1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.

154 16 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 154
Dung lượng 14,74 MB

Nội dung

Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.Nghiên cứu tổng hợp hệ xúc tác CuOCo3O4 trên một số chất mang để oxi hóa hơi dung môi hữu cơ dễ bay hơi (VOCs) ở nhiệt độ thấp.

MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING Ha Noi – 2021 MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS Major: Environmental Engineering Code: 9520320 DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING SUPERVIORS: Assoc Prof Dr Vu Đuc Thao Prof Dr Le Minh Thang Ha Noi - 2021 ACKNOWLEDGEMENT First of all, I would like to thank Prof Nguyen Huu Phu, who raises my interest in catalysis Secondly, I would like to thank Associate Prof Dr Vu Duc Thao and Prof Dr Le Minh Thang, who are my supervisors, because of their guidance, encouragement, and kindly help in the scientific works Also, I would like to thank my colleagues at Vietnam National Institute of Occupational Safety and Health (VNNIOSH), lectures in School of Environmental Science and Technology (INEST) and School of Chemical Engineering (SCE), and all members in Laboratory of the Petrochemical Refining and Catalytic Materials (LPRCM), and Laboratory of Environmentally Friendly Material and Technologies, that I believe my work cannot be completed without their generous assistance Moreover, I would like to thank Dr Sebastian Wohlrab and all staff in LIKAT for their friendly attitude and support, when I conducted the short-course research in University of Rostock - Germany Finally, I would like to give special thanks to my parents, my wife, and my beloved daughters because of their faced difficulties, supports, encourage as well as love The financial supports of the Rohan Program – DAAD & BMZ, German, and the Project no 216/02/TLD (VNNIOSH) are acknowledged in this thesis i|Page COMMITMENT The study has been conducted at the School of Environmental Science and Technology (INEST), School of Chemical Engineering (SCE), Hanoi University of Science and Technology (HUST), Leibniz-Institute for Catalysis (LIKAT), University of Rostock (Germany) and Vietnam National Institute of Occupational Safety and Health (VNNIOSH) The work has been completed under the supervision of Associate Prof Dr Vu Duc Thao and Prof Dr Le Minh Thang I assure that this is my research All the data and results in the thesis are entirely true, were agreed to use in this paper by the co-author This research has not been published by other authors than me Ngo Quoc Khanh ii | P a g e TABLE OF CONTENTS ACKNOWLEDGEMENT i COMMITMENT ii TABLE OF CONTENTS iii LIST OF TABLES vi LIST OF FIGURES viii LIST OF ACRONYM AND ABBREVIATIONS xi INTRODUCTION CHAPTER LITERATURE REVIEW 1.1 Overview of volatile organic compounds 1.2 Overview of VOCs treatment technologies 1.2.1 Oxidation method 1.2.2 Biological method 11 1.2.3 Absorption method 14 1.2.4 Adsorption method 14 1.2.5 Condensation method 15 1.3 Catalytic oxidation of VOCs 16 1.3.1 Mechanisms and kinetics of catalytic oxidation of VOCs 16 1.3.2 Catalysts for oxidation of VOCs 17 1.3.2.1 Noble-metal based catalysts 17 1.3.2.2 Non-noble metal oxides 22 1.3.2.3 Non-noble mix metal oxides 26 1.3.3 Catalytic supports and preparation methods for VOCs oxidation 29 1.4 The summary of literature review 30 CHAPTER EXPERIMENT 32 2.1 Catalyst preparation 32 |Page 2.1.1 Wet impregnation method 32 2.1.2 Solid-solid blending method 