1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận án tiến sĩ nghiên cứu một số giải pháp định tuyến trong tô pô mạng liên kết hiệu năng cao và công cụ đánh giá

139 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 139
Dung lượng 4,52 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Kiều Thành Chung NGHIÊN CỨU MỘT SỐ GIẢI PHÁP ĐỊNH TUYẾN TRONG TÔ-PÔ MẠNG LIÊN KẾT HIỆU NĂNG CAO VÀ CÔNG CỤ ĐÁNH GIÁ LUẬN ÁN TIẾN SĨ KỸ THUẬT PHẦN MỀM HÀ NỘI – 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Kiều Thành Chung NGHIÊN CỨU MỘT SỐ GIẢI PHÁP ĐỊNH TUYẾN TRONG TÔ-PÔ MẠNG LIÊN KẾT HIỆU NĂNG CAO VÀ CÔNG CỤ ĐÁNH GIÁ Ngành: Kỹ thuật phần mềm Mã số: 9480103 LUẬN ÁN TIẾN SĨ KỸ THUẬT PHẦN MỀM NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS NGUYỄN KHANH VĂN TS PHẠM ĐĂNG HẢI HÀ NỘI – 2020 LỜI CAM ĐOAN Tôi xin cam đoan tất nội dung luận án “Nghiên cứu số giải pháp định tuyến tô-pô mạng liên kết hiệu cao cơng cụ đánh giá” cơng trình nghiên cứu riêng hướng dẫn tập thể hướng dẫn Các số liệu, kết trình bày luận án trung thực chưa tác giả khác công bố cơng trình Việc tham khảo nguồn tài liệu thực trích dẫn ghi nguồn tài liệu tham khảo theo quy định Hà Nội, ngày … tháng … năm 2021 TẬP THỂ HƢỚNG DẪN PGS.TS NGUYỄN KHANH VĂN TS PHẠM ĐĂNG HẢI NGHIÊN CỨU SINH KIỀU THÀNH CHUNG LỜI CẢM ƠN Trước hết, xin trân trọng cảm ơn Trường Đại học Bách Khoa Hà Nội, Phịng Đào tạo, Viện Cơng nghệ thơng tin Truyền thông, thầy cô bạn, thành viên Sedic-Lab, tạo điều kiện thuận lợi đóng góp nhiều ý kiến q báu giúp tơi hồn thành luận án Đặc biệt, xin bày tỏ lòng biết ơn chân thành sâu sắc đến hai Thầy hướng dẫn khoa học, PGS.TS Nguyễn Khanh Văn TS Phạm Đăng Hải hết lòng hướng dẫn, giúp đỡ tạo điều kiện thuận lợi cho tơi suốt q trình thực luận án Đồng thời, xin cảm ơn PGS.TS Michihiro Koibuchi, TS Ikki Fujiwara, TS Trương Thảo Nguyên, National Institute of Informatics – Nhật Bản tạo điều kiện giúp đỡ q trình học tập, nghiên cứu Tơi xin cảm ơn gia đình người thân ln bên tơi, ủng hộ động viên tơi suốt q trình nghiên cứu Tôi xin chân thành cảm ơn! Hà Nội, ngày … tháng … năm 2021 Nghiên cứu sinh Kiều Thành Chung MỤC LỤC LỜI CAM ĐOAN LỜI CẢM ƠN DANH MỤC KÝ HIỆU VÀ CÁC TỪ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC HÌNH VẼ MỞ ĐẦU CHƢƠNG 1: TỔNG QUAN 14 1.1 Cơ sở lý thuyết 15 1.1.1 Tô-pô mạng (Network topology) 15 1.1.2 Giới thiệu giải thuật định tuyến 19 1.1.3 Hiệu mạng liên kết 24 1.1.4 Mô đánh giá hiệu mạng 29 1.2 Giới thiệu toán nghiên cứu liên quan 30 1.2.1 Bài toán nghiên cứu 30 1.2.2 Tình hình nghiên cứu 36 1.2.3 Các nghiên cứu liên quan 38 1.3 Tóm tắt chƣơng 45 CHƢƠNG 2: ĐỊNH TUYẾN RÚT GỌN CHO MƠ HÌNH MẠNG NGẪU NHIÊN46 2.1 Tơ-pơ mạng ngẫu nhiên thuật toán định tuyến rút gọn 46 2.1.1 Tô-pô mạng ngẫu nhiên 46 2.1.2 Cơ chế định tuyến phân tán tra bảng 48 2.1.3 Thuật toán định tuyến rút gọn TZ [29] 48 2.2 Định tuyến khai thác cầu nối vùng (CORRA) 50 2.2.1 Ý tưởng xây dựng thuật toán định tuyến CORRA 50 2.2.2 Xây dựng bảng định tuyến 52 2.2.3 Kỹ thuật địa hóa 54 2.2.4 Đánh giá lý thuyết 57 2.2.5 Đánh giá thực nghiệm 59 2.2.6 Kết luận hướng phát triển 64 2.3 Định tuyến khai thác nút đại diện chế tuyển chọn nút đại diện 64 2.3.1 Xây dựng phương thức lựa chọn nút đại diện dựa vị trí 66 2.3.2 Đánh giá thực nghiệm 70 2.3.3 Kết luận hướng phát triển 73 2.4 Xây dựng chế tuyển chọn nút đại diện 74 2.4.1 Tuyển chọn nút đại diện 74 2.4.2 Cơ chế tuyển chọn nút đại diện 75 2.4.3 Thực nghiệm đánh giá chế tuyển chọn nút đại diện 80 2.4.4 Kết luận hướng phát triển chế tuyển chọn nút đại diện 83 2.5 Tóm tắt Chƣơng 83 CHƢƠNG 3: XÂY DỰNG CÔNG CỤ HỖ TRỢ ĐÁNH GIÁ HIỆU NĂNG MẠNG LIÊN KẾT 84 3.1 Kiến trúc tổng quan công cụ mô SSiNET 85 3.1.1 Ý tưởng SSiNET 85 3.1.2 Kiến trúc mô-đun chức giao diện 87 3.1.3 Thiết kế chi tiết kỹ thuật 90 3.1.4 Thiết kế chi tiết gói cơng cụ phần mềm 93 3.1.5 Xây dựng chế kỹ thuật 97 3.2 Đánh giá thực nghiệm 100 3.2.1 Đánh giá kích thước bảng định tuyến 100 3.2.2 Đánh giá độ trễ truyền tin 101 3.2.3 Đánh giá thời gian thực thi 102 3.2.4 So sánh kết đánh giá SSiNET Omnet++ 102 3.2.5 Đánh giá thông lượng thông lượng cực đại 103 3.2.6 Đánh giá theo phương pháp xấp xỉ 105 3.3 Ứng dụng công cụ SSiNET việc xây dựng mơ hình tơ-pơ lai cho DC cỡ vừa, tiết kiệm chi phí đáp ứng không gian mở 106 3.3.1 Kiến trúc Bus-RSN 107 3.3.2 Giải pháp định tuyến 111 3.3.3 Đánh giá thực nghiệm 112 3.3.4 Kết luận giải pháp 120 3.4 Tóm tắt chƣơng 120 KẾT LUẬN VÀ HƢỚNG NGHIÊN CỨU 122 4.1 Kết luận 122 4.2 Hƣớng phát triển nghiên cứu 123 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN 124 TÀI LIỆU THAM KHẢO 125 PHỤ LỤC 130 Định tuyến phân cấp mạng ngẫu nhiên chuẩn tắc 130 1.1 HR-SW: Định tuyến phân cấp mơ hình đồ thị giới nhỏ 130 1.2 Kỹ thuật địa định tuyến phân cấp 131 1.3 Thực thi định tuyến HR-SW 132 1.4 Đánh giá hiệu mạng 133 1.5 Kết luận 136 Các thuật toán định tuyến khai thác cầu nối 136 DANH MỤC KÝ HIỆU VÀ CÁC TỪ VIẾT TẮT STT Kí hiệu Nghĩa tiếng Anh ARPL Average Routing Path Length CORRA Compact Routing for RAndom inter-connection topologies DC DES DOR Data Center Discrete Event Simulation Dimension-Order Routing GLCR Geographic Landmark-based Compact Routing HPC ICT MRPL 10 NSC 11 12 13 14 High-performance Computing Informatiom Communication Technology Maximum Routing Path Length Nghĩa tiếng Việt Trung bình chiều dài đường định tuyến Định tuyến rút gọn dựa liên kết ngẫu nhiên cầu nối vùng nút mạng xa Trung tâm liệu Mô kiện rời rạc Định tuyến ưu tiên theo chiều Định tuyến rút gọn dựa nút đại diện cho vùng nút mạng Tính tốn hiệu cao Công nghệ Thông tin Truyền thông Chiều dài đường định tuyến lớn (đường kính mạng) Network Structure and Cấu hình cấu trúc mạng Configuration RSN Random Shortcut Network Mạng ngẫu nhiên RTS Routing Table Size Kích thước bảng định tuyến SPR Shortest Path Routing Định tuyến đường ngắn Tổ chức đánh giá xếp hạng hệ TOP500 https://www.top500.org/ thống mạng máy tính DANH MỤC CÁC BẢNG Bảng 2.1: Algo1-TZ: Lựa chọn nút đại diện Thorup Zwick 49 Bảng 2.2: Xây dựng bảng định tuyến – Routing Table Construction (RTC) 53 Bảng 2.3: Tổ chức ghi bảng định tuyến thuật toán CORRA 55 Bảng 2.4: Algo.2- GLCR: Lựa chọn nút đại diện 67 Bảng 2.5: Tổng hợp số khái niệm sử dụng giải pháp GLCR 68 Bảng 2.6: Algo.3-GLCR: Điều chỉnh lựa chọn nút đại diện – AdjustLandmarkSet 68 Bảng 2.7: Algo.4-GLCR: Lựa chọn nút đại diện – 70 Bảng 2.8: Algo.2-IJDST: Loại bỏ nút đại diện yếu 75 Bảng 2.9: Algo.3-IJDST: Lựa chọn nút đại diện 76 Bảng 2.10: Algo.4-IJDST: Lựa chọn nút đại diện 78 Bảng 3.1: Đường kính mạng theo tỉ lệ xấp xỉ 105 Bảng 3.2: Độ trễ trung bình tồn mạng theo tỉ lệ xấp xỉ 105 Bảng 3.3: Thời gian thực thi tính tốn 106 Bảng 3.4: Algo.1-Bus-RSN: Xây dựng tô-pô Bus-RSN 108 Bảng 3.5: Định nghĩa số kí hiệu sử dụng 111 Bảng 3.6: Algo 2-Bus-RSN: Thuật toán định tuyến HRA (alpha-1 HRA) 111 Bảng 3.7: Các ký hiệu hình minh họa thực nghiệm 112 Bảng 3.8: Tổng cáp mạng trường hợp khoảng cách vùng khác 119 Bảng 5.1: Algo.5-GLCR: Tính toán giải pháp GLCR 136 Bảng 5.2: Algo.6-GLCR: Tính cho nút đại diện 137 DANH MỤC HÌNH VẼ Hình 1.1: Mạng liên kết (Interconnection Network) 15 Hình 1.2: Các ứng dụng mạng [6] 16 Hình 1.3: Các dạng tơ-pơ mạng 17 Hình 1.4: Mạng trực tiếp gián tiếp 19 Hình 1.5: Ví dụ định tuyến mạng kết 2D-Torus [5] 20 Hình 1.6: Định tuyến thích ứng tơ-pơ RING 8-nút 22 Hình 1.7: Ví dụ tắc nghẽn Wormhole switching 24 Hình 1.8: Độ trễ gói tin kênh truyền 26 Hình 1.9: Tương quan băng thông thông lượng 26 Hình 1.10: Tương quan độ trễ lưu lượng liệu yêu cầu 27 Hình 1.11: Tương quan thơng lượng lưu lượng liệu yêu cầu 29 Hình 12: Mơ hình mơ 30 Hình 1.13: Tổ chức bảng định tuyến nút mạng 34 Hình 2.1: Tô-pô sở dạng lưới 47 Hình 2.2: Tạo tơ-pơ mạng ngẫu nhiên từ tô-pô sở dạng lưới 47 Hình 2.3: Cách tiếp cận định tuyến dựa nút đại diện Thorup Zwick 49 Hình 2.4: Xây dựng tơ-pơ ngẫu nhiên cho thuật tốn CORRA 50 Hình 2.5: Hàng xóm gửi thơng tin cầu 51 Hình 2.6: Nút lưu thơng tin từ hàng xóm mà nằm khoảng 52 Hình 2.7: Ví dụ việc xây dựng ghi bảng định tuyến 55 Hình 2.8: Ví dụ thực thi định tuyến thông qua nhãn tọa độ nút mạng 56 Hình 9: Thực thi định tuyến thơng qua định danh nút mạng 57 Hình 2.10: Mơ hình mở rộng, sử dụng -grid liên kết 59 Hình 2.11: Tác động giá trị 60 Hình 2.12: Trung bình kích thước bảng định tuyến 60 Hình 2.13: Đánh giá đường kính mạng 61 Hình 2.14: Trung bình chiều dài đường định tuyến ( ) 62 Hình 2.15: Trung bình độ trễ truyền tin 62 Hình 2.16: mạng có kích thước lớn 63 Hình 2.17: Trung bình độ trễ truyền tin mạng kích thước lớn 63 Hình 2.18: Lựa chọn nút đại diện khơng mong đợi thuật tốn TZ [29] 65 Hình 2.19: Minh họa điều chỉnh vị trí nút đại diện 69 Hình 2.20: Tương quan lớn kích thước lớn 71 Hình 2.21: Khảo sát tối đa khích thước tập nút đại diện 72 Hình 2.22: Tương quan kích thước cụm lớn 72 Hình 2.23: Tương quan với lớn 73 Hình 2.24: So sánh GLCR với TZ-original mạng kích thước lớn 73 Hình 2.25: Phân bố nút đại diện đồ thị dạng lưới 79 Hình 2.26: Tương quan số lượng nút đại diện với kích thước cụm lớn mạng có 1.024 nút 80 Hình 2.27: Tương quan kích thước mạng 81 Hình 2.28: Tương