Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 27 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
27
Dung lượng
1,26 MB
Nội dung
CHUYÊN ĐỀ CHỨNG MINH CHIA HẾT Dạng 1: CHỨNG MINH CHIA HẾT Bài 1: Chứng minh rằng: 11 a, ab ba M HD: b, ab ba M9 (a > b) c, abcabcM7,11,13 11 a, Ta có : ab ba 10a b 10b 11b 11b M b, Ta có : ab ba (10a b) (10b a) 9a 9b M c, Ta có : abcabc abc.1001 abc.7.11.13M7,11,13 Bài 2: Chứng minh rằng: a, (n 10)( n 15) M2 b, n(n 1)( n 2) M2,3 HD: a, Ta có:Nếu n số lẻ n 15M2 c, n n không M4,2,5 n 10 n 15 M2 Nếu n số chẵn n 10M2 , Như với n số tự nhiên : n n 1 n b, Ta có:Vì số tự nhiên liên tiếp nên có số chia hết cho 2,1 số chia hết cho n ( n 1) c, Ta có : số lẻ nên khơng Mcho 4,2 có chữ số tận khác Bài 3: Chứng minh rằng: a, (n 3)(n 6) M2 b, n n không M5 HD: a, Ta có:Nếu n số chẵn n 6M2 c, aaabbbM37 n 3 n M2 Nếu n lẻ n 3M2 , Như với n số tự nhiên b, Ta có : n n n n 1 : 0, 2, 6, Do : , Vì n n 1 n n 1 tích hai số tự nhiên liên tiếp nên có chữ số tận có tận 6, 8, nên khơng M5 c, Ta có : aaabbb aaa 000 bbb a.11100 b.111 a.300.37 b.3.37 chia hết cho 37 Bài 4: Chứng minh rằng: a, aaa Ma ,37 HD: b, ab(a b)M2 99 c, abc cbaM a, Ta có : aaa a.111 a.3.37 chia hết cho a chia hết cho 37 b, Ta có:Vì a, b hai số tự nhiên nên a,b có TH sau: TH1: a, b tính chẵn lẻ=> (a+b) số chẵn nhưu a+b chia hết cho TH2: a, b khác tính chẵn lẻ số phải có số chẵn số chia hết cho abc cba 100a 10b c 100c 10b a 99a 99c 99 a c M99 c, Ta có: Bài 5: CMR : ab 8.ba M9 HD: ab 8.ba 10a b 10b a 18a 18b 18 a b M9 Ta có: Bài 6: Chứng minh rằng: ab a b M2, a, b �N Bài 7: Chứng minh số có dạng : abcabc chia hết cho 11 HD : abcabc a.105 b.104 c.103 b.10 c a.102 103 1 b.10 103 1 c 103 1 Ta có : 103 1 a.102 b.10 c 1001 a.10 b.10 c 11.91.abc M 11 A n 5 n 6 M6n Bài 8: Tìm n số tự nhiên để: HD: A 12n n n 1 30 AM6n n n 1 30M6n Ta có: , Để n n 1 Mn 30Mn n�U 30 1;2;3;5;6;10;15;30 Ta có: n n 1 M6 n n 1 M3 n� 1;3;6;10;15;30 Và n� 1;3;10;30 Thử vào ta thấy thỏa mãn yêu cầu đầu M M Bài 9: CMR : 2x+y 5x+7y HD: x y M9 x y M9 14 x y M9 x x y M9 x y M9 Ta có : Bài 10: Chứng minh rằng: 11 abcd M 11 a, Nếu ab cd M b, Cho abc deg M7 cmr abc deg M7 HD: 11 hay (a+c) – (b+d) M11 a, Ta có: ab cd a.10 b 10c d (a c)10 b d (a c )(b d ) M 11 có (a+c) - ( b+d) M11 Khi abcd M b, Ta có: Ta có abc deg 1000abc deg 1001abc (abc deg) mà abc deg M7 nên abc deg M7 Bài 11: Chứng minh rằng: a, CMR: ab 2.cd � abcd M67 HD: b, Cho abcM27 cmr bcaM27 a, Ta có:Ta có abcd 100ab cd 200cd cd 201cd M67 b, Ta có :Ta có abc M27 abc 0M27 1000a bc0M27 999a a bc 0M27 27.37a bca M27 Nên bcaM27 Bài 12: Chứng minh rằng: a, abc deg M23, 29 abc 2.deg 11 abc deg M 11 b, Cmr (ab cd eg )M HD: a, Ta có : abc deg 1000abc deg 1000.2deg deg 2001deg deg.23.29.3 11 b, Ta có : abc deg 10000.ab 100cd eg 9999ab 99cd (ab cd eg ) M Bài 13: Chứng minh rằng: 37 cmr abc deg M 37 a, Cho abc deg M 99 ab cd M99 b, Nếu abcd M HD: a, Ta có : abc deg 1000abc deg 999abc (abc deg)M37 � 99.ab ab cd M99 ab cd M9 abcd 100.ab cd b, Ta có : 101 ab cd M 101 Bài 14: Chứng minh rằng:m, Nếu abcdM HD : abcd M 101 100.ab cd 101.ab ab cd 101.ab ab cd M 101 ab cd M 101 Ta có : => Bài 15: Chứng minh rằng: a, 2a - 5b+6c M17 a-11b+3c M17 (a,b,c �Z) b, 3a+2b M17 � 10a+b M17 (a,b �Z) HD: a, Ta có:a-11b+3c M17 17a-34b +51c M17 nên 18a-45b+54c M17 => 9(2a-5b+6c) M17 b, Ta có: 3a+2b M17 17a - 34b M17 nên 20a – 32b M17 10a – 16b M17 10a +17b – 16b M17 10a+b M17 Bài 16: Chứng minh rằng: a, abcd M29 � a 3b 9c 27 d M29 b, abc M21 � a 2b 4c M21 HD: a, Ta có : abcd 1000a 100b 10c d M29 => 2000a+200b+20c+2d M29 => 2001a – a +203b - 3b +29c - 9c +29d - 27d M29 => (2001a+203b+29c+29d)- (a+3b+9c+27d) M29 => (a+3b+9c+27d) M29 b, Ta có: abc 100a 10b c M21 =>100a - 84a +10b – 42b + c +63c M21 => 16a - 32b +64c M21 => 16(a- 2b +4c) M21 Bài 17: Chứng minh rằng: 16 � d 2c 4b 8a M 16 (c chẵn) a, abcd M4 � d 2c M4 b, abcd M HD: a, Ta có:Vì e, abcd M4 � cd M4 � 10c d M4 � 2c d M4 16 1000a 100b 10c d M 16 992a 8a 96b 4b 8c 2c d M16 b, Ta có:Vì abcd M => (992a+ 96b+8c) + (8a+4b+2c+d) M16, mà c chẵn nên 8c M16 => (8a+4b+2c+d) M16 Bài 18: Chứng minh rằng: a, Cho a - b M7 cmr 4a+3b M7 (a,b �Z) b, Cmr m +4n M13 � 10m+n M13 HD: a, Ta có:a – b M7 nên 4(a –b) M7 => 4a – 4b +7b M7 => 4a +3b M7 b, Ta có:m+4n M13 => 10(m+4n) M13 => 10m +40n – 39n M13 =>10m+ n M13 Bài 19: Cho a,b số nguyên, CMR 6a+11b M31 a+7b M31, điều ngược lại có khơng? HD: Ta có :6a +11b M31 => 6( a+7b) - 31b M31 => a+7b M31 Bài 20: Cho a,b số nguyên, CMR 5a+2b M17 9a+7b M17 HD: Ta có :5a +2b M17 => 5a – 68a +2b -51b M17 => - 63a – 49b M17 => -7( 9a +7b) M17 => 9a+7b M17 Bài 21: Cho a,b số nguyên, CMR 2a+3b M7 8a + 5b M7 HD: Ta có:2a+3b M7 => 4(2a+3b) M7 =>8a +12b M7=> 8a+12b -7b M7=>8a+5b M7 Bài 22: Cho a,b số nguyên, CMR a - 2b M7 a-9b M7, điều ngược lại có khơng? HD: Ta có:a – 2b M7 => a- 2b -7b M7=> a - 9b M7, Điều ngược lại Bài 23: Cho a,b số nguyên 5a+8b M3 cmr a, - a +2b M3 b, 10a +b M(-3) c, a +16b M3 HD: a, Ta có:5a +8b M3=> 5a- 6a+8b-6b M3=> -a+2b M3 b, Ta có:5a +8b M3 => 2(5a+8b) M3=>10a+16b M3=>10a+16b-15b M3 c, Ta có:5a +8b M3=> 5(a+16b) – 72b M3 =>a+16b M3 Bài 24: Cho biết a-b M6, CMR biểu thức sau chia hết cho a, a +5b b, a +17b c, a - 13b HD: a, Ta có:a-b M6 => a-b+6b M6=> a+5b M6 b, Ta có:a-b M6 => a-b +18b M6=> a+17b M6 c, Ta có:a - b M6 => a-b-12b M6=> a-13b M6 ngược lại Bài 25: CMR : x 2M5 3x y M Bài 26: Cho hai số nguyên a b không chia hết cho 3, chia cho có số dư: CMR: (ab-1) M3 HD: Ta có:a= 3p+r, b=3q+r (p,q,r �Z, r=1,2) � r r 0M3 � r r 3M3 ab-1=(3p+r)(3q+r)-1= 3p(3q+r)+r(3q+r) -1 = 9pq+3pr+3qr+r2-1 � Bài 27: Chứng minh viết thêm vào đằng sau số tự nhiên có hai