34 2.2 Catalyst characterization 36 2.2.1 Thermal analysis 36 2.2.2 Physical adsorption 37 2.2.3 X-ray diffraction 38 2.2.4 Scanning electron microscopy 39 2.2.5 Chemical and temperature programmed desorption 40 2.3 Adsorption and catalytic activity measurement 43 2.3.1 Adsorption and nitrogen desorption measurement 43 2.3.2 Catalytic activity measurement for complete oxidation of toluene 45 2.3.3 Catalytic activity measurement for complete oxidation of methane 50 CHAPTER RESULTS AND DISCUSSIONS 52 3.1 Characterizations of supports and catalysts 52 3.1.1 Thermal analysis 52 3.1.2 Physisorption 53 3.1.3 X-ray diffraction (XRD) 59 3.1.4 Scanning electron microscopy 66 3.1.5 Chemisorption 69 3.1.5.1 CO pulse 69 3.1.5.2 Oxygen temperature programed desorption (O2-TPD) 71 3.2 Total oxidation ability of the catalysts for methane 73 3.3 Toluene treatment 82 3.3.1 Toluene adsorption on catalysts/ sorbents 82 3.3.1.1 Toluene adsorption over Cu-Co/Activated carbon 82 3.3.1.2 Toluene adsorption over Cu-Co/Silica gel 83 3.3.1.3 Toluene adsorption over Cu-Co/MCM-41 84 3.3.2 Oxidation over catalysts in desorption process 87 3.3.2.1 Toluene oxidation over Cu-Co/Activated carbon in desorption process 87 3.3.2.2 Toluene oxidation over Cu-Co/ /Silica gel in desorption process 91 3.3.2.3 Toluene oxidation over Cu-Co/MCM-41 in desorption process .93 3.3.3 Toluene treatment by complete oxidation over catalysts 97 3.3.3.1 Complete oxidation of toluene on Cu-Co/Silica gel 97 3.3.3.2 Directed oxidation of toluene on Cu-Co/MCM-41 98 3.3.3.3 Directed oxidation of toluene on Cu-Co oxides 100 CONCLUSIONS 104 RECOMMENDATIONS 105 LIST OF PUBLICATIONS 106 REFERENCES 107 APPENDIX 116 LIST OF TABLES Table 1.1 Definition of volatile organic compounds (VOCs) Table 1.2 The temperature required for complete oxidation of VOCs 10 Table 1.3 The required temperature for catalytic oxidation of VOCs 11 Table 1.4 Performance evaluation of bioreactors for VOCs and odor control .13 Table 1.5 The absorption solutions can absorb the organic solvent vapor 14 Table 1.6 The noble metal catalysts for VOCs oxidation 19 Table 1.7 The non-noble metal oxide catalysts overview 24 Table 1.8 The mixed non-noble metal oxide catalysts overview 27 Table 2.1 Properties of chemicals using to prepare catalysts 32 Table 2.2 List of catalysts prepared by wet impregnation method 34 Table 2.3 List of catalysts prepared by solid-solid bleeding method .36 Table 2.4 Technique of thermal analysis 37 Table 2.5 Operating factors of GC 44 Table 3.1 The Surface characteristics of AC, silica gel and MCM-41 56 Table 3.2 The surface characteristics of catalysts on AC and silica gel 56 Table 3.3 The surface characteristics of catalysts on MCM-41 .57 Table 3.4 Crystalline size and phase of Cu-Co/Silica gel 60 Table 3.5 Crystalline sizes and phases of 10% Cu-Co on MCM-41 .62 Table 3.6 Crystalline sizes and phases of 20% Cu-Co on MCM-41 .64 Table 3.7 Crystalline sizes of Cu-Co oxides 65 Table 3.8 Crystalline sizes of catalysts without supports 66 Table 3.9 Metal dispersion of catalysts 71 Table 3.10 O2 - TPD profile of catalysts .73 Table 3.11 CH4-TPD quantities of Cu-Co/MCM-41 75 Table 3.12 Adsorption amount of toluene on Cu-Co/Activated carbon 83 vi | P a g e Table 3.13 Adsorption amount of toluene on Cu-Co/Silica gel 84 Table 3.14 Adsorption amount of toluene on Cu-Co/MCM-41 86 Table 3.15 Generated toluene by thermal desorption 90 Table 3.16 Evaluation of total toluene oxidation over the catalysts on AC 90 Table 