1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phương pháp phần tử hữu hạn đối với bài toán dầm liên tục chịu tải trọng tĩnh tập trung

74 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phương Pháp Phần Tử Hữu Hạn Đối Với Bài Toán Dầm Liên Tục Chịu Tải Trọng Tĩnh Tập Trung
Tác giả Nguyễn Văn Trường
Người hướng dẫn GS.TSKH. Hà Huy Cương
Trường học Trường Đại Học Dân Lập Hải Phòng
Chuyên ngành Kỹ Thuật Xây Dựng
Thể loại luận văn thạc sĩ
Năm xuất bản 2017
Thành phố Hải Phòng
Định dạng
Số trang 74
Dung lượng 2,22 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÒNG - NGUYỄN VĂN TRƢỜNG Mang l■i tr■ nghi■m m■i m■ cho ng■■i dùng, công ngh■ hi■n th■ hi■n ■■i, b■n online không khác so v■i b■n g■c B■n có th■ phóng to, thu nh■ tùy ý PHƢƠNG PHÁP PHẦN TỬ HỮU HẠN ĐỐI VỚI BÀI TOÁN DẦM LIÊN TỤC CHỊU TẢI TRỌNG TĨNH TẬP TRUNG Chuyên ngành: Kỹ thuật Xây dựng Công trình Dân dụng & Cơng nghiệp Mã số: 60.58.02.08 LUẬN VĂN THẠC SỸ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: GS.TSKH HÀ HUY CƢƠNG Hải Phịng, 2017 Mangh■n Ln 123doc Th■a Xu■t Sau Nhi■u h■■ng phát thu■n l■i event cam s■ nh■n m■t tr■ t■ h■u k■t s■ thú nghi■m t■i ýxác n■m t■■ng m■t d■ng v■, s■ nh■n website mang event kho m■i ■■i, t■o t■ th■ m■ l■i c■ng ki■m ■■ng d■n 123doc CH■P vi■n nh■ng cho ■■u ■■ng ti■n h■ kh■ng ng■■i NH■N ■ã quy■n th■ng thi■t chia t■ng ki■m dùng, l■ CÁC s■ th■c s■ l■i b■■c v■i ti■n vàchuy■n ■I■U t■t công h■n mua 123doc online kh■ng nh■t 2.000.000 ngh■ bán KHO■N sang b■ng cho tài ■■nh hi■n ng■■i li■u ph■n tài TH■A tài v■ th■ li■u hàng t■o li■u thơng dùng tríhi■n THU■N hi■u c■ c■a ■■u ■ tin t■t h■i Khi ■■i, qu■ Vi■t xác c■ khách gia b■n nh■t, minh l■nh Nam t■ng Chào online hàng uy tài v■c: l■nh thu Tác m■ng tín kho■n tr■ nh■p không tài phong v■c cao thành b■n email nh■t tài online khác chuyên ■■n li■u thành tínb■n Mong cho d■ng, v■i so nghi■p, viên kinh ■ã t■t 123doc 123doc.net! v■i mu■n công ■■ng c■a c■ doanh b■n hoàn mang ngh■ 123doc ký g■c online thành v■i h■o, Chúng l■i thông B■n 123doc.netLink cho viên Tính ■■ n■p có tơi tin, c■ng c■a cao th■ ■■n cung ti■n ngo■i tính website phóng ■■ng th■i vào c■p ng■, Khách trách xác tài ■i■m D■ch xã to,kho■n th■c nhi■m h■i thutháng V■ nh■ m■t s■ c■a (nh■ ■■i hàng ■■■c tùy ngu■n 5/2014; 123doc, v■i ■■■c ý cóg■i t■ng th■ tài 123doc v■ mơ ngun b■n d■ ng■■i ■■a t■ dàng s■ v■■t d■■i tri dùng ■■■c ch■ tra th■c m■c ■ây) email c■u M■c h■■ng quý 100.000 cho tài b■n tiêu báu, li■u b■n, nh■ng ■ã hàng phong m■t l■■t tùy ■■ng ■■u quy■n cách truy thu■c phú, ky, c■a c■p ■a l■i b■n vào 123doc.net m■i d■ng, sau xác, vuingày, n■p lòng “■i■u nhanh giàu ti■n s■ ■■ng tr■ giá Kho■n chóng h■u thành tr■ nh■p 2.000.000 website ■■ng Th■a th■ email vi■n th■i Thu■n c■a thành mong tài v■ li■u viên mu■n S■ online ■■ng D■ng click t■o l■n ký, D■ch ■i■u vào nh■t l■t link ki■n V■” vào Vi■t 123doc top sau cho Nam, 200 ■ây cho ■ã cung các (sau g■iwebsite c■p users ■âynh■ng ■■■c cóph■ thêm tài bi■n g■i thu li■u t■t nh■t nh■p ■■c T■it■i khơng t■ng Chính Vi■tth■i th■ Nam, v■y ■i■m, tìm t■123doc.net th■y l■chúng tìm ki■m tơi th■ racóthu■c ■■i tr■■ng th■nh■m c■p top ngo■i 3nh■t ■áp Google tr■ ■KTTSDDV ■ng 123doc.net Nh■n nhu c■u ■■■c theo chiaquy■t danh s■ tài hi■u li■udo ch■t c■ng l■■ng ■■ng vàbình ki■mch■n ti■n online website ki■m ti■n online hi■u qu■ uy tín nh■t Mangh■n Ln 123doc Th■a Xu■t Sau Nhi■u h■■ng phát thu■n l■i event s■ cam nh■n m■t tr■ t■ h■u k■t s■ thú nghi■m t■i ýxác n■m t■■ng m■t d■ng v■, s■ nh■n website mang event kho m■i ■■i, t■o t■ th■ m■ l■i c■ng ki■m ■■ng d■n 123doc CH■P vi■n nh■ng cho ■■u ■■ng ti■n h■ kh■ng ng■■i NH■N ■ã quy■n th■ng thi■t chia t■ng ki■m dùng, l■ CÁC s■ th■c s■ l■i b■■c v■i ti■n vàchuy■n ■I■U t■t công h■n mua 123doc online kh■ng nh■t 2.000.000 ngh■ bán KHO■N sang b■ng cho tài ■■nh hi■n ng■■i li■u ph■n tài TH■A tài v■ th■ li■u hàng t■o li■u thông dùng tríhi■n THU■N hi■u c■ c■a ■■u ■ tin t■t h■i Khi ■■i, qu■ Vi■t xác c■ khách gia b■n nh■t, minh l■nh Nam t■ng Chào online hàng uy tài v■c: l■nh thu Tác m■ng tín kho■n tr■ nh■p khơng tài phong v■c cao thành b■n email nh■t tài online khác chuyên ■■n li■u thành tínb■n Mong cho d■ng, v■i so nghi■p, viên kinh ■ã t■t 123doc 123doc.net! v■i mu■n công ■■ng c■a c■ doanh b■n hoàn mang ngh■ 123doc ký g■c online thành v■i h■o, Chúng l■i thông B■n 123doc.netLink cho viên Tính ■■ n■p có tơi tin, c■ng c■a cao th■ ■■n cung ti■n ngo■i tính website phóng ■■ng th■i vào c■p ng■, Khách trách xác tài ■i■m D■ch xã to,kho■n th■c nhi■m h■i thutháng V■ nh■ m■t s■ c■a (nh■ ■■i hàng ■■■c tùy ngu■n 5/2014; 123doc, v■i ■■■c ý cóg■i t■ng th■ tài 123doc