quan số lượng nút đại diện với kích thước lớn cụm mạng có kích thước lớn 81 Hình 2.29: Tương quan số lượng nút đại diện với 83 Hình 3.1: Mơ tả cấu trúc nút mạng 85 Hình 3.2: Sơ đồ thiết kế tổng quan 88 Hình 3.3: Lưu đồ tạo tơ-pơ mạng 90 Hình 3.4: Sơ đồ thiết kế chi tiết 91 Hình 3.5: Lưu đồ định định tuyến 92 Hình 3.6: Thiết kế kỹ thuật chi tiết SSiNET 92 Hình 3.7: Thiết kế lớp Graph, RoutingAlgorithm TopoExperiment 93 Hình 3.8: Thiết kế gói graph routing 94 Hình 3.9: Thiết kế thành phần vật lý mạng 95 Hình 3.10: Thiết kế nhóm thực nghiệm mơ 96 Hình 3.11: Thiết kế gói thực nghiệm mơ zeroload weightedload 96 Hình 3.12: Thiết kế lớp thực nghiệm đánh giá hiệu mạng dựa mô 97 Hình 3.13: Tiến trình hoạt động mơ 97 Hình 3.14: Ví dụ quản lý kiện rời rạc 98 Hình 3.15: Ví dụ đường mạng có chiều dài m hop 99 Hình 3.16: Tính tốn kích thước bảng định tuyến 101 Hình 3.17: Độ trễ truyền tin mạng 102 Hình 3.18: So sánh thời gian thực thi SSiNET NS3 102 Hình 3.19: So sánh đánh giá thông lượng mạng SSiNET Omnet++ 103 Hình 3.20: Đánh giá thơng lượng mạng công cụ SSiNET 104 Hình 3.21: Thơng lượng cực đại 104 Hình 3.22: (a)–Bus với nút; (b)–RSN 4x4 tạo liên kết lưới liên kết ngẫu nhiên107 Hình 3.23: Mơ hình tơ-pơ Bus-RSN 107 Hình 3.24: Mơ hình chi tiết Bus-RSN 108 Hình 3.25: RSN chia thành khối, chọn nút trục tạo đường trục 109 Hình 3.26: Chi tiết nút thường nút trục 110 Hình 3.27: Đánh giá tham số hiệu mạng theo kịch 114 Hình 3.28: Đánh giá tham số hiệu mạng theo kịch 116 Hình 3.29: Tổng chiều dài cáp tổng chi phí triển khai kết nối theo kịch 117 Hình 3.30: Tổng chiều dài cáp tổng chi phí triển khai kết nối theo kịch 119 Hình 5.1: Ví dụ định tuyến HR-SW 131 Hình 5.2: Địa hóa phân cấp bảng định tuyến 132 Hình 5.3: Tương quan mạng 4.096 nút 134 Hình 5.4: Tương quan đường kính mạng mạng 4.096 nút 134 Hình 5.5: Đường kính mạng mạng 8.192 nút 135 Hình 5.6: mạng 8.192 nút 136 khai thác có tải Ngồi ra, SSiNET cho phép nhà nghiên cứu thử nghiệm thiết kế tô-pô cách đa dạng linh hoạt mà phát triển chương trình riêng để cài đặt tơ-pơ thuật tốn định tuyến có sẵn Ứng dụng cơng cụ SSiNET để thực nghiệm đề xuất mơ hình tơ-pơ lai Bus-RSN nhằm giải tốn xây dựng DC doanh nghiệp nhỏ vừa Giải pháp thiết kế hướng tiết giảm chi phí triển khai linh hoạt, lắp đặt khơng gian gồm nhiều phịng/sàn phân biệt Đồng thời, chi phí đầu tư ban đầu để xây dựng DC theo mơ hình phù hợp với doanh nghiệp có nguồn vốn hạn hẹp Tính linh hoạt khả mở rộng giúp doanh nghiệp mở rộng co hẹp DC cách dễ dàng 4.2 Hƣớng phát triển nghiên cứu Với phát triển mạnh mẽ DC yêu cầu ngày cao yếu tố hiệu mạng, ứng dụng vào việc khảo sát toán kinh tế kỹ thuật vấn đề đầu tư thiết bị Các hướng nghiên cứu cịn phát triển rộng rãi, đặc biệt giai đoạn cấu trúc tô-pô truyền thống Bus, Star, Tree,Hyper-Cube… các tơ-pơ có cấu trúc chặt chẽ Tori-Family, Fat-Tree, trở nên hạn chế trước yêu cầu gia tăng nhanh chóng đảm bảo tính mềm dẻo DC Do đó, tương lai, nghiên cứu cịn hướng vào giải pháp kỹ thuật cụ thể hơn:  Nghiên cứu cần phát triển, thực nghiệm với ứng dụng liệu lớn (như Benchmark) để tìm giải pháp tơ-pơ thuật tốn định tuyến phù hợp với ứng dụng  Trong xu hướng phát triển Green DC, cần xây dựng mơ hình tính tốn cơng suất tiêu thụ, đặc biệt lượng truyền gói tin việc tìm giải pháp thiết kế tơ-pơ hiệu làm giảm lượng tiêu thụ  Giải pháp điều khiển kiểm soát linh hoạt (Giám sát hoạt động chế độ chủ động (active) chế độ sẵn sàng (standby) điều kiện tải thấp) (kết hợp với giải pháp tiết kiệm điện tiêu thụ  Mơ hình giải pháp thiết kế tơ-pơ lai (Bus-RSN) cho mạng kích thước vừa nhỏ với điều kiện thực tiễn (ví dụ, khơng gian lắp đặt phòng máy chủ bị hạn chế, phòng máy chủ đặt cách rời xa nhau) Hướng nghiên cứu dự định đánh giá yếu tố hiệu thông lượng điện tiêu thụ mạng để đưa đánh giá đầy đủ mơ hình Bus-RSN  Đối với cơng cụ hỗ trợ đánh giá hiệu mạng, có kiến trúc hệ thống thực thi kết quan trọng, nhiên, tương lai cần bổ sung chức cần thiết mô giả lập truyền tin cấu trúc tơ-pơ đặc thù Hồn thành chức hỗ trợ thiết kế mặt phòng máy chủ điều kiện thực tế trình bày Hồn thiện giao diện người sử dụng để thực Internet nhằm chia sẻ hỗ trợ người sử dụng khác lĩnh vực nghiên cứu Tuy nhiên vấn đề lực hệ thống (các máy chủ tính tốn) cần cân nhắc để triển khai 123 DANH MỤC CÁC CƠNG TRÌNH CƠNG BỐ CỦA LUẬN ÁN [CT1] KIEU, Thanh-Chung; (2016) An interconnection network exploiting trade-off between routing table size and path length In: 2016 Fourth International Symposium on Computing and Networking (CANDAR) IEEE, 2016 p 666-670 2379-1896/16 © 