3.17 Toluene adsorption capacity of catalysts on Silica gel base 93 Table 3.18 Evaluation of total toluene oxidation over the catalysts on silica gel 93 Table 3.19 Evaluation of total toluene oxidation over catalysts on MCM-41 .95 Table 3.20 Comparison with other studies 103 vii | P a g e LIST OF FIGURES Figure 1.1 Photochemical smog formation Figure 1.2 VOCs emission control technologies Figure 1.3 Catalytic oxidation technology for treatment of VOCs 10 Figure 1.4 The relationship between temperature and vapor pressure of the most common VOCs 15 Figure 1.5 The mechanisms of VOCs oxidation over catalysts .16 Figure 2.1 Procedure of wet impregnation method 33 Figure 2.2 Procedure of solid-solid blending method 35 Figure 2.6 Bragg ‘s diffraction 38 Figure 2.7 Schematic diagram of the core components of an SEM microscope 39 Figure 2.8 Experimental for temperature programmed reduction, oxidation and desorption 41 Figure 2.9 Adsorption and desorption experiment systems 43 Figure 2.10 The toluene adsorption – desorption oxidation experiment systems 46 Figure 2.11 The complete oxidation of toluene experiment systems 49 Figure 2.12 Total methane oxidation experiment systems 51 Figure 3.1 Thermal analysis in static air of catalyst on AC 52 Figure 3.2 Isotherm linear plot of AC, silica gel and MCM-41 55 Figure 3.3 Pore distribution of AC, silica gel and MCM-41 55 Figure 3.4 Pore distribution of catalyst on MCM41 58 Figure 3.5 XRD patterns of catalysts on AC 59 Figure 3.6 XRD patterns of catalysts on silica gel 60 Figure 3.7 XRD patterns of 10% catalysts on MCM-41 prepared by solid-solid blending method 61 Figure 3.8 XRD patterns of 10% catalysts on MCM-41 prepared by wet impregnation method 61 |Page 390 405 420 435 776 1012 1012 1012 997 997 997 997 1075 1075 1075 1075 985 985 985 985 Appendix 1.2: Adsorption-desorption of toluene on Cu-Co/Silica gel Time (min) 12.75 25.5 38.25 51 63.75 76.5 89.25 102 SS-S5Cu5Co Ad (ppm) 0 7053 8649 9315 10375 10572 10738 10889 10889 De (ppm) 12704 539 120 0 SS-S20Co Ad (ppm) 0 10408 11389 11389 De (ppm) 3538 499 75 Appendix 1.3: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by solid-solid blending method Time (min) 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75 127.5 140.25 153 165.75 178.5 191.25 SS-M7Cu3Co Ad De (ppm) (ppm) SS-M5Cu5Co SS-M3Cu7Co SS-M10Co SS-M10Cu SS-M20Co Ad De Ad De Ad De Ad De Ad De (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 0 0 0 129 2067 5033 7771 10241 12210 13601 14333 17187 16954 0 12639 12314 339 9664 466 6561 1036 4159 1778 3191 3192 2448 5808 1893 7354 1551 8270 1287 8648 9344 9522 10264 11420 11791 15968 15330 15513 11645 8749 6142 4845 3853 2968 2140 1819 1438 1209 0 0 4739 0 1489 4801 6284 7267 7943 8291 9019 8965 9688 10192 10262 10549 10714 10388 5122 2526 1674 945 471 273 16 0 0 0 0 0 35 56 971 2575 4827 6740 8182 9656 10591 11552 12377 13492 11178 10931 11522 12288 12125 10543 9268 7475 5970 5115 4184 3482 2592 0 0 0 247 0 61 2357 4446 6399 6835 6579 8111 8141 8576 8547 8662 9075 9266 9610 8510 5726 3217 1848 1660 0 0 0 0 0 0 2081 4456 7189 7746 9587 10717 11690 11804 12356 12356 11281 9298 6523 4166 2870 2239 1595 1231 851 762 119 | P a g e 204 216.75 229.5 12001 10816 12001 9983 9370 120 | P a g e Appendix 1.4: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by wet impregnation method Time (min) 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75 127.5 140.25 153 165.75 178.5 WI-M5Cu5Co Ad (ppm) De (ppm) 0 5706 6903 458 5773 1504 