v■ mơ ngun b■n d■ ng■■i ■■a t■ dàng s■ v■■t d■■i tri dùng ■■■c ch■ tra th■c m■c ■ây) email c■u M■c h■■ng quý 100.000 cho tài b■n tiêu báu, li■u b■n, nh■ng ■ã hàng phong m■t l■■t tùy ■■ng ■■u quy■n cách truy thu■c phú, ky, c■a c■p ■a l■i b■n vào 123doc.net m■i d■ng, sau xác, vuingày, n■p lòng “■i■u nhanh giàu ti■n s■ ■■ng tr■ giá Kho■n chóng h■u thành tr■ nh■p 2.000.000 website ■■ng Th■a th■ email vi■n th■i Thu■n c■a thành mong tài v■ li■u viên mu■n S■ online ■■ng D■ng click t■o l■n ký, D■ch ■i■u vào nh■t l■t link ki■n V■” vào Vi■t 123doc top sau cho Nam, 200 ■ây cho ■ã cung các (sau g■iwebsite c■p users ■âynh■ng ■■■c cóph■ thêm tài bi■n g■i thu li■u t■t nh■t nh■p ■■c T■it■i khơng t■ng Chính Vi■tth■i th■ Nam, v■y ■i■m, tìm t■123doc.net th■y l■chúng tìm ki■m tơi th■ racóthu■c ■■i tr■■ng th■nh■m c■p top ngo■i 3nh■t ■áp Google tr■ ■KTTSDDV ■ng 123doc.net Nh■n nhu c■u ■■■c theo chiaquy■t danh s■ tài hi■u li■udo ch■t c■ng l■■ng ■■ng vàbình ki■mch■n ti■n online website ki■m ti■n online hi■u qu■ uy tín nh■t Lnh■n 123doc Th■a Xu■t Sau h■■ng phát thu■n cam nh■n m■t t■k■t s■ t■i ýxác n■m t■■ng d■ng s■ nh■n website mang ■■i, t■o t■l■i c■ng ■■ng d■n 123doc CH■P nh■ng ■■u ■■ng h■ NH■N ■ã quy■n th■ng chia t■ng ki■m CÁC s■s■ l■i b■■c ti■n vàchuy■n ■I■U t■t mua online kh■ng nh■t bán KHO■N sang b■ng cho tài ■■nh ng■■i li■u ph■n tài TH■A v■ li■u hàng thơng dùng tríTHU■N hi■u c■a ■■u tin Khi qu■ Vi■t xác khách nh■t, minh Nam Chào hàng uy tài l■nh Tác m■ng tín kho■n tr■ phong v■c cao thành b■n email nh■t tàichuyên ■■n li■u thành b■n Mong v■i nghi■p, viên kinh ■ã 123doc 123doc.net! mu■n ■■ng c■a doanh hoàn mang 123doc kýonline v■i h■o, Chúng l■ivà 123doc.netLink cho Tính ■■ n■p tơi c■ng cao ■■n cung ti■n tính ■■ng th■i vào c■p trách xác tài ■i■m D■ch xãkho■n th■c nhi■m h■itháng V■ m■t s■ c■a (nh■ ■■i ■■■c ngu■n 5/2014; 123doc, v■i ■■■c g■i t■ng tài 123doc v■ mô nguyên b■n ng■■i ■■a t■s■ v■■t d■■i tri dùng ■■■c ch■ th■c m■c ■ây) email M■c h■■ng quý 100.000 cho b■n tiêu báu, b■n, nh■ng ■ã hàng phong l■■t tùy ■■ng ■■u quy■n truy thu■c phú, ky, c■a c■p ■a l■i b■n vào 123doc.net m■i d■ng, sau vuingày, n■p lòng “■i■u giàu ti■n s■ ■■ng tr■ giá Kho■n h■u thành tr■ nh■p 2.000.000 website ■■ng Th■a th■ email vi■n th■i Thu■n c■a thành mong tài v■ li■u viên mu■n S■ online ■■ng D■ng click t■o l■n ký, D■ch ■i■u vào nh■t l■t link ki■n V■” vào Vi■t 123doc top sau cho Nam, 200 ■ây cho ■ã cung các (sau g■iwebsite c■p users ■âynh■ng ■■■c cóph■ thêm tài bi■n g■i thu li■u t■t nh■t nh■p ■■c T■it■i không t■ng Chính Vi■tth■i th■ Nam, v■y ■i■m, tìm t■123doc.net th■y l■chúng tìm ki■m tơi th■ racóthu■c ■■i tr■■ng th■nh■m c■p top ngo■i 3nh■t ■áp Google tr■ ■KTTSDDV ■ng 123doc.net Nh■n nhu c■u ■■■c theo chiaquy■t danh s■ tài hi■u li■udo ch■t c■ng l■■ng ■■ng vàbình ki■mch■n ti■n online website ki■m ti■n online hi■u qu■ uy tín nh■t Luônh■n Th■a Xu■t Sau Nhi■u 123doc Mang h■■ng phát thu■n l■i event cam s■ nh■n m■t tr■ t■ h■u k■t s■ thú nghi■m t■i ýxác n■m t■■ng m■t d■ng v■, s■ nh■n website mang event kho m■i ■■i, t■o t■ th■ m■ l■i c■ng ki■m ■■ng d■n 123doc CH■P vi■n nh■ng cho ■■u ■■ng ti■n h■ kh■ng ng■■i NH■N ■ã quy■n th■ng thi■t chia t■ng ki■m dùng, l■ CÁC s■ th■c s■ l■i b■■c v■i ti■n vàchuy■n ■I■U t■t công h■n mua 123doc online kh■ng nh■t 2.000.000 ngh■ bán KHO■N sang b■ng cho tài ■■nh hi■n ng■■i li■u ph■n tài TH■A tài v■ th■ li■u hàng t■o li■u thơng dùng tríhi■n THU■N hi■u c■ c■a ■■u ■ tin t■t h■i Khi ■■i, qu■ Vi■t xác c■ khách gia b■n nh■t, minh l■nh Nam t■ng Chào online hàng uy tài v■c: l■nh thu Tác m■ng tín kho■n tr■ nh■p khơng tài phong v■c cao thành b■n email nh■t tài online khác chun ■■n li■u thành tínb■n Mong cho d■ng, v■i so nghi■p, viên kinh ■ã t■t 123doc 123doc.net! v■i mu■n cơng ■■ng c■a c■ doanh b■n hồn mang ngh■ 123doc ký g■c online thành v■i h■o, Chúng l■i thơng B■n 123doc.netLink cho viên Tính ■■ n■p có tin, c■ng c■a cao th■ ■■n cung ti■n ngo■i tính website phóng ■■ng th■i vào c■p ng■, Khách trách xác tài ■i■m D■ch xã to,kho■n th■c nhi■m h■i thutháng V■ nh■ m■t s■ c■a (nh■ ■■i hàng ■■■c tùy ngu■n 5/2014; 123doc, v■i ■■■c ý cóg■i t■ng th■ tài 123doc v■ mô nguyên b■n d■ ng■■i ■■a t■ dàng s■ v■■t d■■i tri dùng ■■■c ch■ tra th■c m■c ■ây) email c■u M■c h■■ng quý 100.000 cho tài b■n tiêu báu, li■u b■n, nh■ng ■ã hàng phong m■t l■■t tùy ■■ng ■■u quy■n cách truy thu■c phú, ky, c■a c■p ■a l■i b■n vào 123doc.net m■i d■ng, sau xác, vuingày, n■p lòng “■i■u nhanh giàu ti■n s■ ■■ng tr■ giá Kho■n chóng h■u thành tr■ nh■p 2.000.000 website ■■ng Th■a th■ email vi■n th■i Thu■n c■a thành mong tài v■ li■u viên mu■n S■ online ■■ng D■ng