2016 IEEE, DOI 10.1109/CANDAR.2016.41 Electronic ISSN: 2379-1896 [CT2] THANH, Chung Kieu; (2017) An efficient compact routing scheme for interconnection topologies based on the random model In: Proceedings of the Eighth International Symposium on Information and Communication Technology 2017 p 189-196 ACM https://doi.org/10.1145/3155133.3155186 ISBN 978-1-4503-5328-1/17/12 [CT3] NGUYEN, Chi-Hieu; KIEU, Chung T.; VAN NGUYEN, Khanh (2019) Efficient Landmark-Based Compact Routing for Random Interconnection Topologies In: 2019 IEEERIVF International Conference on Computing and Communication Technologies (RIVF) IEEE, 2019 p 1-6 INSPEC Accession Number: 18673683 Publisher: IEEE ISSN: 2162-786X DOI: 10.1109/RIVF.2019.8713674 [CT4] CHUNG, Kiều Thành; THÀNH, Nguyễn Tiến; VĂN, Nguyễn Khanh (2019) Một tiếp cận thiết kế công cụ phần mềm đánh giá hiệu mạng liên kết kích thước lớn Chuyên san Các cơng trình Nghiên cứu Phát triển Cơng nghệ thông tin Truyền thông, 2019 DOI: 10.32913/mic-ict-research-vn.v2019.n1.889 [CT5] NGUYEN, Chi-Hieu; KIEU, Chung T.; NGUYEN, Khanh-Van (2020) Improved Compact Routing Schemes for Random Interconnects International Journal of Distributed Systems and Technologies (IJDST), 2020, 11.3: 89-109 ISSN: 1947-3532|EISSN: 1947-3540 DOI: 10.4018/IJDST.2020070105 [CT6] KIEU, Chung Thanh; Vu, Quang Son; Dang, Hai Pham; Nguyen Khanh-Van (2020); BusRSN: Giải pháp tô-pô mạng liên kết dạng lai cho trung tâm liệu cỡ vừa, tiết kiệm chi phí đáp ứng khơng gian mở Chun san Các cơng trình nghiên cứu, phát triển ứng dụng Công nghệ thông tin Truyền thông, 2020, 20-34 ISSN: 1859-3526 https://doi.org/10.32913/mic-ictresearch-vn.v2020.n1.922 124 TÀI LIỆU THAM KHẢO [1] ISSARIYAKUL, Teerawat; HOSSAIN, Ekram, "Introduction to network simulator (NS2)," Introduction to network simulator NS2 Springer, Boston, MA, pp 1-18, 2009 [2] Wong D, Seow KT, Foh CH, Kanagavelu R., "Towards reproducible performance studies of datacenter network architectures using an open-source simulation approach.," In 2013 IEEE Global Communications Conference (GLOBECOM), pp 1373-1378, 2013 Dec [3] H CASANOVA, "Simgrid: A toolkit for the simulation of application scheduling," Proceedings First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp 430-437, 2001 [4] A VARGA, "OMNeT++ http://www omnetpp org," IEEE Network Interactive, 2002 16.4 [5] Dally, W., & Towles, B., principles and practices of interconnection networks, morgan kaufmann publishers inc, 2003 [6] T M Pinkston and J Duato, "Appendix E of Computer Architecture: A Quantitative Approach," in 4th ed., Elsevier Publishers, 2006 [7] M Koibuchi, I Fujiwara, H Matsutani, and H Casanova, "“Layout-conscious random topologies for hpc off-chip interconnects”," 19th International Conference on High-Performance Computer Architecture (HPCA), p XX, Feb 2013 [8] Watts, D J., & Strogatz, S H., "Collective dynamics of „small-world‟networks.," nature, pp 393(6684), 440., 1998 [9] J Duato, S Yalamanchili and L Ni, "Interconnection Networks An Engineering Approach," San Francisco: Morgan Kaufmann, 2003 [10] J M DURÁN, "What is a Simulation Model?," Minds and Machines, vol 30.3, pp 301-323., 2020 [11] P Coteus, "“Packaging the Blue Gene/L supercomputer"," IBM Journal of Research and Development, vol 49, no 2/3, pp 213-248, Mar/May 2005 [12] "CrayXT5 Supercomputer," [Online] Available: http://www.cray.com/ [13] Singla, A., Hong, C Y., Popa, L., & Godfrey, P B., "Jellyfish: Networking data centers randomly.," In Presented as part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), pp 225-238, 2012 [14] Shin, J Y., Wong, B., & Sirer, E G., "Small-world datacenters.," In Proceedings of the 2nd ACM Symposium on Cloud Computing, p 2, 2011, October 125 [15] Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H H., Subramanya, V., Fainman, Y., & Vahdat, A., "Helios: a hybrid electrical/optical switch architecture for modular data centers.," ACM SIGCOMM Computer Communication Review, vol 41, no 4, pp 339-350, 2011 [16] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., & Lu, S., "BCube: a high performance, server-centric network architecture for modular data centers," ACM SIGCOMM Computer Communication Review, vol 39, no 4, pp 63-74, 2009 [17] Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., & Lu, S., "Dcell: a scalable and faulttolerant network structure for data centers.," In ACM SIGCOMM Computer Communication Review, vol 38, no 4, pp 75-86, 2008, August [18] Gyarmati, L., & Trinh, T A., "Scafida: A scale-free network