chữ số gồm hai chữ số viết theo thứ tự ngược lại số chia hết cho 11 HD: Ta có :Gọi số tự nhiên có chữ số ab theo ta có abbaM 11 abba 1001a 110b 7.11.13a 11.10b Bài 28: Chứng minh tổng ba số tự nhiên liên tiếp chia hết cho 3, tổng số tự nhiên liên tiếp khơng chia hết cho HD: Gọi ba số tự nhiên liên tiếp a,a+1,a+2 xét tổng Gọi bốn số tự nhiên liên tiếp a, a+1,a+2,a+3 xét tổng, ta 4 a a 1 a a 3 4a M Bài 29: Chứng minh tổng số chẵn liên tiếp chia hết cho 10, cịn tổng số lẻ liên tiếp khơng chia hết cho 10 HD: Gọi số chẵn liên tiếp a, a+2, a+4, a+6, a+8 xét tổng, ta được: a a a a a 5a 20M 10 Vì a số chẵn Tương tự với số lẻ liên tiếp : 2a 1, 2a 1, 2a 3, 2a 5, 2a 7, xét tổng ta : 10 2a 1 2a 1 2a 3 2a 5 2a 10a 15 M Bài 30: Khi chi 135 cho số tự nhiên ta thương dư, Tìm số chia thương HD: 135 x r r x Gọi số chia x số dư r, Khi => r 135 x 135 x x 135 x x 135 x 22 Từ 135 135 x x x x 19 7 , Vậy x 20, 21, 22 Từ Bài 31: Bạn Thắng học sinh lớp 6A viết số có hai chữ số mà tổng chữ số 14 , sau bạn Thắng đem chia số cho đươc dư , chia cho 12 dư a, CMR bạn Thắng làm sai phép chia b, Nếu phép chia thứ đúng, phép chia cho 12 dư bao nhiêu? HD: Gọi số cần tìm n= ab a, n chia dư =>n chẵn n chia 12 dư 3=> n lẻ => mâu thuẫn b, Vì a+b=14 nên ab M3 dư ab chia 12 dư Nếu phép chia thứ ab chia dư 4=> ab M4 => ab M12 => n chia 12 dư Bài 32: Chứng minh abc chia hết cho 37 bca cab chia hết cho 37 Bài 33: Một số tự nhiên chia cho dư 5, chia cho 13 dư Nếu đem số chia cho 91 dư bao nhiêu? Bài 34: Tìm số tự nhiên biết chia cho 17 số dư hai lần bình phương số thương Bài 35: Chứng minh tồn số tự nhiên chia cho 21 dư chia cho 84 lại dư Bài 36: Cho số nguyên dương khác thỏa mãn : tổng hai số chia hết cho tổng ba số chia hết cho 3, Tính giá trị nhỏ cảu tổng bốn số Bài 37: Tìm số tự nhiên có chữ số chia hết cho 27, biết hai số 97 HD: Gọi số cần tìm a97b a97b M5 nên b = b = => trường hợp TH1: Với b a970M27 a a 16M9 a , Khi số cần tìm 2970 thỏa mãn chia hết cho 27 a , Khi số cần tìm 6975 khơng TH2: Với b a975M27 a a 21M chia hết cho 27 Bài 38: Tìm số có hai chữ số biết số chia hết cho tích chữ số HD: Gọi số cần tìm ab abMa.b 10a b Mab 10a b Ma b Ma b k a k �N => ab 10a b Mà Và 10a bMb 10a Mb , mà b chia hết cho a=> 10a b.q 10a z.k q 10 k q Do k số có chữ số nên k= 1;2;5 Với k=1=> a=b, ta có số 11,22,33, 99, có số 11 thỏa mãn Với k=2=>b=2a, ta có số 12, 24, 36, 48, có số 12, 24, 36 thỏa mãn Với k=5=> b=5a ta có số 15 thỏa mãn Vậy số cần tìm 11, 12, 24, 36, 15 Bài 39: Cho số tự nhiên ab ba lần tích chữ số nó, cmr b Ma HD: Ta có: ab =3ab=>10a+b=3ab=>10a+b Ma =>b Ma Bài 40: Tìm a, b, c biết: 2009abcM315 HD: (5;7;9) 2009abc MBCNN 5;7;9 Ta có: 315 5.7.9 , Mà Ta có: 2009abc 2009000 abc 315.6377 245 abc 245 abc M315 315 �U 245 abc Mà 100 �abc �999 345 �245 abc �1244 245 abc � 630;945 abc � 385;700 Bài 41: Tìm