click t■o l■n ký, D■ch ■i■u vào nh■t l■t link ki■n V■” vào Vi■t 123doc top sau cho Nam, 200 ■ây cho ■ã cung các (sau g■iwebsite c■p users ■âynh■ng ■■■c cóph■ thêm tài bi■n g■i thu li■u t■t nh■t nh■p ■■c T■it■i khơng t■ng Chính Vi■tth■i th■ Nam, v■y ■i■m, tìm t■123doc.net th■y l■chúng tìm ki■m tơi th■ racóthu■c ■■i tr■■ng th■nh■m c■p top ngo■i 3nh■t ■áp Google tr■ ■KTTSDDV ■ng 123doc.net Nh■n nhu c■u ■■■c theo chiaquy■t danh s■ tài hi■u li■udo ch■t c■ng l■■ng ■■ng vàbình ki■mch■n ti■n online website ki■m ti■n online hi■u qu■ uy tín nh■t u■t phát Nhi■u Mang Luôn 123doc Th■a Xu■t Sau h■n h■■ng phát thu■n l■i event s■ cam nh■n t■ m■t tr■ t■ h■u ýk■t s■ thú nghi■m t■i ýt■■ng xác n■m t■■ng m■t d■ng v■, s■ nh■n website mang event t■o kho m■i ■■i, t■o t■ c■ng th■ m■ l■i c■ng ki■m ■■ng d■n 123doc CH■P vi■n nh■ng cho ■■ng ■■u ■■ng ti■n h■ kh■ng ng■■i NH■N ■ã quy■n th■ng thi■t chia ki■m t■ng ki■m dùng, l■ CÁC s■ th■c ti■n s■ l■i b■■c v■i ti■n vàchuy■n ■I■U t■t công online h■n mua 123doc online kh■ng nh■t 2.000.000 ngh■ bán KHO■N b■ng sang b■ng cho tài ■■nh hi■n tài ng■■i li■u ph■n tài TH■A li■u tài v■ th■ li■u hàng t■o li■u thơng dùng trí hi■u hi■n THU■N hi■u c■ c■a ■■u ■ tin qu■ t■t h■i Khi ■■i, qu■ Vi■t xác c■ khách gia nh■t, b■n nh■t, minh l■nh Nam t■ng Chào online uy hàng uy tài v■c: l■nh thu Tác tín m■ng tín kho■n tr■ cao nh■p khơng tài phong v■c cao thành b■n nh■t email nh■t tài online khác chun ■■n li■u thành tín Mong b■n Mong cho d■ng, v■i so nghi■p, viên kinh ■ã mu■n t■t 123doc 123doc.net! v■i mu■n công ■■ng c■a c■ doanh b■n mang hoàn mang ngh■ 123doc ký g■c online thành v■i l■i h■o, Chúng l■i thông B■n cho 123doc.netLink cho viên Tính ■■ n■p có c■ng tơi tin, c■ng c■a cao th■ ■■n cung ti■n ngo■i ■■ng tính website phóng ■■ng th■i vào c■p ng■, Khách trách xác xã tài ■i■m D■ch xã to,h■i kho■n th■c nhi■m h■i thum■t tháng V■ nh■ m■t s■ c■a (nh■ ■■i hàng ngu■n ■■■c tùy ngu■n 5/2014; 123doc, v■i ■■■c ý cótài g■i t■ng th■ tài 123doc nguyên v■ mô nguyên b■n d■ ng■■i ■■a t■ dàng s■ v■■t tri d■■i tri dùng ■■■c ch■ th■c tra th■c m■c ■ây) email c■u quý M■c h■■ng quý 100.000 cho tài báu, b■n tiêu báu, li■u b■n, nh■ng phong ■ã hàng phong m■t l■■t tùy ■■ng ■■u phú, quy■n cách truy thu■c phú, ky, c■a c■p ■a ■a l■i b■n vào d■ng, 123doc.net m■i d■ng, sau xác, vuingày, n■p giàu lòng “■i■u nhanh giàu ti■n giá s■ ■■ng tr■ giá Kho■n chóng h■u tr■ thành tr■ nh■p ■■ng 2.000.000 website ■■ng Th■a th■ email th■i vi■n th■i Thu■n mong c■a thành mong tài v■ li■u mu■n viên mu■n S■ online ■■ng D■ng t■o click t■o l■n ■i■u ký, D■ch ■i■u vào nh■t l■t link ki■n ki■n V■” vào Vi■t 123doc cho top sau cho Nam, cho 200 ■ây cho ■ã cung các (sau g■i users website c■p users ■âynh■ng có ■■■c cóph■ thêm thêm tài bi■n g■i thu thu li■u t■t nh■p nh■t nh■p ■■c T■it■i Chính khơng t■ng Chính Vi■tth■i vìth■ Nam, vìv■y v■y ■i■m, tìm 123doc.net t■123doc.net th■y l■chúng tìm ki■m tơi th■ racó ■■i thu■c ■■i tr■■ng th■ nh■m nh■m c■p top ngo■i ■áp 3nh■t ■áp Google ■ng tr■ ■KTTSDDV ■ng 123doc.net nhu Nh■n nhuc■u c■u ■■■c chia theo chias■ quy■t danh s■tàitài hi■u li■u li■uch■t ch■t c■ng l■■ng l■■ng ■■ng vàvàki■m bình ki■mch■n ti■n ti■nonline online website ki■m ti■n online hi■u qu■ uy tín nh■t LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng Các số liệu, kết luận văn trung thực chưa công bố cơng trình khác Tác giả luận văn Nguyễn Văn Trƣờng LỜI CẢM ƠN Tác giả luận văn xin trân trọng bày tỏ lòng biết ơn sâu sắc GS.TSKH Hà Huy Cương ý tưởng khoa học độc đáo, bảo sâu sắc phương pháp nguyên lý cực trị Gauss chia sẻ kiến thức học, toán học uyên bác Giáo sư Giáo sư tận tình giúp đỡ cho nhiều dẫn khoa học có giá trị thường xuyên động viên, tạo điều kiện thuận lợi, giúp đỡ tác giả suốt q trình học tập, nghiên cứu hồn thành luận văn Tác giả xin chân thành cảm ơn nhà khoa học, chuyên gia trường Đại học Dân lập Hải phòng tạo điều kiện giúp đỡ, quan tâm góp ý cho luận văn hoàn thiện Tác giả xin trân trọng cảm ơn cán bộ, giáo viên Khoa xây dựng, Phòng đào tạo Đại học Sau đại học - trường Đại học Dân lập Hải phòng, đồng nghiệp tạo điều kiện thuận lợi, giúp đỡ tác giả q trình nghiên cứu hồn thành luận văn Tác giả luận văn Nguyễn Văn Trƣờng MỤC LỤC MỞ ĐẦU CHƢƠNG 1.BÀI TOÁN CƠ HỌC KẾT CẤU VÀ CÁC PHƢƠNG PHÁP GIẢI 1.1 Bài toán học kết cấu 1.2 Các phương pháp giải 1.2.1 Phương pháp lực 1.2.2 Phương pháp chuyển vị 1.2.3 Phương pháp hỗn hợp phương pháp liên hợp 1.2.4 Phương pháp sai phân hữu hạn 1.2.5 Phương pháp hỗn hợp sai phân – biến phân CHƢƠNG 2: PHƢƠNG PHÁP PHẦN TỬ HỮU HẠN 2.1 Phương pháp phần tử hữu hạn 2.1.1 Nội dung phương pháp phần tử hữa hạn theo mơ hình chuyển vị 2.1.1.1 Rời rạc hoá miền khảo sát 2.1.1.2 Chọn hàm xấp xỉ 2.1.1.3 Xây dựng phương trình cân phần tử, thiết lập ma trận độ cứng  K e vectơ tải trọng nút Fe phần tử thứ e 2.1.1.4 Ghép nối phần tử xây dựng phương trình cân tồn hệ .12 2.1.1.5: Sử lý điều kiện biên toán 21 2.1.1.6 Giải hệ phương trình cân 27 2.1.1.7 Xác định nội lực 27 2.1.2 Cách xây dựng ma trận độ cứng phần tử chịu uốn 28 2.1.3 Cách xây dựng ma trận độ cứng tổng thể kết cấu 30 CHƢƠNG PHƢƠNG PHÁP PHẦN TỬ HỮU HẠN ĐỐI VỚI DẦM CHỊU UỐN 35 3.1 Lý thuyết dầm Euler – Bernoulli [ ] 35 3.1.1 Dầm chịu uốn túy phẳng 35 3.1.2 Dầm chịu uốn ngang phẳng 38 3.2.Giải toán dầm liên tục phương pháp phần tử hữu hạn 44 3.2.1.Tính tốn dầm liên tục 44 KẾT LUẬN VÀ KIẾN NGHỊ 65 KẾT LUẬN 65 Danh mục tài liệu tham khảo 66 MỞ ĐẦU Bài toán học kết cấu nói chung xây dựng theo bốn đường lối là: Xây dựng phương trình vi phân cân phân tố; Phương pháp lượng; Phương pháp nguyên lý công ảo Phương pháp sử dụng trực tiếp Phương trình Lagrange Các phương pháp giải gồm có: Phương pháp coi xác như, phương pháp lực, phương pháp chuyển vị, phương pháp hỗn hợp, phương pháp liên hợp phương pháp gần như: Phương pháp phần tử hữu hạn, phương pháp sai phân hữu hạn, phương pháp hỗn hợp sai phân - biến phân Phương pháp phần tử hữu hạn phương pháp xây dựng dựa ý tưởng rời rạc hóa cơng trình thành phần tử nhỏ (số phần tử hữu hạn) Các phần tử nhỏ nối lại với thơng qua phương trình cân phương trình liên tục Để giải tốn học kết cấu, tiếp cận phương pháp theo ba mơ hình gồm: Mơ hình chuyển vị, xem chuyển vị đại lượng cần tìm hàm nội suy biểu diễn gần dạng phân bố chuyển vị phần tử; Mơ hình cân bằng, hàm nội suy biểu diễn gần dạng phân bố ứng suất hay nội lực phần tử mơ hình hỗn hợp, coi đại lượng chuyển vị ứng suất hai yếu tố độc lập riêng biệt Các hàm nội suy biểu diễn gần dạng phân bố chuyển vị lẫn ứng suất phần tử Đối tƣợng, phƣơng pháp phạm vi nghiên cứu đề tài Trong luận văn này, tác giả sử dụng phương phần tử hữu hạn theo mơ hình chuyển vị để xây dựng giải toán dầm liên tục chịu tác dụng tải trọng tĩnh tập trung Mục đích nghiên cứu đề tài “Xác định nội lực chuyển vị dầm liên tục chịu tải trọng tĩnh tập trung phương pháp phần tử hữu hạn” Nhiệm vụ nghiên cứu đề tài Tìm hiểu giới thiệu phương pháp giải tốn học kết cấu Trình bày lý thuyết dầm Euler - Bernoulli Trình bày phương pháp phần tử hữu hạn áp dụng để giải toán dầm liên tục, chịu tác dụng tải trọng tĩnh tập trung Lập chương trình máy tính điện tử cho tốn nêu CHƢƠNG BÀI TOÁN CƠ HỌC KẾT CẤU VÀ CÁC PHƢƠNG PHÁP GIẢI Trong chương giới thiệu toán học kết cấu (bài toán tĩnh) phương pháp giải thường dùng 1.1 Bài toán học kết cấu Bài toán học kết cấu nhằm xác định nội lực chuyển vị hệ thanh, tấm, vỏ tác dụng loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…và chia làm hai loại: - Bài tốn tĩnh định: tốn có cấu tạo hình học bất biến hình đủ liên kết tựa với đất, liên kết xếp hợp lý, chịu loại tải trọng Để xác định nội lực chuyển vị cần dùng phương trình cân tĩnh học đủ; - Bài toán siêu tĩnh: tốn có cấu tạo hình học bất biến hình thừa liên kết (nội ngoại) chịu loại tải trọng, nhiệt độ, chuyển vị cưỡng bức,…Để xác định nội lực chuyển vị phương trình cân ta cịn phải bổ sung phương trình biến dạng Nếu tính đến tận ứng suất, nói tốn học vật rắn biến dạng nói chung tốn học kết cấu nói riêng tốn siêu tĩnh 1.2 Các phƣơng pháp giải Đã có nhiều phương pháp để giải toán siêu tĩnh Hai phương pháp truyền thống phương pháp lực phương pháp chuyển vị Khi sử dụng chúng thường phải giải hệ phương trình đại số tuyến tính Số lượng phương trình tùy thuộc vào phương pháp phân tích Từ phương pháp chuyển vị ta có hai cách tính gần hay sử dụng H Cross G Kani Từ xuất máy tính điện tử, người ta bổ sung thêm phương pháp số khác như: Phương pháp phần tử hữu hạn; Phương pháp sai phân hữu hạn… 1.2.1 Phƣơng pháp lực Trong hệ siêu tĩnh ta thay liên kết thừa lực chưa biết, giá trị chuyển vị hệ tương ứng với vị trí phương lực ẩn số thân lực nguyên nhân bên gây không Từ điều kiện ta lập hệ phương trình đại số tuyến tính, giải hệ ta tìm ẩn số từ suy đại lượng cần tìm 1.2.2 Phƣơng pháp chuyển vị Khác với phương pháp lực, phương pháp chuyển vị lấy chuyển vị nút làm ẩn Những chuyển vị phải có giá trị cho phản lực liên kết đặt thêm vào hệ thân chúng nguyên nhân bên gây khơng Lập hệ phương trình đại số tuyến tính thỏa mãn điều kiện giải hệ ta tìm ẩn, từ xác định đại lượng lại Hệ phương pháp chuyển vị giới hạn giải tốn phụ thuộc vào số phần tử mẫu có sẵn 1.2.3 Phƣơng pháp hỗn hợp phƣơng pháp liên hợp Phương pháp hỗn hợp, phương pháp liên hợp kết hợp