inspired data center architecture.," ACM SIGCOMM Computer Communication Review, vol 40, no 5, pp 4-12, 2010 [19] Wu, H., Lu, G., Li, D., Guo, C., & Zhang, Y., "MDCube: a high performance network structure for modular data center interconnection," In Proceedings of the 5th international conference on Emerging networking experiments and technologies, pp 25-36, 2009, December [20] Greenberg, A., Hamilton, J R., Jain, N., Kandula, S., Kim, C., Lahiri, P., & Sengupta, S., ""VL2: a scalable and flexible data center network," ACM SIGCOMM computer communication review, vol 39, no 4, pp 51-62, 2009, August [21] A SHPINER, "Dragonfly+: Low cost topology for scaling datacenters.," 2017 IEEE 3rd International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)., pp 1-8., 2017 [22] FUJIWARA, Ikki, "Skywalk: A topology for HPC networks with low-delay switches.," In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium IEEE, pp 263-272, 2014 [23] Al-Fares, M., Loukissas, A., & Vahdat, A., "A scalable, commodity data center network architecture .," In ACM SIGCOMM Computer Communication Review, vol 38, no 4, pp 63-74, 2008, August [24] Y Yu and C Qian, "Space shuffle: A scalable, flexible, and high-bandwidth data center network," 2014 IEEE 22nd International Conference on Network Protocols, pp 13-24, 2014 [25] M BESTA, "Slim noc: A low-diameter on-chip network topology for high energy efficiency and scalability," ACM SIGPLAN Notices, vol 53.2, pp 43-55, 2018 [26] Y DENG, "Optimal low-latency network topologies for cluster performance enhancement," The Journal of Supercomputing, vol 76.12, pp 9558-9584., 2020 [27] Koibuchi, M., Matsutani, H., Hsu, H.A., & Casanova, H., "A case for random 126 shortcut topologies for hpc interconnects," in Proc of the 39th Annual International Symposium on Computer Architecture (ISCA), 2012 [28] Cowen, L J., "Compact routing with minimum stretch," Journal of Algorithms, vol 38, no 1, p 170–183, 2001 [29] M Thorup and U Zwick, "“Compact routing schemes"," Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures ACM, pp 1-10, 2001 [30] Kim, J., Dally, J.W., Scott, S., & Abts, D., "Technology-Driven, Highly-Scalable Dragonfly Topology," in Proc of the International Symposium on Computer Architecture (ISCA), 2008 [31] Kleinberg, J., "The small-world phenomenon: An algorithmic perspective 99-1776.," Cornell computer science technical report., 2000 [32] O Lysne, L Pedro, M Koibuchi, T Rokicki, & C Sancho, "“A Survey and Evaluation of Topology Agnostic Deterministic Routing Algorithms”," IEEE Transactions on Parallel and Distributed Systems, pp 1-20, 2011 [33] Jouraku, M Koibuchi & H Amano, "“An effective design of deadlock-free routing algorithms based on 2d turn model for irregular networks”," Parallel and Distributed Systems, IEEE Transactions on, vol 18(3), p 320–333, 2007 [34] TURNER, W Pitt; SEADER, John H.; BRILL, Kenneth G., "Industry standard tier classifications define site infrastructure performance," 2005 [35] Benito, M., Vallejo, E., & Beivide, R., "On the use of commodity ethernet technology in exascale hpc systems," in In High Performance Computing (HiPC) 2015 IEEE 22nd International Conference on, 2015 [36] Gavoille, C., & Gengler, M., "Space-efficiency for routing schemes of stretch factor three," Journal of Parallel and Distributed Computing, p 61(5): 679–687, 2001 [37] D AGUIRRE-GUERRERO, "WMGR: A generic and compact routing scheme for data center networks.," IEEE/ACM Transactions on Networking,, vol 26.1, pp 356369, 2017 [38] L Kleinrock and F Kamoun, "Hierarchical routing for large networks performance evaluation and optimization," Computer Networks (1976), vol 1, no 3, pp 155-174, 1977 [39] Dmitri Krioukov, Kevin Fall, Arthur Brady, et al., "On compact routing for the Internet," ACM SIGCOMM Computer Communication Review, vol 37, no 3, pp 4152, 2007 [40] M Enachescu, M Wang, and A Goel, "Reducing Maximum Stretch in Compact Routing," INFOCOM 2008 27th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications 127 Societies, pp 336-340, 2008 [41] A Greenberg, J R Hamilton, N Jain, S Kandula, C Kim,P Lahiri, D A Maltz, P Patel, and S Sengupta, "VL2: a scalable and flexible data center network.," SIGCOMM, 2009 [42] Lebiednik, Brian and Mangal, Aman and Tiwari, Niharika, "A survey and evaluation of data center network topologies," arXiv preprint arXiv:1605.01701, 2016 [43] I Fujiwara, M Koibuchi, H Matsutani, and H Casanova, "Skywalk: A topology for hpc networks with low-delay switches," 28th International