT - (2) ĐÁP ÁN Bài (3đ) a, - Chỉ rõ x    0,1,2 - Chỉ rõ trường hợp và kết luận đúng x  0 (0.25đ) x  1 x  2 (0.75đ) 2 2 b, Lý luận để có (x  20)  (x  15)  (x  10)  (x  5) (0.25đ) Xét đủ trường hợp - Trường hợp có số âm tính x 4 (0.75đ) - Trường hợp có số âm tính x 3 (0.75đ) - Kết luận đúng (0.25đ) Bài 2: Ta có  m 11 11  n 11 11  211 0 (0.75®)  211 (2 m  11  n  11  1) 0 (0.5®)  (2 m  11  n  11  1) 0 (0.25®) m 12 Lý luận tìm n 11 (0.5đ) (3  n)(m  4)  b, Biến đổi (1đ) Xác định tích số nguyên (6 trường hợp) (0.75đ) (m, n)  (8,2); (0,4); (5,  1); (3,7); (6,1); (2,5) Kết luận được: (0.25đ) x y z   y z t (0.5đ) Bài 3: Từ giả thiết suy Lập phương các tỉ số trên và áp dụng tính chất dãy tỉ số để có x3  y3  z3 y3  z3  t (0.5đ) Mặt khác ta có x3 x x x x y z x    y3 y y y y z t t (0.75đ) Suy điều cần chứng minh (0.25đ) b, Cộng vế với vế suy điều cần chứng minh (2đ) Bài a,f(x) x 2015  (1999  1)x 2014  (1999  1)x 2013  (1999  1)x 2012   (1999  1)x  (0.75đ) Thay 1999=x ta f(x) x 2015  x 2015  x 2014  x 2014  x 2013  x 2013   x  x  (0.75đ) Tính kết và kết luận f(1999) = 1998 (0.5đ) b, Tính f( 2) và f(3) (0.5đ) (3)  f(  2)  f(3)=13a+b+2c  f( 2)  f(3) (0.5đ) (0.5đ)  f( 2)f(3)=-f(3)f(3)=-  f(3) 0 (0.5đ) Bài (5đ) a, (2đ) 1, Vẽ hình và chứng minh đúng đến hết (1đ) 2, Chỉ AH, BE, CD là đường cao BCK (1đ) b, (3đ) Xét trường hợp * Trường hợp điểm M  AD thì ta có MA  MD  MB  MC (1đ) * Trường hợp M  AD - Gọi I là trung điểm BC (0.75đ) - Trên tia đối tia IM lấy điểm N cho IM=IN (0.5đ) IB IC AB CD Vì AB  IB IC  CD  AI ID (0.25đ)  IMA  IND (c.g.c) * Chứng minh (0.25đ)  MA ND - Điểm C nằm MDN chứng minh ND  MD  NC  MC (0.5đ) - Chứng minh IBM ICN (c.g.c) (0.25đ) - Suy MA  MD  MB  MC x + y = x.y Bài  xy  x  y  x( y  1) y  x  0,5 2,0đ y y vì x  z  y y   y   1y   1y  0,5 , đó y - = 1  y 2 y = Nếu y = thì x = Nếu y = thì x = Vậy các cặp số nguyên (x;y) là: (0,0) và (2;2) Bài a Gọi đa thức bậc hai là 0,5 f  x  ax  bx  c 0,25 với a 0 Ta có : 0,25 (4) f   10  c 10 2,0đ 0,25 0,5 f  1 20  a  b  c  20  a  b 10 0,25 (1) f  3 58  9a  3b  c 58  9a  3b 48  3a  b 16  2 Từ (1) và (2)  2a 6  a 3  b 10  7 Vậy đa thức cần tìm là f  x  3x  7x  10 Ta có : 0,5 m  mn  n  m  n   3mn (1) 0,5 2 Vì m  mn  n 9 b 2,0đ  m  mn  n 3  0,5  m  n  3  m  n3     m  n  9 Kết hợp với (1) 0,5  3mn 9  mn 3 (3) Vì là số nguyên tố nên từ (2) và (3) suy m và n chia hết cho Suy đpcm TRƯỜNG THCS THỊ TRẤN LỚP: 7A ĐỀ KHẢO SÁT CHẤT LƯỢNG HSG Năm học: 2014-2015 Môn thi: Toán - THCS (Thời gian 120 phút không kể thời gian giao đề) Bài (3đ): Cho tam giác ABC cân A Lấy điểm D trên cạnh BC, trên tia đối tia CB lấy điểm E cho CE=BD Các đường thẳng vuông góc với BC D và E cắt các đường thẳng AB và AC theo thứ tự M, N Gọi I là giao điểm MN với BC a/ Chứng minh I là trung điểm MN b/ Chứng minh đường thẳng vuông góc với MN I luôn qua điểm cố định Bài 2:(4 điểm): a) Cho: P( x)=ax + bx3 +cx +dx+ e Biết rằng: P(1) = P(-1) và P(2) = P(-2) Chứng minh rằng: P(x) = P(-x) với x a b  c d b) Cho 3a  c (a  c)6  6 b  d (b  d ) (b  d 0) Chứng minh : (5) Bài 3:(4 điểm): a, Tìm số nguyên x,y