1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nghiên cứu tổng hợp màng CA đồng lắng đọng PDA và MPD ứng dụng tách loại một số hợp chất hữu cơ ô nhiễm trong môi trường nước

96 77 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 0,94 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC QUY NHƠN HUỲNH THỊ THIÊN HƯƠNG NGHIÊN CỨU TỔNG HỢP MÀNG CA ĐỒNG LẮNG ĐỌNG PDA VÀ MPD ỨNG DỤNG •• TÁCH LOẠI MỘT SỐ HỢP CHẤT HỮU CƠ ••• Ơ NHIỄM TRONG MƠI TRƯỜNG NƯỚC LUẬN VĂN THẠC SĨ HĨA HỌC ••• BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC QUY NHƠN Bình Định - Năm 2019 HUỲNH THỊ THIÊN HƯƠNG NGHIÊN CỨU TỔNG HỢP MÀNG CA ĐỒNG LẮNG ĐỌNG PDA VÀ MPD ỨNG DỤNG •• TÁCH LOẠI MỘT SỐ HỢP CHẤT HỮU CƠ ••• Ơ NHIỄM TRONG MƠI TRƯỜNG NƯỚC Chuyên ngành : Hóa lý thuyết Hóa lý Mã số : 44 01 19 Người hướng dẫn: TS Nguyễn Thị Thanh Bình LỜI CAM ĐOAN Tơi xin cam đoan cơng trình kết nghiên cứu riêng Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình nghiên cứu Học viên Huỳnh Thị Thiên Hương LỜI CẢM ƠN Trong suốt thời gian từ bắt đầu hoàn thành luận văn, em nhận nhiều quan tâm, giúp đỡ quý thầy cô, bạn bè nhóm nghiên cứu Đặc biệt giúp đỡ Cơ TS Nguyễn Thị Thanh Bình, giảng viên phụ trách hướng dẫn luận văn tốt nghiệp Với lòng biết ơn chân thành sâu sắc, em xin gởi đến TS Nguyễn Thị Thanh Bình, Đặng Thị Tố Nữ tận tình hướng dẫn giúp đỡ em hoàn thành luận văn tốt nghiệp Em chân thành cảm ơn thầy PGS.TS Cao Văn Hồng góp ý để luận văn em hoàn chỉnh Trong trình thực luận văn, em nhận nhiều quan tâm tạo điều kiện quý Thầy, Cơ khoa Hóa Trường Đại học Quy Nhơn Em xin bày tỏ lòng cảm ơn chân thành tới quý Thầy, Cơ Em xin chân thành cảm ơn gia đình, bạn bè tập thể lớp Cao học Hóa K20 ln động viên, khích lệ tinh thần suốt trình học tập nghiên cứu khoa học Mặc dù cố gắng thời gian thực luận văn cịn hạn chế kiến thức thời gian, kinh nghiệm nghiên cứu nên không tránh khỏi thiếu sót Em mong nhận thơng cảm ý kiến đóng góp q báu từ q Thầy, Cơ để luận văn hồn thiện Em xin chân thành cảm ơn! Huỳnh Thị Thiên Hương MỤC LỤC •• LỜI CAM ĐOAN LỜI CẢM ƠN MỤC LỤC DANH MỤC CÁC CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH 3.4.2 Kết khảo sát khả tách loại màng CA CA biến tính PHỤ LỤC QUYẾT ĐỊNH GIAO ĐỀ TÀI LUẬN VĂN THẠC SĨ (Bản sao) STT Chữ viết tắt Từ Tiếng Anh Từ Tiếng Việt CA Cellulose acetate Xenlulôzơ axetat CE Cellulose Xenlulôzơ CR Con-go Red Đỏ Công Gô DMSO Dimethyl sulfoxide Đimêtyl sunfoxit DS Degree of substitution Độ thay MPD m-phenylenediamine m-phenyl điamin TMC Trimesoyl clorua Trimesoyl clorua PDA Polydopamine Poly Dopamin DA Dopamine Dopamin 10 DTA Differential Thermal Phương pháp phân tích Analysis 11 TGA Thermo nhiệt vi sai Gravimetric Phương pháp phân tích Analysis nhiệt trọng lượng 12 PA Polyamit Polyamit 13 BSA Bovine serum albumin Huyết bị DANH MỤC CÁC BẢNG Hình 3.7 Ảnh SEM bề mặt màng (A): CA; (B): CA/PU; (C), (D), (E), (F) màng CA-PDA:MPD với tỉ lệ DA:MPD 0,025:1; 0,05:1 10 MỞ ĐẦU Lý chọn đề tài Đất nước ta trình hội nhập phát triển mặt kinh tế xã hội, văn hóa Q trình cơng nghiệp hóa, đại