Parallel and Distributed Processing Symposium (IEEE), pp 263-272, 2014 [44] Guo, D., Chen, T., Li, D., Liu, Y., Liu, X., & Chen, G., "BCN: Expansible network structures for data centers using hierarchical compound graphs.," Proceedings IEEE INFOCOM, pp 61-65, 2011 [45] Luo, L., Guo, D., Li, W., Zhang, T., Xie, J., & Zhou, X, "Compound Graph Based Hybrid Data Center," Frontiers of Computer Science, vol 9, no 6, pp 860-874, 2015 December [46] P JAKMA, "A distributed, compact routing protocol for the Internet.," in PhD Thesis - University of Glasgow., 2016 [47] CASTAÑEDA, Armando; LEFÉVRE, Jonas; TREHAN, Amitabh., "Fully compact routing in low memory self-healing trees.," Proceedings of the 21st International Conference on Distributed Computing and Networking., pp 1-10, 2020 [48] B JONYNAS, Compact Routing for Today‟s Internet., University of Glasgow, School of Computing Science, April, 2019 [49] VIERTEL, Santiago; VIGNATTI, Andre Luıs., "Compact routing schemes in complex networks.," São Paulo School of Advanced Science on Algorithms, Combinatorics and Optimization, Institude of Mathematics and Statitics - University of São Paulo, July, 2016 [50] C Basso, J L Calvignac, G T Davis, and P C Patel, "Longest prefix match lookup using hash function," U.S Patent No 7,702,630, Apr 20 2010 [51] AURENHAMMER, Franz; KLEIN, Rolf, "Voronoi Diagrams," in Handbook of computational geometry, 2000, pp 201-290 [52] PAGIAMTZIS, Kostas; SHEIKHOLESLAMI, Ali., "Content-addressable memory (CAM) circuits and architectures: A tutorial and survey.," IEEE journal of solid-state circuits, vol 41, no 3, pp 712-727, 2006 [53] H LIU, "Routing table compaction in ternary CAM.," IEEE Micro, vol 22, no 1, pp 58-64, 2002 [54] J Mudigonda, P Yalagandula and J C Mogul, "Taming the Flying Cable Monster: A topology Design and Optimization Framework for Data-Center Network," in 128 USENIX Annual Technical Conference (USENIX ATC'11), 2011 [55] J MOY, "OSPF version 2.," 1998 129 PHỤ LỤC Mục tiêu luận án đảm bảo xây dựng thuật tốn định tuyến nhỏ gọn trì yếu tố hiệu đủ tốt so sánh với thuật tốn định tuyến trước Trong nội dung này, NCS trình bày định tuyến phân cấp, kết phản ánh bước khai phá tồn q trình nghiên cứu NCS Cách tiếp cận phân cấp phù hợp với tơ-pơ mạng có cấu trúc chuẩn tắc tương ứng với HPC thường có quy mô nhỏ áp dụng đồ thị Smallworld Tuy nhiên, nghiên cứu sau tập trung chủ yếu mạng có kích thước lớn Do vậy, ý tưởng kết thực nghiệm HR-SW, NCS trình bày chi tiết Phụ lục luận án Định tuyến phân cấp mạng ngẫu nhiên chuẩn tắc 1.1 HR-SW: Định tuyến phân cấp mơ hình đồ thị giới nhỏ Trong phần mơ tả thuật tốn định tuyến phân cấp mơ hình mạng smallworld (SW) Kleinberg [31] Ý tưởng định tuyến phân cấp dựa phân vùng mạng thành cụm kỹ thuật chuyển tiếp gói tin thiết bị switch SW- dựa đồ thị hình lưới (grid-based) nút mạng xếp thành -hàng, -cột Giả sử rằng, thiết bị switch kết nối tới số host (máy chủ) Trong kịch này, mạng phân chia thành lưới nhỏ switches,…, lưới xem cụm Bây giờ, mạng xem mạng Smallworld, cấu thành cụm với kích thước , cụm thứ xem đồ thị Hai cụm gọi kết nối với tồn liên kết mà kết nối thiết bị switch tới thiết bị switch , thông thường, liên kết liên kết ngẫu nhiên Theo cách phân vùng để tạo định tuyến cặp thiết bị switch Nếu switch nguồn đích thuộc cụm , gói tin định tuyến qua đường ngắn đồ thị NCS sử dụng kí hiệu , biểu diễn đường định tuyến nội cụm Định tuyến liên vùng cụm , bao gồm pha: Pha tìm đường ngắn cụm đồ thị ; với cụm trung gian đường định tuyến liên vùng thay với định tuyến nội cụm pha thứ Khơng tính tổng qt, giả sử , biểu diễn hop16 đường cụm Định tuyến kết hợp đoạn định tuyến trung gian | | , với liên kết mà kết nối cụm với cụm Chú ý rằng, tồn nhiều cặp liên kết toàn mạng Trong trường hợp này, NCS lựa chọn khéo léo (heuristically) thiết bị switch gần với thiết bị switch để đạt chiều dài đường ngắn nhất, ví dụ, ban đầu cụm 16 Hop: khoảng kết nối cụm với 130 Hình 5.1 minh họa ví dụ định tuyến phân cấp với đường liên kết nội vùng và liên kết liên vùng Gói tin định tuyến từ tới nội vùng qua đường định tuyến ngắn Định tuyến thiết bị switch cụm khác kết hợp định tuyến nội vùng định tuyến liên vùng, ví dụ, | | cho định tuyến Trong trường hợp này, liên kết trung gian mà kết nối tới chọn thay cho gần C1 S1 d1 S2 C2 u3 u1 v1 u2 v2 d2 C3 C4 v3 Hình 5.1: Ví dụ định tuyến HR-SW 1.2 Kỹ thuật địa định tuyến phân cấp Trong nội dung này, NCS mô tả chi tiết kỹ thuật địa hóa dùng cho HR-SW, với mạng thiết bị switch Giả định rằng, thiết bị switch kết nối tới (tính theo số lượng) máy chủ Và mạng phân chia thành cụm có kích thước nhau, cụm có chứa thiết bị switch Địa hóa phân cấp thiết kế để hỗ trợ cho kỹ thuật tra cứu tương thích tiền tố dài (longest-prefix-matching lookup) triển khai kỹ thuật TCAM [53] Mỗi thiết bị switch lưu trữ tồn thơng tin máy chủ (hosts) mà kết nối trực tiếp tới thơng tin thiết bị switch cụm Bên cạnh đó, tất thiết bị switche cụm khác gom lại lưu trữ thông tin ghi bảng định tuyến Ví dụ, cụm đòi hỏi lưu trữ ghi bảng định tuyến thiết bị switch Do đó, địa host trở thành kết hợp định danh host ( : host identifier), định danh switch ( ) mà host kết nối tới, định danh cụm ( ) Kỹ thuật đánh địa địi hỏi kích thước nhớ cấu trúc Hình 5.2-a Dễ dàng tính tốn kích thước bảng định tuyến tổ chức minh họa Hình 5.2-b 131 Địa thông thường Switch ID (log(n) bits) Host ID (log(m) bits) Địa phân cấp Cluster ID (log(c)bits) Switch ID (log(k)bits) Host ID (log(m)bits) a) Địa phân cấp host cần STT … m m+1 … m+k-1 k+m … k+m+c-2 Thông tin địa 11 10 11 10 11 00 11 01 00 XX 10 XX 00 11 XX XX XX XX Cổng 3 bits m-host kết nối switch (k-1) switch cụm Kết nối tới (c-1) cụm khác b) bảng định tuyến switch với Hình 5.2: Địa hóa phân cấp bảng định tuyến Công thức (số lượng ghi bảng định tuyến) phụ thuộc vào số lượng cụm (tương tự với kích thước cụm ) Do vậy, cân nhắc vấn đề làm để phân chia mạng Chúng ta phân tích đánh đổi , số lượng cụm phần thực nghiệm 1.3 Thực thi định tuyến HR-SW Khi thực định tuyến nút nguồn đích :  nằm cụm ( có ) thực định tuyến nội cụm (sử dụng liên kết lưới cụm);  khơng nằm cụm thực định tuyến liên cụm cách sử dụng liên kết ngẫu nhiên Định tuyến liên cụm thực theo hai pha: pha tìm đường ngắn cụm; sau đó, với cụm trung gian đường định tuyến liên cụm thay định tuyến nội cụm pha thứ hai Việc phân chia mạng thành cụm khác nhằm mục đích tạo cấu trúc địa dạng phân cấp, tức nút mạng cụm có chung địa Việc phân cụm nhằm xác định thông tin bảng định tuyến nút mạng đồ thị Các nút mạng cụm lưu thành địa đại diện cụm Ví dụ, nút s cụm có liên kết ngẫu nhiên đến nút cụm Nút thông tin tới nút địa cụm ( B), nút thông tin đến nút mạng cụm đường tới Thông tin định tuyến lưu trữ nút địa cụm thông tin nút tới Thông tin định tuyến lưu trữ nút cụm (cùng với ) bao 132 gồm địa cụm thông tin nút tới Tức nút mạng khác cụm định tuyến đến nút mạng cụm thông qua nút Do đó, HR-SW khơng tiến hành định tuyến cụm thực định tuyến mà địa nút đích tra cứu bảng định tuyến để tìm xác (nếu tồn địa nút bảng định tuyến đó, tìm địa cụm tương ứng với nút t để xác định cổng cho nút mạng Về mặt ý tưởng, thuật toán HR-SW sử dụng định tuyến phân cấp thuật toán khai thác đường ngắn (Open Shortest Path First – OSPF [55] Tuy nhiên, mơ hình OSPF sử dụng định tuyến bao gồm định tuyến lõi (Backbone Router), định tuyến biên (Border Router), định tuyến đến vùng khác (mà sử dụng giao thức định tuyến khác với OSPF), định tuyến nội vùng (Internal Routers) điều không sử dụng HR-SW Cả cách tiếp cận HR-SW OSPF phân chia thành cách khu vực (area), nhiên cách lưu trữ thông tin định tuyến khác Trong HR-SW, nút mạng vùng lưu thông tin nhau, lưu thông tin định tuyến tới vùng khác thông qua liên kết ngẫu nhiên hai vùng Trong đó, theo OSPF, nút mạng bên vùng lưu liệu trạng thái liên kết (link state) vùng chứa mà khơng cần quan tâm đến toàn mạng Định tuyến vùng thực thông qua các định tuyến biên, OSPF, khác với cách định tuyến trực tiếp vùng thông qua việc khai thác liên kết ngẫu nhiên chúng, HR-SW Dựa cách tổ chức địa HR-SW trình bày trên, áp dụng đánh địa IP cho nút mạng theo cách phân cấp OSPF Trong nút mạng có mã hóa thành địa mạng (network id) 1.4 Đánh giá hiệu mạng 1.4.1 Lựa chọn kích thước phân cụm Mục tiêu việc phân tích hướng tới việc đánh giá tác động số lượng cluster tới HR-SW Trong thực nghiệm này, NCS bổ sung liên kết ngẫu nhiên nút với thành phần phân cụm (clustering exponent) Các thiết bị switch kết nối tới số host, áp dụng cơng thức để tính tốn không bao gồm số lượng host kết nối tới switch Giá trị tính ⁄ theo cơng thức đạt giá trị nhỏ tiến tới giá trị Do đó, NCS lựa chọn giá trị cụm thay đổi từ tới 32 kích thước mạng từ 1.024 tới 8.192 switches Trường hợp số lượng cụm 1, việc áp dụng thuật tốn SPR Khi đó, thiết bị switch lưu trữ thơng tin tồn mạng 133 Hình 5.3: Tương quan mạng 4.096 nút Hình 5.4: Tương quan đường kính mạng mạng 4.096 nút Hình 5.3 giá trị trung bình Hình 5.4 giá trị lớn chiều dài đường định tuyến thuật toán định tuyến phân cấp HR-SW mạng có kích thước 4.096 nút mạng Chiều dài đường định tuyến ngắn xem tốt NCS