song song phương pháp lực phương pháp chuyển vị Trong phương pháp ta chọn hệ theo phương pháp lực không loại bỏ hết liên kết thừa mà loại bỏ liên kết thuộc phận thích hợp với phương pháp lực; chọn hệ theo phương pháp chuyển vị không đặt đầy đủ liên kết phụ nhằm ngăn cản toàn chuyển vị nút mà đặt liên kết phụ nút thuộc phận thích hợp với phương pháp chuyển vị Trường hợp đầu hệ siêu tĩnh, trường hợp sau hệ siêu động Trong hai cách nói trên, tốn ban đầu đưa hai toán độc lập: Một theo phương pháp lực theo phương pháp chuyển vị 1.2.4 Phƣơng pháp sai phân hữu hạn Phương pháp sai phân hữu hạn thay hệ liên tục mơ hình rời rạc, song hàm cần tìm (hàm mang đến cho phiếm hàm giá trị dừng), nhận giá trị gần số hữu hạn điểm miền tích phân, cịn giá trị điểm trung gian xác định nhờ phương pháp tích phân Phương pháp cho lời giải số phương trình vi phân chuyển vị nội lực điểm nút Thông thường ta phải thay đạo hàm sai phân hàm nút Phương trình vi phân chuyển vị nội lực viết dạng sai phân nút, biểu thị quan hệ chuyển vị nút nút lân cận tác dụng ngoại lực 1.2.5 Phƣơng pháp hỗn hợp sai phân – biến phân Kết hợp phương pháp sai phân với phương pháp biến phân ta có phương pháp linh động hơn: Hoặc sai phân đạo hàm phương trình biến phân sai phân theo phương biến phân theo phương khác (đối với tốn hai chiều) Ví dụ 3.3: Dầm hai nhịp (hình 3.5) Xác định nội lực chuyển vị dầm liên tục hai nhịp có tổng chiều dài nhịp l , độ cứng uốn EJ, chịu tải SO DO DAM trọng tập trung P nhịp 2, hình 3.5a Rời rạc hóa kết cấu dầm thành n pt 2 n 10 ngx nút SO DO NUT DAM phần tử Các nút phần tử phải trùng với vị trí đặt lực tập trung, hay vị trí thay đổi tiết diện, chiều dài phần tử khác Mỗi phần tử có ẩn 1 0 W SO DO AN CHUYEN VI SO DO AN GOC XOAY   n pt phần tử rời rạc tổng cộng có n pt ẩn Hình 3.5 Dầm hai nhịp Nhưng cần đảm bảo liên tục chuyển vị chuyển vị nút cuối phần tử thứ e chuyển vị nút đầu phầntử thứ  e  1 nên số bậc tự nhỏ n pt Khi giải ta cần đảm bảo điều kiện liên tục chuyển vị cịn điều kiện liên tục góc xoay xét cách cách đưa vào điều kiện ràng buộc Ví dụ dầm (ví dụ 3.5a) ta chia thành phần tử (hình 3.5b) Khi chia dầm thành phần tử số nút dầm 5, thứ tự từ trái sang phải [1, 2, 3, 4, 5] (hình 3.5b), số ẩn chuyển vị nw=, thứ tự từ trái sang phải [1, 2] (hình 3.5c), ẩn chuyển vị hai đầu vị trí gối trung gian dầm khơng, ẩn góc xoay ngx=8, thứ tự từ trái sang phải [3, 4, 5, 6, 7, 8, 9, 10] (hình 3.5d) Như vậy, tổng cộng số ẩn 10 ẩn < 4x4=16 ẩn Gọi ma trận n w ma   trận chuyển vị có kích thước n w n pt ,2 ma trận có n pt hàng cột chứa ẩn số chuyển vị nút phần tử (hình 3.1) nw (1, :)  0 1; nw (2, :)  1 0 ; nw (3, :)  0 2; nw (4, :)  2 0 nw  0 1 0 2 0 55 Gọi ma trận ngx ma trận chuyển vị có kích thước ngx(npt,2) ma trận có n pt hàng cột chứa ẩn số góc xoay nút phần tử (hình 3.5) ngx (1, :)  3 4; ngx (2, :)  5 6 ; ngx (3, :)  7 8; ngx (4, :)  9 10 ngx  3 10 Sau biết ẩn số thực dầm ta xây dựng độ cứng tổng thể dầm (có nhiều cách ghép nối phần tử khác nhau, tùy vào trình độ lập trình người nên tác giả khơng trình bày chi tiết cách ghép nối phần tử lại để ma trận độ cứng toàn dầm xem code mơ đun chương trình tác giả) Nếu tốn có nw ẩn số chuyển vị n gx ẩn số góc xoay ma trận độ cứng dầm K có kích thước (nxn), K  n,n  với n=(nw+ngx) Như ví dụ 3.3, n=10 Bây xét điều kiện liên tục góc xoay phần tử Điều kiện liên tục góc xoay phần tử viết sau: dyi dx  nut dyi 1 0 dx nut1 (a)      nut1     dy2  dy3 hay: 2     0 dx dx nut nut1      dy  dy  3     dx dx  nut nut1    dy1 dy   dx nut dx 1  (b) Trong  i ẩn số tốn (có k ẩn số), tổng số ẩn số tốn lúc (n+k) ma trận độ cứng phần tử lúc phải thêm k dịng k cột kích thước ma trận độ cứng K  n  k,n  k  Gọi k góc xoay nút phần tử trước, k góc xoay nút phần tử sau ta có hệ số ma trận độ cứng K: k  n  i,k1   2 (i   k) ; k  n  i,k    x x (c) 56 2 (i   k) ; k  k ,n  i    (d) x x Nếu có hai phần tử có điều kiện góc xoay, có n pt phần tử k  k1 ,n  i     có 2n pt  điều kiện liên tục góc xoay phần tử Như cuối ta thiết lập phương trình: K  F   F1        so  hang  n   Fn    đó: F   ;  0    so  hang  k         (e) 1     1         n  ẩn số toán 1  2      k  Trong ví dụ 3.3 chia thành phần tử, ta có: - Ma trận độ cứng phần tử [Ke], nhƣ sau: [ ] [ ] - Ma trận độ cứng toàn dầm [K]: Ghép nối ma trận độ cứng phần tử [Ke] vào hệ tọa độ chung, ta ma trận độ cứng tổng thể toàn kết cấu sau: 57  1536   - 96  - 96  96   96   K              1056 1536 0 0 - 96 - 96 96 96 0 0 - 96 16 0 0 0 0 - 128 - 96 16 0 0 0 0 - 136 96 0 16 0 0 -1 0 0 96 0 16 0 0 0 0 - 96 - 96 0 0 0 0 16 8 16 0 0 0 -1 0 0 0 96 0 0 0 16 0 -1 0 96 