hóa mang thành tựu to vơ lớn cho đất nước, góp phần xây dựng đất nước nâng cao đời sống vật chất tinh thần cho nhân dân Tuy nhiên, bên cạnh đó, vấn đề nóng mang tính chất cấp thiết toàn cầu mà hầu giới kể nước ta đối mặt, vấn đề nhiễm mơi trường Ơ nhiễm mơi trường chia thành phần: nhiễm đất, nước khơng khí Đặc biệt, nhiễm mơi trường nước khơng khí có ảnh hưởng trực tiếp đến người sinh vật Ở Việt Nam tồn thực trạng nước thải hầu hết sở sản xuất xử lý sơ sài chí đưa trực tiếp mơi trường Vì vậy, việc tìm phương pháp nhằm xử lý hợp chất hữu độc hại khỏi mơi trường nước có ý nghĩa to lớn Thuốc nhuộm sử dụng để rộng rãi ngành công nghiệp, dệt may, nhuộm, da, giấy, mỹ phẩm Thuốc nhuộm có nguồn gốc tổng hợp cấu trúc phân tử thơm phức tạp làm cho phân tử thuốc nhuộm ổn định với ánh sáng, nhiệt độ tác nhân oxi hóa Do tính tan tốt nước, thuốc nhuộm tác nhân gây ô nhiễm môi trường nước Chỉ lượng nhỏ thuốc nhuộm thải môi trường làm nước có màu Như vậy, việc xử lý chất hữu nước quan tâm tìm biện pháp giải Trong số phương pháp nghiên cứu để tách loại phẩm màu môi trường nước phương pháp màng lọc mang lại hiệu cao, nguồn nguyên liệu rẻ tiền, dễ kiếm, quy trình đơn giản, không đưa thêm chất độc hại vào môi trường Hiện có nhiều vật liệu rẻ tiền, dễ kiếm, thân thiện với môi trường bã chè, bã mía, chuối sợi, vỏ dừa, rơm, bèo tây, đài sen.được sử dụng để loại bỏ chất độc hại mơi trường nước Trên giới có nhiều quốc B CA B CA/PU kJ CA-PDA:MPD 0,1:1 Hình 3.18 Đồ thị thể tỉ lệ thu hồi thông lượng màng CA CA biến tính • • • d •d d Theo kết Bảng 3.9, Hình 3.17 Hình 3.18 ta thấy thơng lượng nước màng lớn so với thông lượng dung dịch BSA, giảm thông lượng gây đại phân tử protein dung dịch BSA Các phân tử protein tạo tương tác không thuận nghịch với bề mặt màng liên kết hydro hay tương tác tĩnh điện tương tác kỵ nước, chúng hấp thụ nhanh mạnh lên bề mặt màng hình thành lớp chất gây tắc nghẽn màng, làm lấp lỗ xốp tăng trở lực dòng chảy qua màng Thông lượng nước màng CA-PDA:MPD 0,1:1 thu sau làm loại bỏ phân tử protein tăng lên đáng kể, điều thể rõ tỷ số thu hồi thông lượng FRR=83,16 cao, cao màng CA CA/PU, thời gian ngắn màng làm dễ dàng hiệu So với màng CA nguyên chất màng pha trộn CA/PU có giá trị thơng lượng, FRR cao trở lực màng thấp hơn, điều chứng tỏ khả phân tách BSA đặc tính chống tắc nghẽn màng CA/PU tốt so với màng CA nguyên chất So với màng CA/PU màng CA-PDA:MPD 0,1:1 có khả phân tách BSA đặc tính kháng nghẽn tương đối cao Sự lắng đọng chất bẩn bề mặt màng dẫn đến tắc nghẽn màng suy giảm thông lượng nghiêm trọng hai nguyên nhân: Thứ nhất, phân cực nồng độ, kết tự nhiên tính bám tính chọn lọc màng, dẫn đến tích tụ chất hạt bị loại bỏ lớp ranh giới chuyển khối tiếp giáp với bề mặt màng Phân cực nồng độ tượng đảo ngược mà thân khơng ảnh hưởng đến tính chất bên màng Thứ hai tắc nghẽn màng diễn vật chất dung dịch chất bẩn rời khỏi pha lỏng để tạo thành cặn bề mặt màng bên cấu trúc xốp [51] Q trình gây tích tụ vật liệu bề mặt (tức là, tắc nghẽn bên ngoài) và/ cấu trúc lỗ chân lông (nghĩa tắc nghẽn bên