thấy rằng, số lượng cụm tăng lên, dài Ví dụ, số lượng cụm 16, tăng 31% 46% tương ứng so sánh với trường hợp cụm (trường hợp áp dụng SPR) Đối với đường kính mạng, giá trị tăng 88% 163% tương ứng Các kết minh họa Hình 5.4 phản ánh đánh đổi việc giảm chi phí (thơng thường ) hi sinh hiệu mạng (thơng thường ) Ngồi ra, việc tỉ lệ tăng chiều dài đường định tuyến (tương tự với tỉ lệ giảm ) trở nên chậm số lượng cụm tăng lên Do đó, NCS định chọn số lượng cụm 16 so sánh HR-SW thuật toán định tuyến rút gọn 1.4.2 So sánh kết HR-SW với thuật toán định tuyến rút gọn (TZ) Trong thực nghiệm, NCS so sánh đề xuất HR-SW thuật tốn định tuyến rút gọn tơ-pơ mạng hệ thống HPC (High Performance Computer) định tuyến phân cấp Torus Dragonfly [35] với yếu tố stretch-1 (được biểu diễn Shortest-3-D-Torus Shortest-Dragonfly [30], tương ứng) 134 NCS lựa chọn đề xuất thuật toán định tuyến rút gọn phổ quát (biểu diễn kí hiệu TZ) NCS Thorup & Zwick [29], mạng ngẫu nhiên mạng giới nhỏ (SW: Smallworld Network biểu diễn TZ-Random TZ-SW) Theo tiêu chí tất kịch định tuyến rút gọn phân cấp đánh giá (bao gồm HR-SW) địi hỏi bảng định tuyến kịch định tuyến chia mạng thành cụm Tuy nhiên, định tuyến rút gọn TZ [29] dựa nút đại diện17, không áp dụng thuộc tính tương đồng kích thước cụm, áp dụng cho thiết bị switch mạng Internet Để áp dụng thuật toán TZ cho mạng ngẫu nhiên HPC, NCS sử dụng lớn thiết bị switch thực nghiệm Hình 5.5: Đường kính mạng mạng 8.192 nút NCS tính tốn chiều dài đường định tuyến lớn ( ) hay gọi đường kính mạng) để so sánh trường hợp tồi kích thước mạng khác từ 1.024 đến 8.192 nút mạng minh họa Hình 5.5 Sự so sánh trình bày Hình 5.6 Giá trị nhỏ xem tốt Trong hầu hết kích thước mạng, Dragonfly [35] đạt ngắn nhất, đó, 3-D Torus lại đạt giá trị dài Tuy nhiên, việc thực thi định tuyến rút gọn 3-D Torus lại đạt nhỏ HR-SW, TZ-Random TZ-SW đạt giá trị thấp 3-D Torus có lớn Ví dụ, HR-SW có thấp 34,4% thấp 43,4% so với 3-D Torus mạng có 8.192 nút Tuy nhiên, so sánh với TZ-Random, HR-SW có dài tốt 30% Khi kích thước mạng tăng lên 3-D Torus trì nhỏ, nhiên tăng lên đáng kể Ngược lại, Dragonfly TZ-Random trì tốt giá trị tăng lên đáng kể Trong đó, đề xuất HR-SW, thú vị trì tương tự so sánh với TZ-Random, tỉ lệ tăng thấp Do đó, NCS cho rằng, đề xuất HR-SW đạt đánh đổi tốt 17 Nút đại diện (Landmark-based): dựa nút đại diện cho tập nút khác mạng 135 Hình 5.6: mạng 8.192 nút 1.5 Kết luận Trong nghiên cứu này, NCS đề xuất sử dụng tô-pô mạng ngẫu nhiên với kịch định tuyến phân cấp mạng cho HPC để đạt đánh đổi tốt Các nút mạng nhóm thành cụm mà đó, nút lưu trữ thông tin nút thuộc cụm khác ghi bảng định tuyến Định tuyến HR-SW không thực theo đường tối thiểu, nhiên, đề xuất đạt ngắn so sánh với tô-pô mạng khác Các phân tích kết cho thấy giảm theo hàm lô-ga-rit lớn tăng lên Khi số lượng cụm tăng lên, giảm đáng kể Ví dụ, mạng 8.192 nút mạng, 4.098 528 cho trường hợp 16 cụm tương ứng Số lượng cụm lớn dài Ví dụ, với 4.096 nút mạng, với 16 cụm, tăng 31% 46% tương ứng so sánh với trường hợp cụm Các tính chất khác so với tô-pô thuật toán định tuyến biết Các thuật toán định tuyến khai thác cầu nối Bảng 5.1: Algo.5-GLCR: Tính toán 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: For all End for Queue giải pháp GLCR { } While Pop from Add to For all If If then d w   d v   then 136 14: 15: 16: 17: 18: Add to End if End if End for End while Bảng 5.2: Algo.6-GLCR: Tính 1: 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18: 19: 20: 21: 22: 23: 24: 25: 26: 27: 28: 29: 30: 31: 32: i ii For all Queue cho nút đại diện {} End for For End for While For all While Pop from Add to For all If not do then Add to End if End for If nothing is added to Add to End if End while If then Add all to Else Remove from End if End for End while then Với điều kiện cụ thể, dễ dàng đạt được, ví dụ, đồ thị lưới 2-D Nó khoảng 1% 𝕒 nhỏ thực nghiệm mục 137 ...BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI Kiều Thành Chung NGHIÊN CỨU MỘT SỐ GIẢI PHÁP ĐỊNH TUYẾN TRONG TÔ-PÔ MẠNG LIÊN KẾT HIỆU NĂNG CAO VÀ CÔNG CỤ ĐÁNH GIÁ Ngành: Kỹ... thuật toán định tuyến Một giải pháp tô- pô mạng bao gồm thành phần: tơ-pơ mạng thuật tốn định tuyến Do đó, kịch đánh giá xác định tô- pô mạng giải thuật định tuyến yếu tố đầu vào để thực mơ CƠNG CỤ... định tuyến mới, đồng thời tiến hành so sánh hiệu tô- pô mạng nghiên cứu liên quan bao gồm yếu tố hiệu năng, mối liên quan đánh đổi yếu tố hiệu Các kết thực nghiệm hai phương pháp để đánh giá hiệu

Ngày đăng: 20/08/2021, 18:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w