3985 4893 2946 6120 2865 7173 2245 7444 1936 8025 1566 8729 1327 8830 994 8980 9016 9097 9097 WI-M20Co Ad (ppm) De (ppm) 0 620 3689 3387 7783 8224 1479 11910 497 12909 13528 14098 14098 MCM-41 Ad (ppm) De (ppm) 0 20009 16013 9903 4476 13453 1788 15273 863 16091 482 17893 18702 19185 19977 20747 |Page Appendix 2: Oxidation in desorption process Appendix 2.1 Oxidation in desorption process over Cu-Co/Activated carbon Time (min) 15 30 45 60 75 90 105 120 WI-AC7Cu3Co Toluene COx (ppm) (ppm) 0 1067 4368 739 1939 465 2128 378 1505 185 450 123 88 0 0 WI-AC5Cu5Co Toluene COx (ppm) (ppm) 0 693 5761 627 3681 418 2528 185 1320 83 820 0 0 0 0 WI-AC3Cu7Co Toluene COx (ppm) (ppm) 0 1371 5395 1114 4289 928 3035 748 1320 574 1292 551 380 304 97 0 Appendix 2.2 Oxidation in desorption process over Cu-Co/MCM-41 Time (min) 12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75 127.5 SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co SS-M10Co SS-M10Cu WI-M5Cu5Co WI-M20Co Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx Toluene COx (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) 10773.05 7173.878 4368.943 2501.978 1593.242 1136.649 7.959375 0 0 0 0 0 8476 7511 4587 2849 1935 2043 1078 835 644 594 0 0 0 0 0 0 14568.79 7026.384 3815.359 1354.354 619.5319 379.6313 0 0 0 0 0 0 12062.92 7638.593 4259.829 2230.476 1324.665 583.0763 6.8175 0 0 0 0 0 0 8451.669 6826.916 3527.449 1968.266 1534.247 1078.386 540.4388 0 0 0 0 0 0 10875 5578 3291 1789 1049 662 485 247 234 178 137 0 0 0 0 0 13247 1544 0 123 | P a g e 0 0 Appendix 2.3 Oxidation in desorption process over Cu-Co/Silica gel Time (min) 12.75 25.5 38.25 51 SS-S5Cu5Co Toluene COx (ppm) (ppm) 12143 125 13 0 0 0 SS-S20Co Toluene COx (ppm) (ppm) 2901 180 0 0 0 o 124 | P a g e Appendix 3: Directed oxidation over Cu-Co/MCM-41 and Cu-Co/Silica gel Samples SS-M7Cu3Co SS-M5Cu 5Co SS-M3Cu7Co SS-M10Co SS-M10Cu SS-M20Co WI-M5Cu 5Co WI-M20Co SS-100Co SS-100Cu SS-5Cu5Co SS-S5Cu 5Co SS-S20Co Toluene conversion at temperature (%) 150oC 99.9 96.2 98.2 100 100 58.7 100 99 100 59.6 73.5 - 180oC 65.9 80.3 66.7 79.6 63.7 100 100 95.9 79.1 50.1 63.9 - 200oC 55.9 97 58.9 59.5 52.1 68.2 86.8 96.4 66.9 42.6 51.9 - 250oC 54.1 76.7 57.2 61.3 50 73.1 56.2 19 66.1 38.9 53.2 55.3 49.1 300oC 54.4 28.4 59.1 57.1 61.1 81.2 23.5 55 67.3 38.4 52.8 59.6 49.5 350oC 62.5 43.6 69.8 62.5 69.1 77.2 70.9 63.5 100 67.3 100 68.3 81.5 400oC 100 73.3 100 100 99.9 98.8 73.6 100 100 100 100 70.1 100 450oC 100 100 100 100 100 100 96.8 100 100 100 100 71.2 100 500oC 100 100 100 100 100 100 100 100 100 100 100 100 100 125 | P a g e Samples SS-M7Cu3Co SS-M5Cu 5Co SS-M3Cu7Co SS-M10Co SS-M10Cu SS-M20Co WI-M5Cu5Co WI-M20Co SS-100Co SS-100Cu SS-5Cu5Co SS-S5Cu5Co SS-S20Co CO2 yield at temperature (%) 150oC 0 0 0 0 0 0 180oC 0 0 0 0 0 0 200oC 0 0 0 0 0 0 250oC 0 0 15.6 1.7 0.8 4.1 300oC 1.1 2.2 1.9 2.5 53.3 13.8 2.3 2.9 19.4 28.7 350oC 10.2 24.8 14.8 19.6 50.2 41 75.2 76.6 90.3 100 400oC 100 23.6 80.6 96.1 91.1 100 10.4 100 78.2 100 90.9 1.8 100 450oC 93.5 100 75.1 80 80.2 100 100 100 78.6 100 90.3 17 100 500oC 90.7 100 74.1 89.2 65.4 100 100 100 79.7 100 93.5 64.9 100 126 | P a g e Appendix 4: Pictures of the research Picture Toluene adsorption, desorption and oxidation experiment system Picture Gas Chromatography with TCD detector |Page Picture Temperature control and reactor Picture Nitrogen or Oxygen Mass flow controller Picture Toluene generator Appendix 5: Pictures of some prepared catalysts Activated carbon MCM-41 SS-S20Co Silica gel WI-AC5Cu5Co WI-S20Co SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co 10 SS-M10Co 11 SS-M20Cu 12 WI-M5Cu5Co 13 WI-M3Cu7Co 14 WI-M10Co 15 WI-10Cu 16 SS-5Cu5Co 18 SS-100Cu 17 SS-100Co ... Condensation method 15 1.3 Catalytic oxidation of VOCs 16 1.3.1 Mechanisms and kinetics of catalytic oxidation of VOCs 16 1.3.2 Catalysts for oxidation of VOCs 17 1.3.2.1 Noble-metal... 