biết: y + = x b, Tìm giá trị lớn biểu thức : Q= 27 − x 12 − x với x là số nguyên, Bài : (5 điểm): Cho tam giác ABC nhọn, AD vuông góc với BC D Xác địng I , J cho AB là trung trực DI , AC là trung trực DJ, IJ cắt AB, AC L và K Chứng minh rằng: a) Tam giác AIJ cân  b) DA là tia phân giác góc LDK c) Nếu D là điểm tùy ý trên cạnh BC Chứng minh góc IAJ có số đo không đổi và tìm vị trí điểm D trên cạnh BC để IJ có độ dài nhỏ Bài 5: (6 điểm): a) M =1 − Chứng tỏ : 1 1 − − − − 2 100 M  100 b) Cho tổng: S a  a  a  a   a n (n  N ) với giá trị nào n thì S chia hết cho a + ( a  ) c) Cho a  c  3, b  c  Chứng minh rằng: a  b  - Hết - ĐÁP ÁN (6) Bài a A M 3,0 I B D C E O N Chứng minh DBM ECN  DM = EN Chứng minh DMI ENI  IM = IN Hay I là trung điểm MN b 6,0 điểm 3,0 Bài 2: 1,0 0,25 1,25 0,5 Gọi O là giao điểm đường trung trực BC với đường thẳng vuông góc với MN I Vì AB = AC  AO là đường trung trực BC  OB=OC Vì I là trung điểm MN  OI là đường trung trực MN  OM = ON Vì DBM ECN  BM = CN Xét OBM và OCN có OB = OC, OM = ON, BM = CN  OBM = OCN (C.C.C)    OBM OCN (1)   Vì AO là đường trung trực BC  OBA OCA (2)   Từ (1) và (2)  OCN OCA  OC  AC Vì vậy O là giao điểm đường trung trực cạnh BC với đường thẳng vuông góc với AC C nên điểm O cố định Suy điều phải chứng minh a, Từ: P(1)=P(-1) P(2)=P(-2)  b+d=-b-d 8b+2d=-8b-2d (1) (2) 0,25 0,25 0,25 0,5 0,5 0,5 0,5 0,25 0.5đ 0.5đ (7) Từ (1) và (2) suy b=d=0 4 Vậy P( x ) ax  cx  e a( x )  c( x )  e P( x) a b  c d (4đ) b, Từ: Bài 3: 1đ a c a c   b d bd  a c a c  ( )6 ( )6 ( ) b d bd (1) a c 3a  c    6 (2) b d 3b  d 3a  c a c ( ) 6 bd Từ (1) và (2) suy ra: 3b  d y y      x  a, Từ x  x (1-2y) = 40 Mà (1-2y) là số lẻ    2y   0.5đ 0.5đ 1đ 1 y  x uớc lẻ 40 1đ  (1  2y)  1; 5 (4đ) Lập bảng: 1-2y -5 -1 x -8 -40 40 y -2 Vậy ta có các cặp giá trị (x,y) là: (8,-3) ; (-40,1) ;(40,0) ; (8,-2) 0.5đ 27  x 24  x  2(12  x )  3   2  12  x 12  x 12  x 12  x b, Để Q có GTLN 12  x có GTLN 0 Xét x>12 thì 12  x 0 Xét x<12 thì 12  x  12  x có GTLN và 12  x 1  x 11 1đ Q 0.5đ 0.5đ 0.5đ Vậy Q có GTLN là x=11 0,5đ a, Do ID; DJ là trung trực AB 1,5đ (8) Bài 4: (5đ) AI  AD    AI AJ  AIJ AD AJ  cân A    I1 D1 ALI ALD(c.c.c)   D  J    AKD AKI (c.c.c)       DAlà tia phân giác cua LDK I1  J1 AIJcân theo câu a     D1 D2   b,   c, CM IAJ 2 BAC (không đổi)  AIJ cân A có IAJ không đổi nên cạnh đáy IJ nhỏ 1,5đ 1,5đ cạnh bên AI nhỏ Ta có AI=AD AH (AH là đường vuông góc kẻ từ A đến BC) Xảy dấu đẳng thức và D H Vậy D là chân đường vuông góc hạ tự A xuống BC thì IJ nhỏ Bài 7: a, M 1  M 1  ( 1 1     2 1002 0,5đ 1 1     ) 2 100 1 1 2 1   3 1   4 1   100 99 100 1đ Ta có : Cộng vế ta có: 1 1 1 1 1              2 100 2 3 99 100 99 1   100 100 0.5đ b, Nếu n là số lẻ thì S (a  a )  (a  a )   (a n   a n  )  a n S a (1  a )  a (1  a )   a n  (1  a )  a n Nếu n là số chẵn thì: 1đ S (a  a )  (a  a )   (a n   a n ) S a(1  a)  a (1  a)   a n  (1  a )  S chia hết cho (1+a) Vậy n là số tự nhiên chẵn thì S chia hết cho (a+1) c, Ta có: a  b  (a  c)  (c  b)  a  c  c  b   5 1đ 2đ (9) (10)

Ngày đăng: 15/09/2021, 07:55

TỪ KHÓA LIÊN QUAN

w