trong) màng Để nghiên cứu cách định lượng tính chất chống bẩn màng khảo sát, giá trị tổng tỷ lệ suy giảm thơng lượng (Rt) chia thành (Rr) (Rir) Trong Rr tỷ lệ suy giảm thông lượng thuận nghịch gây hấp phụ, phân cực nồng độ lắng đọng protein thuận nghịch loại bỏ lực cắt mạnh rửa trôi thông qua làm thủy lực Cịn Rir tỷ lệ suy giảm thơng lượng không thuận nghịch gây tắc nghẽn đảo ngược, diễn vật chất dung dịch chất bẩn rời khỏi pha lỏng để tạo thành cặn bề mặt màng bên cấu trúc xốp loại bỏ cách làm hóa học suy thối enzyme [52, 53] Giá trị Rt màng CA cao, lên đến 62,34% tương ứng với hấp phụ lắng đọng protein nhiều bề mặt màng [54], với màng CA biến tính, giá trị Rt giảm đáng kể Kết chứng minh đặc tính chống bẩn cải thiện màng biến đổi hưởng lợi từ nhóm ưa nước đa chức (amin, imine catechol) lớp phủ PDA 3.6 Tương tác DA MPD phản ứng IP Trên sở quan sát ảnh SEM màng với tỉ lệ DA:MPD khác nhau, chúng tơi đưa vai trị quan trọng việc kết hợp DA trình IP, ảnh hưởng cấu trúc, tính chất hiệu suất lớp PA Đầu tiên quan sát thấy thay đổi rõ rệt màu sắc dung dịch DA nguyên chất dung dịch kết hợp DA:MPD Trong dung dịch DA tinh khiết pH 8,5 có xu hướng tối đen vài phút thêm MPD vào, dung dịch có màu nâu cho thấy tạo hợp chất DA-MPD [43] Do phân tử DA có nhóm -NH2, tham gia phản ứng IP, PDA dễ dàng chấm dứt mạch PA, gây phản ứng liên kết ngang không đủ nhiều phân tử DA TMC, tạo thành cấu trúc lỏng lẻo lớp PA Ở pH 8,5, DA có xu hướng tự polyme hóa hình thành hạt nano PDA thơng qua q trình oxy hóa yếu Trong đó, phức hợp PDA-MPD tạo thông qua phản ứng bổ sung Michael phản ứng sở Schiff MPD PDA, làm giảm hình thành PDA Trong trình IP, phức hợp DA- MPD ưa nước khuếch tán với MPD vào dung dịch TMC, tạo điều kiện để thiết lập lớp PA tối ưu với cải thiện đồng thời tính thấm nước Tuy nhiên, với gia tăng nồng độ DA cao hơn, nhiều tập hợp PDA hình thành thơng qua q trình oxy hóa nhúng vào lớp PA Quá trình IP bị cản trở nhiều cản trở không gian tập hợp PDA xây dựng không liên tục bề mặt màng với khiếm khuyết A B Hình 3.19 Tương tác DA MPD phản ứng IP Hình (A) trình tự trùng hợp PDA Hình (B) tương tác PDA MPD Hình (C) trình IP với TMC Qua sơ đồ ta thấy tương tác PDA MPD Trong q trình này, số nhóm -NH2 MPD có tương tác với PDA, tạo thành hệ polymer Ngồi khía cạnh khác, nhóm -NH2 cịn lại tham gia vào q trình giao thoa bề mặt với TMC Trong q trình này, cịn có cạnh tranh bề mặt MPD đơn phân tử tham gia vào IP hệ complex PDA:MPD tham gia vào trình IP KẾT LUẬN VÀ KIẾN NGHỊ KẾT LUẬN Đã chiết tách cellulose từ bã mía Từ cellulose bã mía, tổng hợp vật liệu cellulose acetate (CA) với độ thay nhóm chức DS = 2,72, độ nhớt 101,9 mL/g, khối lượng phân tử trung bình 43100g/mol Các vật liệu màng CA, màng pha trộn CA/PU CA-PDA:MPD 0,1:1 chế tạo thành công phương pháp casting Tỉ lệ khối lượng DA:MPD phù hợp 0,1:1; pH=8,5; tỉ lệ TMC n-hexan 0,1% trọng lượng thể tích Khảo sát phân tách thuốc nhuộm màng CA CA biến tính với dung dịch phẩm màu CR, kết thu khả tách loại màng CA-PDA:MPD đạt đến 98,9% tốc độ dòng 61 L/m2.h Khảo sát khả