a,b biết: a-b=3 (14a3 35b2)M HD: Ta có:Để : 14a3 35b 2M9 a b a b 18M9 a b M9 mà a b số chó chữ số nên a b 0, a b 9, a b 18 kết hợp với a - b =3 để tìm a b a - b=4 Bài 42: Tìm a,b biết:c, 5a6b 2M HD: Để 5a 6b 2M3 a b a b 13M3 a b 1M3 Do a, b hai số tự nhiên có chữu số nên: a b 2, a b 5, a b 8, a b 11, a b 14, a b 17, , Kết hợp với a b để tìm a,b 1999 1a M29 Bài 43: Tìm a,b biết rằng: 1999 19a8 M 1997 Bài 44: Tìm a biết rằng: Bài 45: Cho a/ 22x y HD: x y x, y �Z , CMR biểu thức sau chia hết cho c/ 11x 10 y b/ x 20 y a, Ta có: x y x y M7 x y 21x M7 22 x y M7 b, Ta có: x y x y x 21y M7 x 20 y M7 c, Ta có: x y M7 11x 11 y M7 11x 11 y 21 y M7 11x 10 y M7 Bài 46: Cho A 111 Gồm 20 chữ số 1: hỏi A có chia hết cho 111 không? HD: 111 111 1M3 chia hết cho 37 Ta có: 111 3.37 , nên để 111 1M Ta có: 111 ( 20 số ) có tổng chữ số 1+1+1+ +1=20 111 không chia hết 111 1M Bài 47: CMR: 7x+4y M29 9x+y M29 HD: Ta có: x y M9 36 x 29 x y M9 36 x y M9 x y M9 x y M9 Bài 48: CMR abcd M29 a+3b+9c+27d chia hết cho 29 HD: Ta có: abcd M29 1000a 100b 10c d M29 200a 200b 20c 2d M29 2001a 1 203b 3b 29c 9c 29d 2d M29 2001a 203b 29c 29d a 3b 9c 27 d M29 69.29a 7.29b 29c 29d a 3b 9c 27 d M29 Khi đó: a 3b 9c 27 d M29 Bài 49: Chứng minh x,y số nguyên cho ngược lại HD: x y M13 x y chia hết cho 13 5x yM 13 x y M 13 20 x 16 y M 13 x y M 13 Ta có: Từ ta ngược lại Bài 50: Cho A n n , CMR A không chia hết cho 15 với số tự nhiên n HD: n n n n 1 0, 2, 6, Do : , Vì n n 1 n n 1 tích hai số tự nhiên liên tiếp nên có chữ số tận : có tận 2, 4, nên không M5, A không chia hết cho 35 Bài 51: Cho a,b hai số phương lẻ liên tiếp, CMR : HD: Ta có: Vì a, b số lẻ nên a 1 b 1 M4 a 2k 1 , b 2k 1 a 1 4k k 1 , b 1 4k k 1 Đặt a 1 b 1 M192 a 1 b 1 16k k 1 k 1 k k 1 k M3 Khi : , Mà k k 1 , k k 1 Và chia hết cho 2 k k 1 k 1 M 12 a 1 b 1 16k k 1 k 1 M 192 Nên , Khi a, b số phương lẻ liên tiếp Bài 52: Tìm số nguyên tố tự nhiên n biết 2n+7 chia hết cho n+1 12n+1 HD: 2n 7Mn x 5Mn n 1 5Mn n �U Ta có : Tương tự : 2n M 12n 2n M 12n 12n 42 M 12n 12n 41M 12n 12 n �U 41 Bài 53: Tìm x,y nguyên dương biết (x+1) chia hết cho y (y+1) chia hết cho x HD: Ta có : Vì vai trị x, y bình đẳng nên giả sử : x �y y 1 � x x 2My � x; y 1;1 , 1; y � Nếu �x 1My x �2 �x �y � x 1 y 1 xy x y 1 Mxy x y 1 Mxy �y 1Mx Nếu x y 1 1 xy x y xy số nguyên dương Mà �x �y 1 1 1 1 � 1 x y xy 2 4 x y xy (1) 1 1 1 � x �5 x x y xy x x x x , Thay vào (1) ta có : 1 y y 2y Vậy cặp số (x ; y) phải tìm : (1 ;1), (1 ;2), (2 ; 1), (2 ; 3), (3 ;2) Bài 54: Tìm số có ba chữ số biết số chia cho 11 thương tổng chữ số số HD : Ta có : Gọi số cần tìm : abc abc 11 a b c 100a 10b c 11a 11b 11c Theo ta có : 89a b 10c 89a cb , Vì cb số có hai chữ số nên < a< => a = 1, Khi ta có : 89 cb bc 98 abc 198 n : 6 n 1 n 1 M24 Bài 55: Chứng minh : HD : 2, n M n 2k 1, n 3k 1, n 3k n;6 n M Vì n 2k