17 1.3.2.2 Non-noble metal oxides 22 1.3.2.3 Non-noble mix metal oxides 26 1.3.3 Catalytic supports and preparation methods for VOCs oxidation 29 1.4 The summary of literature... Cu-Co/MCM-41 84 3.3.2 Oxidation over catalysts in desorption process 87 3.3.2.1 Toluene oxidation over Cu-Co/Activated carbon in desorption process 87 3.3.2.2 Toluene oxidation over Cu-Co/

Ngày đăng: 17/08/2021, 15:53

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. European Union Publications, Directive 2004/42/CE of the European Parliament and the Council EUR-Lex, 2007 Sách, tạp chí
Tiêu đề: Directive 2004/42/CE of the European Parliamentand the Council EUR-Lex
2. World Health Organization, “Indoor air quality: organic pollutants,” presented at the WHO Meeting, Berlin, Germany, Aug. 23-27, 1987 Sách, tạp chí
Tiêu đề: Indoor air quality: organic pollutants
3. F. Alonso, I. P. Beletskaya, and M. Yus, “Metal-mediated reductive hydrodehalogenation of organic halides,” Chem. Rev., vol. 102, no. 11, pp. 4009–4091, 2002, doi: 10.1021/cr0102967 Sách, tạp chí
Tiêu đề: Metal-mediated reductivehydrodehalogenation of organic halides,” "Chem. Rev
4. B. Huang, C. Lei, C. Wei, and G. Zeng, “Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies,” Environ. Int., vol. 71, pp. 118–138, 2014, doi: 10.1016/j.envint.2014.06.013 Sách, tạp chí
Tiêu đề: Chlorinated volatile organic compounds(Cl-VOCs) in environment - sources, potential human health impacts, andcurrent remediation technologies,” "Environ. Int
6. US. Environmental Protect Agency. 2002. EPA Air Pollution Control Cost Manual (Sixth Edition). Available: https://nepis.epa.gov/ Sách, tạp chí
Tiêu đề: EPA Air Pollution Control CostManual (Sixth Edition)
7. M. Mulder., “The use of membrane processes in environmental problems. An introduction,” in Membrane Processes in Separation and Purification, Kluwer academic publishers, Dordrecht-Boston, London, UK, 1994, ch. 10, pp. 229- 262 Sách, tạp chí
Tiêu đề: The use of membrane processes in environmental problems. Anintroduction,” in "Membrane Processes in Separation and Purification
8. T. Kumar, M. Rahul, and B. Chandrajit, “Biofiltration of volatile organic compounds (VOCs): An overview,” Res J Chem Sci, vol. 2231, no. 8, p. 606X, 2011 Sách, tạp chí
Tiêu đề: Biofiltration of volatile organiccompounds (VOCs): An overview,” "Res J Chem Sci
9. X. E. Verykios, P. Papaefthimiou, and T. Ioannides, “Combustion of non- halogenated volatile organic compounds over group VIII metal catalysts,” Appl.Catal. B Environ., vol. 13, pp. 175–184, 1997 Sách, tạp chí
Tiêu đề: Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts,” "Appl."Catal. B Environ
10. T. Tabakova et al., “Complete benzene oxidation over mono and bimetallic au- pd catalysts supported on Fe-modified ceria,” Chem. Eng. J., vol. 260, pp. 133– Sách, tạp chí
Tiêu đề: et al.", “Complete benzene oxidation over mono and bimetallic au-pd catalysts supported on Fe-modified ceria,” "Chem. Eng. J
11. Z. Rui, C. Chen, Y. Lu, and H. Ji, “Anodic alumina supported Pt catalyst for total oxidation of trace toluene,” Chinese J. Chem. Eng., vol. 22, no. 8, pp. 882– Sách, tạp chí