tách loại màng với dung dịch BSA Màng CA-PDA:MPD 0,1:1 có khả tách loại đạt hiệu suất 99,9% Kết khảo sát tính chống bẩn màng thể thơng qua thu khả tỷ số phân thông tách lượng với BSA FRR CA vàCA CA 72,56 biến vàtính màng PDA:MPD CA-PDA:MPD 0,1:1 0,1:1 48,83% thấp 83,16 Giá somàng trị màng với Rt màng ban CAđầu 62,34% KIẾN NGHỊ Trên sở kết thu được, số nội dung cần nghiên cứu tương lai sau: Nghiên cứu yếu tố ảnh hưởng đến trình IP pH, tỉ lệ TMC n-hexan, xử lý nhiệt khác để phủ lên màng CA Nghiên cứu thay PDA hợp chất amine khác PIP, PEI Khảo sát thêm khả tách loại muối NaCl, Na2SO4 khả tách loại chất hữu ô nhiễm khác Đỏ 23 (DR23), Xanh phản ứng (RB2) vật liệu màng 8 88 DANH MỤC TÀI LIỆU THAM KHẢO •• CƠNG TRÌNH CƠNG BỐ LIÊN QUAN ĐẾN KHÓA LUẬN Dang Thi To Nu, Huynh Thi Kim Lien, Tran Van Huynh Thi Thien Hung, Huong, Fabrication Le Thi ofCam cellulose Nhung, Cao acetate-polyurethane Van Hoang, Nguyen blend Phi membrane induced phase using separation environmental-friendly method, Tạp chí solvent Hóa Hien, học, via non-solvent Tập 57(4e 1,2), 345-350 (2019) (ISSN 0866-7144) [1] C H Trượng and H T Lĩnh, "Hoá học thuốc nhuộm," NXB Khoa học Kỹ thuật, 1995 [1] Đ K Chi, "Hóa học mơi trường," NXB KH& KT Hà Nội, 2006 [2] Đ T Phòng and T H Nhuệ, "Xử lí nước cấp nước thải dệt nhuộm, NXB Khoa học kĩ thuật," Hà Nội, 2005 [3] T Đ Hạ and Đ V Hải, "Cơ sở hóa học trình xử lý nước cấp nước thải," NXB Khoa học Kỹ thuật, Hà Nội, 2002 [4] T V A Cù and T D Trần, "Nghiên cứu tách thu hồi thuốc nhuộm dư nước thải nhuộm màng lọc khả giảm thiểu fouling cho trình lọc tách thuốc nhuộm qua màng," Trường Đại học Khoa học Tự nhiên, 2012 [5] H S Tráng, "Cơ Sở Hóa Học Gỗ Và Xenluloza Tập 1," ed: Khoa học Kỹ thuật, 2006 [6] C Zhong, C Wang, F Wang, H Jia, P Wei, and Y Zhao, "Application of tetra-n-methylammonium hydroxide on cellulose dissolution and isolation from sugarcane bagasse," Carbohydrate polymers, vol 136, pp 979-987, 2016 [7] C M Buchanan, R M Gardner, and R J Komarek, "Aerobic biodegradation of cellulose acetate," Journal of Applied Polymer Science, vol 47, no 10, pp 1709-1719, 1993 [8] S Gaan, L Mauclaire, P Rupper, V Salimova, T.-T Tran, and M Heuberger, "Thermal degradation of cellulose acetate in presence of bisphosphoramidates," Journal of Analytical and Applied Pyrolysis, vol 90, no 1, pp 33-41, 2011 [9] H O Ghareeb and W Radke, "Characterization of cellulose acetates according to DS and molar mass using two-dimensional chromatography," Carbohydrate polymers, vol 98, no 2, pp 14301437, 2013 [10] S Fischer, K Thummler, B Volkert, K Hettrich, I Schmidt, and K Fischer, "Properties and applications of cellulose acetate," in Macromolecular Symposia, 2008, vol 262, no 1, pp 89-96: Wiley Online Library [11] M Szycher, Szycher's handbook of polyurethanes CRC press, 1999 [12] T Riaz et al., "Synthesis and characterization of polyurethanecellulose acetate blend membrane for chromium (VI) removal," Carbohydrate polymers, vol 153, pp 582-591, 2016 [13] M Soto, R M Sebastian, and J