A 2k 1 2k 1 4k k 1 M8 Với: n 3k A 3k 3k M3 AM24 TH1 : n 3k A 3k 1 3k 3 M3 AM24 TH2: n4 n Bài 56: CMR: a a M30, với n số nguyên dương Bài 57: Chứng minh 2x+3y chia hết cho 17 9x+5y chia hết cho 17 HD: Ta có : 2x yM 17 x y M 17 18 x 27 y M 17 18 x 10 y M 17 x y M 17 17 , Chứng minh tương tự điều ngược lại Khi : x y M Bài 58: CMR: nguyên HD: M a b a c a d b c b d c d chia hết cho 12, Với a, b, c, d số M a b a c a d b c b d c d Ta có : Trong số a,b,c,d chắn có hai số chia cho có số dư, Nên hiệu chúng chia hết cho 3, Như M chia hết cho Lại có số nguyên a,b,c,d có số chẵn có số lẻ, Giả sử a,b số chẵn, c,d số lẻ Khi a b , c d M2 a b c d M4 M M4 Hoặc khơng phải số tồn số chia có số dư nên hiệu chúng chia hết cho 4, Khi M M4 Như M chia hết cho nên M chia hết cho 12 Bài 59: Một số chia cho dư 3, Chia cho 17 dư 12 chia 23 dư 7, hỏi số chia cho 2737 dư bao nhiêu? HD: Gọi số cho A, theo ta có: A=7a+3=17b+12=23c+7 Mặt khác : a+39=7a+42=17b+51=23c+46=7(a+6)=17(b+3)=23(c+2) a+39 đồng thời chia hết cho 7,17,23 Mà 7,17,23 đôi nguyên tố nên A+39 chia hết cho 7.17.23=2737, A chia 27737 dư 2698 20 Bài 60: CMR: A , chia hết cho 17 HD: 88 220 224 220 220 24 1 17 M 17 Ta có:A = Bài 61: Khi chia số tự nhiên gồm chữ số giống cho số tự nhiên gồm chữ số giống ta thương cịn dư, Nếu xóa chữ số số bị chia xóa chữ số số bị chia thương phép chia số dư giảm trước 100, Tìm số chia số bị chi lúc đầu? HD: Gọi số bị chia lúc đầu aaa số chia lúc đầu bbb , số dư lúc đầu r 20 Ta có: aaa 2.bbb r aa 2.bb r 100 nên aaa aa bbb bb 100 a 00 2.b00 100 a 2b Do a, b chữ số nên ta có bảng: Bài 62: Cho D=1-2+3-4+ +99-100 a, D có chia hết cho khơng, cho 3, cho khơng? sao? b, D có ước số tự nhiên, ước số nguyên? HD: a, Ta tính D= - 50, nên D có chia hết cho 2, khơng chia hết cho b, D=-50 2.5 nên có (1+1)(1+2)=6 ước tự nhiên, có 12 ước nguyên 2011 Bài 63: CMR : 10 chia hết cho 72 HD: 102011 1000 008 43 2010 Có tổng chữ số nên chia hết cho 9, có chữ số tận 008 nên chia hết cho 8, Như chia hết cho 8.9 = 72 1999 1997 Bài 64: Cho A 999993 555557 , CMR A chia hết cho HD: A 999993 1996 555557 1996 1 9999931996.9999933 5555571996.555557 Ta có : A .1 .7 0M5 AM5 cho 5, chia cho số dư khác nhau, Bài 65: Cho số tự nhiên liên tiếp M CMR: tổng chúng M5 * n , cmr a 150 chia hết cho 25 Bài 66: Cho a , n �N , biết a M HD: 2 Ta có: a M5 mà số nguyên tố a M5 a M25 a 150M25 Bài 67: Chứng minh a không bội a chia hết cho 10 Bài 68: Chứng minh a a M Bài 69: CMR : p n 3n , không chia hết cho 121 với số tự nhiên n 2 13 169 abM Bài 70: Cho a,b hai số nguyên, CMR : Nếu 3a 11ab 4b M 10 Dạng : CHỮ SỐ TẬN CÙNG VÀ ĐỒNG DƯ THỨC A Lý thuyết: + Một số có chữ số tận : 0; 1; 5; nâng lên lũy thừa n �0 số có chữ số tận (0; 1; 5; 6) + Số có chữ số tận 2; 4; nâng lên lũy thừa số có chữ số tận + Số có chữ số tận 3; 7; nâng lên lũy thừa số có chữ số tận Chú ý 1: + số tự nhiên nâng lên lũy thừa 4k+1 chữ số tận khơng thay đổi + Số có tận nâng lên lũy thừa 4n số có chữ số tận + Số có tận nâng lên lũy thừa 4n số có chữ số tận + Số có tận nâng lên lũy thừa 4n số có chữ số tận + Số có tận nâng lên lũy thừa 4n số có chữ số tận + Còn lại chữ số tận 0, 1, 4, 5, 6, nâng lên lũy thừa 4n tận + Nếu a b có số dư chia cho m a gọi đồng dư với b theo modum m KH: a �b mod m �1 mod �11 mod 18 �0 mod Ví dụ: + Một số tính chất đồng dư: � �a �b mod m a �c mod m � b � c mod m + Nếu: � � a �b mod m � a c �b d mod m � c �d mod m � + Nếu: � a �b mod m � a.c �b.d mod m � c �d mod m � + Nếu: a �b mod m a n �bn mod m + Nếu: + Nếu a �b mod m a : d �b : d mod m d UC(a; b) thỏa mãn: ( d; m) = a b� m� d �UC a; b; d � � mod � a �b mod m , d �Z , d d� d� + Nếu thỏa mãn : Chú ý : Không chia vế dồng dư thức : �12 mod10 �6 mod10 Ví dụ : , điều sai B Bài tập áp dụng : 2004 Bài 1:Tìm số dư phép chia 2004 chia cho 11 HD: Dấu hiệu chia hết cho 11 hiệu chữ số hàng lẻ với chữ số hàng chẵn tính từ bên trái chia hết cho 11 2002M 11 2004 �2 mod11 2004 2004 �2 2004 mod11 Ta có: 210 �1 mod11 20042004 4.2 2000 �24 210 Mà 2004 Vậy 2004 chi cho 11 dư 2005 Bài 2: Tìm số dư chia A 1944 cho HD: 200 mod11 �24 mod11 �5 mod11 13 Ta có: 1944 �2 mod 19442005 � 2 2 Mà Vậy �1 mod 19442004 � 23 2005 668 mod mod � 1 mod �1 mod 668 19442005 �1 2 mod hay A chia cho dư 1, B 61001 bội số Bài 3: Chứng minh rằng: A HD: � 1 mod 61000 �1 mod A �0 mod AM7 Ta có: Chứng minh tương tự với B Bài 4: Tìm số dư phép chia: 1532 chia cho HD: 1532 �2 mod 15325 �25 mod �5 mod 15325 �4 mod Ta có: , Nên 2n n 19 Bài 5: Chứng minh rằng: A 7.5 12.6 M HD: n n 25n �6n mod19 7.25n �7.6n mod19 Ta có: A 7.25 12.6 ,Vì A 7.6n 12.6n mod19 6n.19 mod19 �0 mod19 AM 19 1000 2003 Bài 6: Tìm dư phép chia: chia cho 13 HD: 33 �1 mod 13 33 667 Ta có: 2002 Bài 7: Chứng minh : 4M31 HD : 32 �32 mod13 25 32 �1 mod 31 25 , Vậy số dư 22 �4 mod 31 A 22002 �0 mod 31 Ta có : 5555 2222 Bài 8: Chứng minh : 2222 5555 M7 HD : 5555 2222 � 4 mod 22225555 � 4 mod Ta có : 5555 �4 mod 55552222 �42222 mod Và , Khi : 5555 2222 A � 4 mod 4 Mà : 5555 4 3333 400 2222 A �4 2222 33333 1 mod 43333 1 , có 43 �1 mod 43333 �1 mod 43333 �0 mod , hay AM7 Xét 70 50 Bài 9: Tìm dư phép chia : khichia cho 12 HD: 52 �1 mod 12 570 �1 mod 12 Ta có: �1 mod 12 750 �1 mod12 Và , Khi số dư 776 777 778 A 776 777 778 Bài 10: Tìm số dư , chia cho chi cho HD : 776 � 1 mod 3 776776 �1 mod 3 Ta có : 777 �0 mod 3 777777 �0 mod 3 778 �1 mod 3 778778 �1 mod 3 Mặt khác : 776 �1 mod 5 776 776 , Khi A chia có dư �1 mod 5 14 777 �3 mod 5 777777 � 3 777 mod 5 778 �3 mod 5 778778 �3778 mod 5 Khi A �1 3777 3778 mod 5 �1 3.3777 3777 mod 3777 1 mod �1 2.3777 mod 33 �1 mod 5 3777 � 32 Mà Vậy 388 mod 5 �3 mod 5 A �1 2.3 mod 5 �2 mod 5 hay A chia dư 2005 2005 