Tiêu đề: Anodic alumina supported Pt catalyst fortotal oxidation of trace toluene,” "Chinese J. Chem. Eng
12. H. J. Sedjame, C. Fontaine, G. Lafaye, and J. Barbier, “On the promoting effect of the addition of ceria to platinum-based alumina catalysts for VOCs oxidation,” Appl. Catal. B Environ., vol. 144, no. 1, pp. 233–242, 2014, doi:10.1016/j.apcatb.2013.07.022 Sách, tạp chí
Tiêu đề: On the promoting effectof the addition of ceria to platinum-based alumina catalysts for VOCsoxidation,” "Appl. Catal. B Environ
13. P. Sazama, O. Bortnovsky, J. Dědeček, Z. Tvaržková, and Z. Sobalík,“Geopolymer based catalysts-New group of catalytic materials,” Catal. Today, vol. 164, no. 1, pp. 92–99, 2011, doi: 10.1016/j.cattod.2010.09.008 Sách, tạp chí
Tiêu đề: Geopolymer based catalysts-New group of catalytic materials,” "Catal. Today
14. H. J. Joung, J. H. Kim, J. S. Oh, D. W. You, H. O. Park, and K. W. Jung,“Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles,”Appl. Surf. Sci., vol. 290, pp. 267–273, 2014, doi: 10.1016/j.apsusc.2013.11.066 Sách, tạp chí
Tiêu đề: Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles,”"Appl. Surf. Sci
15. S. Huang, C. Zhang, and H. He, “Complete oxidation of o-xylene over Pd/Al 2 O 3catalyst at low temperature,” Catal. Today, vol. 139, no. 1–2, pp. 15– 23, 2008, doi: 10.1016/j.cattod.2008.08.020 Sách, tạp chí
Tiêu đề: Complete oxidation of o-xylene over Pd/Al2O3catalyst at low temperature,” "Catal. Today
16. J. C. Rooke et al., “Hierarchically nanostructured porous group Vb metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs,”Appl. Catal. B Environ., vol. 162, pp. 300–309, 2015, doi:10.1016/j.apcatb.2014.06.056 Sách, tạp chí
Tiêu đề: et al.", “Hierarchically nanostructured porous group Vb metal oxidesfrom alkoxide precursors and their role in the catalytic remediation of VOCs,”"Appl. Catal. B Environ
17. S. Ojala et al., “Catalysis in VOC abatement,” Top. Catal., vol. 54, no. 16– 18, pp. 1224–1256, 2011, doi: 10.1007/s11244-011-9747-1 Sách, tạp chí
Tiêu đề: et al.", “Catalysis in VOC abatement,” "Top. Catal
18. A. M. Ali, M. A. Daous, A. A. M. Khamis, H. Driss, R. Burch, and L. A. Petrov,“Strong synergism between gold and manganese in an Au-Mn/triple- oxide- support (TOS) oxidation catalyst,” Appl. Catal. A Gen., vol. 489, pp. 24– 31, 2015, doi: 10.1016/j.apcata.2014.10.006 Sách, tạp chí
Tiêu đề: Strong synergism between gold and manganese in an Au-Mn/triple- oxide-support (TOS) oxidation catalyst,” "Appl. Catal. A Gen
19. S. A. C. Carabineiro et al., “Gold supported on metal oxides for volatile organic compounds total oxidation,” Catal. Today, vol. 244, pp. 103–114, 2015, doi:10.1016/j.cattod.2014.06.034 Sách, tạp chí
Tiêu đề: et al.", “Gold supported on metal oxides for volatile organiccompounds total oxidation,” "Catal. Today
20. A. C. C. Rodrigues, “Metallic mixed oxides (Pt, Mn or Cr) as catalysts for the gas-phase toluene oxidation,” Catal. Commun., vol. 8, no. 8, pp. 1227–1231, 2007, doi: 10.1016/j.catcom.2006.11.013 Sách, tạp chí
Tiêu đề: Metallic mixed oxides (Pt, Mn or Cr) as catalysts for thegas-phase toluene oxidation,” "Catal. Commun
21. L. Usón et al., “VOCs abatement using thick eggshell Pt/SBA-15 pellets with hierarchical porosity,” Catal. Today, vol. 227, pp. 179–186, 2014, doi:10.1016/j.cattod.2013.08.014 Sách, tạp chí
Tiêu đề: VOCs abatement using thick eggshell Pt/SBA-15 pellets withhierarchical porosity

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w