Marquet, "Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols," The Journal of organic chemistry, vol 79, no 11, pp 5019-5027, 2014 [14] I Yilgor and E Yilgor, "Hydrophilic polyurethaneurea membranes: influence of soft block composition on the water vapor permeation rates," Polymer, vol 40, no 20, pp 5575-5581, 1999 [15] R A Zangmeister, T A Morris, and M J Tarlov, "Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine," Langmuir, vol 29, no 27, pp 8619-8628, 2013 [16] D Wu, "Thin Film Composite Membranes Derived from Interfacial Polymerization for Nanofiltration and Pervaporation Applications," 2015 [17] L Shen, W.-s Hung, J Zuo, X Zhang, J.-Y Lai, and Y Wang, "High- performance thin-film composite polyamide membranes developed with green ultrasound-assisted interfacial polymerization," Journal of membrane science, vol 570, pp 112-119, 2019 [18] T Tsuru et al., "Multilayered polyamide membranes by sprayassisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes," Journal of membrane science, vol 446, pp 504-512, 2013 [19] Z Yang, X Huang, J Wang, and C Y Tang, "Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate," Frontiers of Chemical Science and Engineering, vol 12, no 2, pp 273-282, 2018 [20] R J Petersen, "Composite reverse osmosis and nanofiltration membranes, " Journal of membrane science, vol 83, no 1, pp 81-150, 1993 [21] J Shi, W Wu, Y Xia, Z Li, and W Li, "Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination," Desalination, vol 441, pp 77-86, 2018 [22] J Wang et al., "High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine," Journal of Materials Chemistry A, vol 5, no 28, pp 14847-14857, 2017 [23] W Fang, L Shi, and R Wang, "Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved lowpressure 91 water softening capability," Journal of membrane science, vol 468, pp 52-61, 2014 [24] A K Ghosh, B.-H Jeong, X Huang, and E M Hoek, "Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties," Journal of Membrane Science, vol 311, no 1-2, pp 34-45, 2008 [25] M Adamczak, G Kaminska, and J Bohdziewicz, "Preparation of Polymer Membranes by In Situ Interfacial Polymerization," International Journal of Polymer Science, vol 2019, 2019 [26] J Jegal, S G Min, and K H Lee, "Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes," Journal of applied polymer science, vol 86, no 11, pp 2781-2787, 2002 [27] T Shintani, H Matsuyama, and N Kurata, "Effect of heat treatment on performance of chlorine-resistant polyamide reverse osmosis membranes," Desalination, vol 247, no 1-3, pp 370-377, 2009 [28] D C Hung, N C Nguyen, D K Uan, and L T Son, "Membrane processes and their potential applications for fresh water provision in Vietnam," Vietnam Journal of Chemistry, vol 55, no 5, p 533, 2017 [29] B S Lalia, V Kochkodan, R Hashaikeh, and N Hilal, "A review on membrane fabrication: Structure, properties and performance relationship," Desalination, vol 326, pp 77-95, 2013 [30] H H Wang, J T Jung, J F Kim, S Kim, E Drioli, and Y M Lee, "A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)," Journal