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  0 0  0 0  0 0  0 0 0  0 0   - Véc tơ lực nút{ }:            F               0 0 0 0 0 0                        Giải phương trình (e) ta nhận được:   K 1F  Theo ngơn ngữ lập trình Matlab ta viết:  K  \ F  Kết chuyển vị, góc xoay nút: 58 1   0.0000    - 0.0022    W2  - 0.0003        W       x Pl ;       0.0063   3   x Pl W4   0.0017     0.0012   4       0.0110    5  Mômen uốn dầm: M1   - 0.0130  M   - 0.0297      M   M    - 0.0557  x Pl M   0.0971   4    M   Ta thấy kết trên: - Về mômen gần trùng khớp với kết giải xác theo phương pháp giải tích: + Tại gối trung gian: x 10 -4 -5 -10 -15 + Tại dầm: -20 10 12 14 Hình 3.6a Đường độ võng dầm - Về chuyển vị nhịp trùng khớp với kết giải xác theo phương pháp giải tích: Hình 3.6a Biểu đồ M Nhận xét: Nếu ta rời rạc hóa dầm thành 16 phần tử kết trùng khớp với kết xác nhận phương pháp giải tích Khi biểu đồ mơmen uốn đường độ võng dầm hình 3.6: 59 16 Ví dụ 3.4: Dầm hai nhịp (hình 3.7) Xác định nội lực chuyển vị dầm hai nhịp chiều dài nhịp l , độ cứng uốn EJ, chịu mômen tập trung M nhịp lực tập trung P nhịp 2, SO DO DAM hình 3.7a 2 n 10 ngx nút SO DO NUT DAM Rời rạc hóa kết cấu dầm thành n pt 1 0 W SO DO AN CHUYEN VI phần tử Các nút phần tử phải trùng với vị trí đặt lực tập trung, hay vị trí thay đổi tiết diện, chiều dài phần tử khác Mỗi phần tử có ẩn SO DO AN GOC XOAY Hình 3.7 Dầm hai nhịp   n pt phần tử rời rạc tổng cộng có n pt ẩn Nhưng cần đảm bảo liên tục chuyển vị chuyển vị nút cuối phần tử thứ e chuyển vị nút đầu phầntử thứ  e  1 nên số bậc tự nhỏ n pt Khi giải ta cần đảm bảo điều kiện liên tục chuyển vị điều kiện liên tục góc xoay xét cách cách đưa vào điều kiện ràng buộc Ví dụ dầm (ví dụ 3.1a) ta chia thành phần tử (hình 3.1b) Như vậy, tổng cộng số ẩn 11 ẩn < 4x4=16 ẩn Gọi ma trận n w ma   trận chuyển vị có kích thước n w n pt ,2 ma trận có n pt hàng cột chứa ẩn số chuyển vị nút phần tử (hình 3.1) nw (1, :)  0 1; ngx (2, :)  1 2 ; ngx (3, :)  2 3; ngx (4, :)  3 4 nw  0 1 2 3 4   Gọi ma trận n  ma trận chuyển vị có kích thước n  n pt ,2 ma trận có n pt hàng cột chứa ẩn số góc xoay nút phần tử (hình 3.5) 60 ngx (1, :)  5 6; ngx (2, :)  7 8 ; ngx (3, :)  9 10; ngx (4, :)  11 12 ngx  5 10 11 12 Sau biết ẩn số thực ta xây dựng độ cứng tổng thể (có nhiều cách ghép nối phần tử khác nhau, tùy vào trình độ lập trình người nên tác giả khơng trình bày chi tiết cách ghép nối phần tử lại để ma trận độ cứng tồn dầm xem code mơ đun chương trình tác giả) Nếu tốn có n cv ẩn số chuyển vị n gx ẩn số góc xoay ma trận độ   cứng dầm K có kích thước (nxn), K  n,n  với n  n cv  n gx Như ví dụ 3.3, n  11 Bây xét điều kiện liên tục góc xoay phần tử Điều kiện liên tục góc xoay phần tử viết sau: dyi dx  nut dyi 1 0 dx nut1      nut1     dy2  dy3 2     0  dx nut dx nut1     dy3  dy4 3     0 dx dx  nut nut1   (a)  dy1 dy   dx nut dx 1  hay: (b) Trong  i ẩn số tốn (có k ẩn số), tổng số ẩn số tốn lúc (n+k) ma trận độ cứng phần tử lúc phải thêm k dòng k cột kích thước ma trận độ cứng K  n  k,n  k  Gọi k góc xoay nút phần tử trước, k góc xoay nút phần tử sau ta có hệ số ma trận độ cứng K: 2 (i   k) ; k  n  i,k    x x 2 k  k1 ,n  i   (i   k) ; k  k ,n  i    x x k  n  i,k1   (c) (d) 61 Nếu có hai phần tử có điều kiện góc xoay, có n pt phần tử   có 2n pt  điều kiện liên tục góc xoay phần tử Như cuối ta thiết lập phương trình: K  F   F1        so  hang  n   Fn    đó: F   ;  0    so  hang  k         (e) 1     1         n  ẩn số toán 1  2      k  Trong ví dụ 3.1 chia thành phần tử, ta có: - Ma trận độ cứng phần tử [Ke], nhƣ sau: [ ] [ ] - Ma trận độ cứng toàn dầm [K]: Ghép nối ma trận độ cứng phần tử [Ke] vào hệ tọa độ chung, ta ma trận độ cứng tổng thể toàn kết cấu sau:  1536 0 1536  - 96  96   96  96   - 96  K    - 96  96  96   0   0  0   0  1056 Vé - 96 - 96 0 16 8 16 0 0 0 0 0 0 0 0 - 128 - 136 96 0 16 0 0 -1 0 0 96 0 16 0 0 0 0 - 96 0 0 16 0 -1 0 0 - 96 0 0 16 0 0 0 96 0 0 0 16 0 -1 0 96 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  0 0  0 0  0 0  0  0  0 0   62 c tơ lực nút{ }:            F               1 0 0 0 0 0                        Giải phương trình (e) ta nhận được:   K 1F  Theo ngơn ngữ lập trình Matlab ta viết:  K  \ F  Kết chuyển vị mô men uốn chia dầm thành 160 phần tử nhƣ sau: W24   0.0007733  W  - 0.001984   W    53     x ql ; W94   0.0004531  W135  - 0.0002352   M1  - 0.2144   Trai     M 40   0.4606   Phai  - 0.5052  M   M 40     x ql  M 80   0.1607  M  - 0.04464   120     M160   0.0000  Ta thấy kết trên: - Về mômen gối trung gian nhịp thứ trùng khớp với kết giải xác theo phương pháp 63 giải tích: - Momen ngàm nhịp thứ gần trùng khớp với kết xác - Về chuyển vị kết trùng khớp với kết giải xác theo phương pháp giải tích: Biểu đồ mơmen uốn đƣờng độ võng dầm nhƣ hình 3.8: x 10 -3 0.5 -0.5 -1 -1.5 -2 20 40 60 80 100 120 140 160 Hình 3.8a Đường độ võng dầm Hình 3.8a Biểu đồ M Nhận xét: Qua ví dụ thấy rằng, dầm chịu tải trọng Momen tập trung để nhận kết xác ta phải chia dầm thành nhiều phần tử 64 KẾT LUẬN VÀ KIẾN NGHỊ KẾT LUẬN Qua kết nghiên cứu từ chương, chương đến chương toán dầm liên tục chịu tác dụng tải trọng tĩnh tập trung Tác giả rút kết luận sau: Trình bày phương pháp giải tốn học kết cấu Trình bày phương pháp phần tử hữu hạn tốn học kết cấu Đã trình bày toán dầm chịu uốn theo lý thuyết dầm Euler Bernoulli Bằng phương pháp phần tử hữu hạn, tác giả xác định nội lực chuyển vị dầm liên tục chịu tải trọng tĩnh tập trung có điều kiện biên khác Kết nội lực chuyển vị trùng khớp với kết nhận giải phương pháp có Khi rời rạc hóa kết cấu với số phần tử nhiều kết tiệm cận tới kết xác nhận từ phương pháp giải tích Đối với tốn dầm liên tục chịu tải trọng tĩnh tập trung (lực tập trung) để đạt chuyển vị xác cần chia dầm thành từ đến phần tử, để tìm nội lực xác cần chia dầm thành từ đến 16 phần tử Đối với dầm chịu mômen tập trung cần chia dầm thành 100 đến 160 phần tử nhận kết xác giải phương pháp giải tích KIẾN NGHỊ Sử dụng phương pháp phần tử hữu hạn để giải toán khác như: Dầm, khung, dàn, tấm, vỏ 65 Danh mục tài liệu tham khảo I TIẾNG VIỆT [1] Hà Huy Cương (2005), Phương pháp nguyên lý cực trị Gauss, Tạp chí Khoa học kỹ thuật, IV/ Tr 112 118 [2] Nguyễn Văn Liên, Nguyễn Phương Thành, Đinh Trọng Bằng (2003), Giáo trình Sức bền vật liệu, Nhà xuất xây dựng, tái lần thứ 3, 330 trang [3] Phạm Văn Trung (2006), Phương pháp Tính tốn hệ dây mái treo, Luận án Tiến sỹ kỹ thuật [4] Nguyễn Văn Đạo (2001), Cơ học giải tích, Nhà xuất Đại học Quốc gia Hà nội, 337 trang [5] Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng (2005), Nhập môn Động lực học phi tuyến chuyển động hỗn độn Nhà xuất Đại học Quốc gia Hà nội [6] Đoàn Văn Duẩn (2007), Phương pháp nguyên lý Cực trị Gauss toán ổn định cơng trình, Luận văn thạc sỹ kỹ thuật [7] Đồn Văn Duẩn (2010), Phương pháp phần tử hữu hạn nghiên cứu ổn định uốn dọc thanh, Tạp chí kết cấu Công nghệ xây dựng, số 05, Qúy IV(Tr30-Tr36) [8] Đoàn Văn Duẩn (2011), Nghiên cứu ổn định đàn hồi hệ thanh, Luận án Tiến sỹ kỹ thuật [9] Đoàn Văn Duẩn (2012), Phương pháp tính tốn dây mềm, Tạp chí kết cấu cơng nghệ Xây dựng số 09, Qúy II (Tr56-Tr61) [10] Đoàn Văn Duẩn (2014), Phương pháp chuyển vị cưỡng giải tốn trị riêng véc tơ riêng, Tạp chí Xây dựng số 11 (Tr82-Tr84) 66 [11] Đoàn Văn Duẩn (2015), Bài toán học kết cấu dạng tổng qt, Tạp chí Xây dựng số 02 (Tr59-Tr61) [12] Đồn Văn Duẩn (2015), Phương pháp so sánh nghiên cứu nội lực chuyển vị hệ dầm, Tạp chí Xây dựng số 11 (Tr56-Tr58) [13] Đồn Văn Duẩn (2015), Tính toán kết cấu khung chịu uốn phương pháp so sánh, Tạp chí Xây dựng số 12 (Tr62-Tr64) [14] Trần Thị Kim Huế (2005), Phương pháp nguyên lý Cực trị Gauss toán học kết cấu, Luận văn thạc sỹ kỹ thuật [15] Nguyễn Thị Liên (2006), Phương pháp nguyên lý Cực trị Gauss tốn động lực học cơng trình, Luận văn thạc sỹ kỹ thuật [16] Timoshenko C.P, Voinópki- Krige X, (1971), Tấm Vỏ Người dịch, Phạm Hồng Giang, Vũ Thành Hải, Đoàn Hữu Quang, Nxb Khoa học kỹ thuật, Hà Nội II TIẾNG PHÁP [17] Robert L‟Hermite (1974), Flambage et Stabilité – Le flambage élastique des pièces droites, édition Eyrolles, Paris IIi TIẾNG ANH [18] Stephen P.Timoshenko-Jame M.Gere (1961), Theory of elastic stability, McGraw-Hill Book Company, Inc, New york – Toronto – London, 541 Tr [19] William T.Thomson (1998), Theory of Vibration with Applications (Tái lần thứ 5) Stanley Thornes (Publishers) Ltd, 546 trang [20] Klaus – Jurgen Bathe (1996), Finite Element procedures Part one, Prentice – Hall International, Inc, 484 trang [21] Klaus – Jurgen Bathe (1996), Finite Element procedures Part two, Prentice – Hall International, Inc, 553 trang [22] Ray W.Clough, Joseph Penzien(1993), Dynamics of Structures (Tái lần thứ 2), McGraw-Hill Book Company, Inc, 738 trang 67 [23] O.C Zienkiewicz-R.L Taylor (1991), The finite element method (four edition) Volume 2, McGraw-Hill Book Company, Inc, 807 trang [24] G.Korn-T.Korn (1961), Mathematical Handbook for sientists and Engineers, McGraw-Hill, New york (Bản dịch tiếng Nga, I.Bramovich chủ biên, Nhà xuất Nauka-Moscow, 1964) [25] Stephen P.Timoshenko-J Goodier (1970), Theory of elasticity, McGrawHill, New york (Bản dịch tiếng Nga, G Shapiro chủ biên, Nhà xuất Nauka-Moscow, 1979), 560 trang [26] D.R.J Owen, E.Hinton (1986), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Lt [27] Lars Olovsson, Kjell Simonsson, Mattias Unosson (2006), Shear locking reduction in eight-node tri-linear solid finite elements, J „Computers @ Structures‟,84, trg 476-484 [28] C.A.Brebbia, Techniques Theory J.C.F.Telles, L.C.Wrobel(1984), Boundary Element and Applications in Engineering Nxb Springer – Verlag.