Bài 11: Tìm số dư A chia A cho 11 chia cho 13 HD: Ta có: Và 35 �1 mod11 35 45 �1 mod11 45 401 401 �1 mod11 �1 mod11 33 �1 mod13 668 Mặt khác: 43 �1 mod13 43 , Khi A chia cho 11 dư �3 mod13 �4 mod13 Và , Khi A chia cho13 dư Bài 12: Tìm chữ số tận số sau: 20002008 ;11112019 ;20072017 ;13582018 ;234567 ;5235 ;204402 ;20133102 ;10201040 Bài 13: Tìm chữ số tận của: 99 a, HD: 668 67 b, 4k � � 4k a, Ta có: số lẻ có TH � k 1 94 k.9 1.9 TH1 : k 3 94 k 93 1.93 TH2 : 4k � � 67 4k b, Ta thấy : số lẻ nên chia có TH : � 2008 2008 2008 Bài 14 : Cho A 17 11 , Tìm chữ số tận A HD : Ta có : A 25 21 10 Bài 15 : Cho M 17 24 13 , Chứng minh rằng: M M HD: 10 Ta có: M M M C 3M2 n N , n 1 n Bài 16: Chứng minh rằng: HD: n 1 2n 2.2n 1 812 C M2 Ta có: C 102 102 10 Bài 17: Chứng minh rằng: A M 2003 2024 2005 Bài 18: Tìm chữ số tận số sau: 2222 ;2018 ;2005 Bài 19: Chứng minh rằng: n1 n1 4n 3M 1M 10 a, b, c, 1M n 1M Bài 20: Chứng minh rằng: n A 24 n N , n 1 Bài 21: Chứng minh số có dạng: có chữ số tận 15 HD: 4n 41n 1 4.4 n 1 A 24.4 16 n 1 n Ta có: 4n 1 B 32 4M5 n N , n 2 Bài 22: Chứng minh số có dạng: HD: n n 1 n n 2 4.2n 1 B 32 34.2 5M5 Ta có: n C 34 1M 10 n N , n 1 n Bài 23: Chứng minh số có dạng HD: 4n 41n 1 4.4n 1 C 34 34 n Ta có: 4n 1 81 Bài 24: Tìm chữ số hàng đơn vị của: 1111 1111 5555 a, 6666 1111 66 10n 555n 666n , n N , n 1 b, 99992 n 9992 n 1 10n , n �N * c, 20184 n 2019 n 20074 n , n �N * d, Bài 25: Tìm chữ số tận số sau: a, A= 24n - (n > 0, n �N) b, B= 24n+2 + (n �N) HD: 0M 10 c, C= 74n – (n �N ) 24 n 24 16 .1 n a, Ta có :A= 4n 1 b, Ta có : B 4n n 24 n.4 6.4 .5 c, Ta có : C Bài 26: Tìm chữ số tận số sau: 4n n n a, D= HD: b, E= n n n 2 4.2 (24 ) a, Ta có :2 =2 =2 =4.2 => n 1 n 1 n 1 4n 4.4n1 4n1 4.4 (2 ) b, Ta có : n 2+n-2 n-2 n-2 Bài 27: Chứng minh rằng: 22 4n 10 a, A = 1M5 b, B= 4M HD: 22 a, Ta có : 15M5 n 10 c, C= 1M n b, Ta có : Ta có có tận n n 1 n1 n 1 n 1 2.2 n1 92 92.2 (92 ) 0M 10 c, Ta có : Bài 28: Chứng minh rằng: n1 n1 4n 10 a, E= 3M5 b, F= 1M c, H= 1M HD: n 1 24 n.2 6.2 a, Ta có : 2 n 1 2n b, Ta có : 9 1.9 4n c, Ta có : Bài 29: Chứng minh rằng: 16 n n b, K= 4M5( n �2) n 1M a, I= 10(n �1) c, M= 1M HD: 4n2 24 n.22 6.4 a, Ta có : n n 2 n 2 n 22.2n 2 4.2n 32 34.2 b, Ta có : n 1 n n 1 n 1 4.4n 1 34 34.4 c, Ta có : Bài 30: Chứng minh rằng: n1 2n a, D= 2M5 b, G= 1Mcả HD: n 1 4n a, Ta có : 3 1.3 5M5 2n b, Ta có : Bài 31: Trong số sau số chia hết cho 2,5 10 n 1 n 1 2(n �N ) a, 1(n �N ) b, HD: n 1 4n a, Ta có : 3 1.3 4 n 1 24 n.2 6.2 b, Ta có : Bài 32: Trong số sau số chia hết cho 2,5 10 n n a, 4(n N, n 2) b, 6(n N , n 1) HD: n n 2 n 2 n 2 22.2 n 4.2n 2 24.2 a, Ta có : n n 1 n 1 n 1 4.4n 1 94 4.4 b, Ta có : Bài 33: Chứng minh rằng: a, 94260 - 35137 M5 b, 995 – 984 +973 – 962 M2 HD: 942 a, Ta có : 15 351 37 .1 .5M5 4 b, Ta có : 99 98 97 96 99 99 98 97 96 1.99 .0 Hiển