of membrane science, vol 574, pp 44-54, 2019 [31] P Menut et al., "A top surface liquid layer during membrane formation using vapor-induced phase separation (VIPS)—Evidence and mechanism of formation," Journal of Membrane Science, vol 310, no 1-2, pp 278-288, 2008 [32] X Ma et al., "Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment," Bioresource technology, vol 161, pp 215-220, 2014 [33] P Zhang, Y Wei, Y Liu, J Gao, Y Chen, and Y Fan, "HeatInduced Discoloration of Chromophore Structures in Eucalyptus Lignin," Materials, vol 11, no 9, p 1686, 2018 [34] H M Shaikh, K V Pandare, G Nair, and A J Varma, "Utilization of sugarcane bagasse cellulose for producing cellulose 92 acetates: Novel use of residual hemicellulose as plasticizer," Carbohydrate Polymers, vol 76, no 1, pp 23-29, 2009 [35] R Candido and A Gonẹalves, "Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw," Carbohydrate polymers, vol 152, pp 679-686, 2016 [36] X Chen, J Yu, Z Zhang, and C Lu, "Study on structure and thermal stability properties of cellulose fibers from rice straw," Carbohydrate Polymers, vol 85, no 1, pp 245-250, 2011 [37] G Fan, M Wang, C Liao, T Fang, J Li, and R Zhou, "Isolation of cellulose from rice straw and its conversion into cellulose acetate catalyzed by phosphotungstic acid," Carbohydrate polymers, vol 94, no 1, pp 71-76, 2013 [38] W R W Daud and F M Djuned, "Cellulose acetate from oil palm empty fruit bunch via a one step heterogeneous acetylation," Carbohydrate polymers, vol 132, pp 252-260, 2015 [39] H Kono, Y Numata, N Nagai, T Erata, and M Takai, "CPMAS 13C NMR and X-ray studies of cellooligosaccharide acetates as a model for cellulose triacetate," Journal of Polymer Science Part A: Polymer Chemistry, vol 37, no 22, pp 4100-4107, 1999 [40] E E Kiziltas, H.-S Yang, A Kiziltas, S Boran, E Ozen, and D J Gardner, "Thermal analysis of polyamide composites filled by natural fiber blend," BioResources, vol 11, no 2, pp 4758-4769, 2016 [41] J Zhao et al., "Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization," Journal of membrane science, vol 465, pp 41-48, 2014 [42] L Xu, J Xu, B Shan, X Wang, and C Gao, "Novel thin-film composite membranes via manipulating the synergistic interaction of dopamine and m-phenylenediamine for highly efficient forward osmosis desalination," Journal of Materials Chemistry A, vol 5, no 17, pp 7920-7932, 2017 [43] C Cheng et al., "The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with musselinspired polydopamine coatings," Journal of membrane science, vol 417, pp 228-236, 2012 [44] C Su, L Chi, Y Qian, S Sun, and Z Jiang, "Fabrication of SolventResistant Nanofiltration Membrane via Interfacial Polymerization Based on Cellulose Acetate Membrane," Journal of Materials Science and Chemical Engineering, vol 6, no 12, pp 1-15, 2018 93 [46] E.