(Bản dịch tiếng Nga, 1987) [29] Chopra Anil K (1995) Dynamics of structures Prentice Hall, Englewood Cliffs, New – Jersey 07632 [30] Wilson Edward L Professor Emeritus of structural Engineering University of California at Berkeley (2002) Three – Dimensional Static and Dynamic Analysis of structures, Inc Berkeley, California, USA Third edition, Reprint January [31] Wilson, E L., R L Taylor, W P Doherty and J Ghaboussi (1971) “Incompatible Displacement Models”, Proceedings, ORN Symposium on “Numerical and Computer Method in Structural Mechanics” University of Illinois, Urbana September Academic Press 68 [32] Strang, G (1972) “Variational Crimes in the Finite Element Method” in “The Mathematical Foundations of the Finite Element Method” P.689 -710 (ed A.K Aziz) Academic Press [33] Irons, B M and O C Zienkiewicz (1968) “The isoparametric Finite Element System – A New Concept in Finite Element Analysis”, Proc Conf “Recent Advances in Stress Analysis” Royal Aeronautical Society London [34] Kolousek Vladimir, DSC Professor, Technical University, Pargue (1973) Dynamics in engineering structutes Butter worths London [35] Felippa Carlos A (2004) Introduction of finite element methods Department of Aerospace Engineering Sciences and Center for Aerospace Structures University of Colorado Boulder, Colorado 80309-0429, USA, Last updated Fall 69 ... Các phương pháp giải gồm có: Phương pháp coi xác như, phương pháp lực, phương pháp chuyển vị, phương pháp hỗn hợp, phương pháp liên hợp phương pháp gần như: Phương pháp phần tử hữu hạn, phương pháp. .. PHƢƠNG PHÁP PHẦN TỬ HỮU HẠN Trong chương trình bày số khái niệm phương pháp phần tử hữu hạn, để phục vụ cho việc xây dựng toán xác định nội lực chuyển vị cho dầm liên tục chịu tải trọng tĩnh tập trung. .. phương pháp phần tử hữu hạn chương 2.1 Phƣơng pháp phần tử hữu hạn Phương pháp phần tử hữu hạn phương pháp số đặc biệt có hiệu để tìm dạng gần hàm chưa biết miền xác định V Tuy nhiên phương pháp

Ngày đăng: 09/08/2021, 08:16

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Hà Huy Cương (2005), Phương pháp nguyên lý cực trị Gauss, Tạp chí Khoa học và kỹ thuật, IV/ Tr. 112 118 Sách, tạp chí
Tiêu đề: Phương pháp nguyên lý cực trị Gauss
Tác giả: Hà Huy Cương
Năm: 2005
[2] Nguyễn Văn Liên, Nguyễn Phương Thành, Đinh Trọng Bằng (2003), Giáo trình Sức bền vật liệu, Nhà xuất bản xây dựng, tái bản lần thứ 3, 330 trang Sách, tạp chí
Tiêu đề: Giáo trình Sức bền vật liệu
Tác giả: Nguyễn Văn Liên, Nguyễn Phương Thành, Đinh Trọng Bằng
Nhà XB: Nhà xuất bản xây dựng
Năm: 2003
[3] Phạm Văn Trung (2006), Phương pháp mới Tính toán hệ dây và mái treo, Luận án Tiến sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Phương pháp mới Tính toán hệ dây và mái treo
Tác giả: Phạm Văn Trung
Năm: 2006
[4] Nguyễn Văn Đạo (2001), Cơ học giải tích, Nhà xuất bản Đại học Quốc gia Hà nội, 337 trang Sách, tạp chí
Tiêu đề: Cơ học giải tích
Tác giả: Nguyễn Văn Đạo
Nhà XB: Nhà xuất bản Đại học Quốc gia Hà nội
Năm: 2001
[5] Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng (2005), Nhập môn Động lực học phi tuyến và chuyển động hỗn độn. Nhà xuất bản Đại học Quốc gia Hà nội Sách, tạp chí
Tiêu đề: Nhập môn Động lực học phi tuyến và chuyển động hỗn độn
Tác giả: Nguyễn Văn Đạo, Trần Kim Chi, Nguyễn Dũng
Nhà XB: Nhà xuất bản Đại học Quốc gia Hà nội
Năm: 2005
[6] Đoàn Văn Duẩn (2007), Phương pháp nguyên lý Cực trị Gauss đối với các bài toán ổn định công trình, Luận văn thạc sỹ kỹ thuật Sách, tạp chí
Tiêu đề: Phương pháp nguyên lý Cực trị Gauss đối với các bài toán ổn định công trình
Tác giả: Đoàn Văn Duẩn
Năm: 2007
[7] Đoàn Văn Duẩn (2010), Phương pháp phần tử hữu hạn nghiên cứu ổn định uốn dọc của thanh, Tạp chí kết cấu và Công nghệ xây dựng, số 05, Qúy IV(Tr30-Tr36) Khác
[8] Đoàn Văn Duẩn (2011), Nghiên cứu ổn định đàn hồi của thanh và hệ thanh, Luận án Tiến sỹ kỹ thuật Khác
[9] Đoàn Văn Duẩn (2012), Phương pháp mới tính toán dây mềm, Tạp chí kết cấu và công nghệ Xây dựng số 09, Qúy II (Tr56-Tr61) Khác
[10] Đoàn Văn Duẩn (2014), Phương pháp chuyển vị cưỡng bức giải bài toán trị riêng và véc tơ riêng, Tạp chí Xây dựng số 11 (Tr82-Tr84) Khác

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w