-S M Mansour, S H Kandil, H H Hassan, and M A Shaban, "Synthesis of carbohydrate-containing polyamides and study of their properties," European polymer journal, vol 26, no 3, pp 267-276, 1990 [47] J Zhu, "Preparation of Advanced Composite Membranes through Surface Functionalization for Nanofiltration," Lappeenranta University of Technology, 2018 [48] S Shen, J Yang, C Liu, and R Bai, "Immobilization of copper ions on chitosan/cellulose acetate blend hollow fiber membrane for protein adsorption," RSC advances, vol 7, no 17, pp 10424-10431, 2017 [49] L R Barbosa, M G Ortore, F Spinozzi, P Mariani, S Bernstorff, and R Itri, "The importance of protein-protein interactions on the pH- induced conformational changes of bovine serum albumin: a smallangle X-ray scattering study," Biophysical journal, vol 98, no 1, pp 147-157, 2010 [50] S Yuan, "Advanced Membrane Synthesis Methods: Exploration of 3D Printed Membranes for Oil/Water Separation and Development of Novel Polymers for Organic Solvent Nanofiltration," 2018 [51] N D'souza and A Mawson, "Membrane cleaning in the dairy industry: a review," Critical reviews in food science and nutrition, vol 45, no 2, pp 125-134, 2005 [52] X Shi, G Tal, N P Hankins, and V Gitis, "Fouling and cleaning of ultrafiltration membranes: a review," Journal of Water Process Engineering, vol 1, pp 121-138, 2014 [53] W Gao et al., "Membrane fouling control in ultrafiltration technology for drinking water production: a review," Desalination, vol 272,H no 13, pp 1-8, 2011 Y Liu, Huang, P.serum Huo, and J Gu, "Exploration zwitterionic membrane for cellulose bovine acetate albumin antifouling (BSA) separation," ultrafiltration Carbohydrate polymers, vol 165, pp 266275, 2017.of PHỤ LỤC •• Phụ lục 1: Phổ IR bã mía ban đầu Phụ lục 2: Phổ IR CE 6/25/2018 7:45:37 PM Instrument: FTIR Affinity - IS Department of Inorganic Chemistry, HUS-VNU Comment: File name: C:\Program FilesU_abSolutions\lR\Data\DH Quy Nhon\Dang To NuXCel.ispd No of Scans: 20 Intensity Mode: %Transmittance Min: 400 cm-1 Max: 4000 cm-1 Resolution: [cm-11 Atmosphere Correction: OFF ijSHIMADZU Phụ lục 3: Phổ IR CA 6/25/2018 7:41:11 PM Instrument: FT1R Affinity - IS Department of Inorganic Chemistry, HUS-VNU Comment: File name: C:\Program Files\LabSolutions\IR\Data\DH Quy Nhon\Dang To Nu\CAl.ispd No of Scans: 20 Intensity Mode: %Transmittance Min: 400 cm-1 Max: 4000 cm-1 Resolution: [cm-11 Atmosphere Coưection: OFF Phụ lục 4: Phổ IR màng CAPDA:MPD 0,1:1 E SHIMADZU Phụ lục 5: Phổ XRD CA Phụ lục 6: Phổ XRD CE ... DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC QUY NHƠN Bình Định - Năm 2019 HUỲNH THỊ THIÊN HƯƠNG NGHIÊN CỨU TỔNG HỢP MÀNG CA ĐỒNG LẮNG ĐỌNG PDA VÀ MPD ỨNG DỤNG •• TÁCH LOẠI MỘT SỐ HỢP CHẤT HỮU CƠ ••• Ơ NHIỄM TRONG. .. giúp tách loại hầu hết hợp chất hữu cơ, mang lại hiệu sử dụng cao, khả kháng nghẽn cao,khơng đưa thêm chất độc hại vào mơi trường Vì chọn thực đề tài ? ?Nghiên cứu tổng hợp màng CA đồng lắng đọng PDA. .. lắng đọng PDA MPD ứng dụng tách loại số hợp chất hữu nhiễm mơi trường nước? ?? Mục đích nghiên cứu - Tổng hợp CA từ cellulose bã mía; - Chế tạo màng CA; - Biến tính bề mặt màng CA với DA MPD; - Khảo

Ngày đăng: 16/08/2021, 11:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w