nhiên chia hết cho Bài 34: Chứng minh rằng: 25 21 10 a, 17 24 13 M HD: 102 102 10 b, M 25 21 24 20 a, Ta có: 17 24 13 17 17 24 13 13 1.17 1.13 chia hết cho 10 102 102 100 100 b, Ta có: 8 2 6.64 6.4 .4 nên chia hết cho 10 Bài 35: Chứng minh rằng: 36 10 28 a, 36 M45 b, 10 8M72 HD: 36 10 a, Ta có: 36 9 .1.81 36 10 Chia hết cho 5, ta thấy 36M9 36 M9,9 M9 đpcm b, Ta có : 10 10 00 1000 008M8 có tổng chữ số nên chia hết cho Khi chia hết cho 72 Bài 36: Chứng minh rằng: 20 15 17 a, M b, 16 M33 HD: 28 88 220 23 20 224 220 220 24 1 20.17 M 17 a, Ta có: 17 165 215 24 215 220 215 215 25 1 215.33M33 b, Ta có: Bài 37: Chứng minh rằng: 59 a, 10 M HD: 13 b, 81 27 M45 106 57 2.5 57 26.56 57 56 26 5 56.59M59 a, Ta có: 817 279 913 34 33 32 328 327 326 326 32 1 326.5 324.45M45 b, Ta có: Bài 38: CMR: 100 99 a, 2008 2008 M2009 HD: a, Ta có: b, 12345 13 678 12345677 M 12344 2008100 200899 200899 2008 1 200899.2009M2009 12345678 12345677 12345677 12345 1 12345677.12344M 12344 b, Ta có: Bài 39: Cho n số tự nhiên, CMR : A=17n+111 (n chữ số 1) M9 HD: Ta có : A 18n n 111 Số 1111 có tổng chữ số 1+1+1+1+ +1 có n số nên n Khi A 18n n 1111 có 18nM9 nên cần 1111 1-n chia hết cho mà 1111 - n có tổng chữ số nên chia hết cho Vậy A chia hết cho Bài 40: Tìm chữ số tận tổng sau: S 2004 HD: Ta thấy lũy thừa S có số mũ chia cho dư Nên tổng S có chữ số tận là: 2004 9009 S có chữ số tận 11 8011 Bài 41: Tìm chữ số tận của: T 2004 HD: Ta thấy lũy thừa T có dạng chia dư 3, Nên tổng T có chữ số tận : 199 + 9019 Vậy chữ số tận T Bài 42 : Tìm số dư : 8005 a, A 2003 chia cho 11 8007 b, B 2003 chia cho Bài 43: Tìm chữ số tận : 10 8010 a, C 2004 12 16 8016 b, D 2004 Bài 44: Chứng minh chữ số tận số sau giống nhau: 8013 11 8015 a, A 2005 B 2005 Bài 45: Tìm chữ số tận của: 13 4013 4017 a, A 10 12 14 2014 2016 13 4021 4025 b, B 11 2015 2017 11 15 4027 4031 c, C 2015 2017 13 3997 4001 d, D 21 23 25 2017 2019 43 47 51 203 207 e, E 20 22 24 98 100 12 16 8016 f, F 2004 8009 18 Bài 46: Tìm chữ số tận của: n A 19 7, n �2 a, 2017 2016 n �2 n b, n n n C 1999 19972 19964 2017 n �2 Bài 47: Tìm chữ số tận của: 10 10 Bài 48: Tìm số tự nhiên n để n 1M HD: n10 n n 1M 10 n n 2 Ta có: 10=4.2+2, nên 1999 1997 Bài 49: CMR: 999993 55557 M phải có tận 9=> n=3 n=7 19 Chú ý: Đối với tìm chữ số tận cùng: + Với chữ số có tận 01, 25, 76 nâng lên lũy thừa bao nhiên (Khác 0) có chữ số tận n + Các số 26 ln có tận 76 (n>1) 10 20 + Các số: , có tận 76 01 + Cịn lại đưa lên lũy thừa 2,4,5 trở 76 01 100 100 Bài 1: Tìm chữ số tận của: ,3 HD: 2100 210 76 10 Ta có: 10 76 Và 666 101 101 Bài 2: Tìm chữ số tận : 51 , 99 ,6 ;14 16 HD: 51 25 Ta có: 5151 512 51 01 9999 992 99 01 49 49 3100 320 01 01 99 25 51 51 99 99 6666 65133.6 76.6 56 14101.16101 224101 2242 224 76.224 24 50 99 2k k 1 2n n 1 99 5n 5n 1 66 Bài 3: Tìm chữ số tận của: 51 ,51 ,99 ,99 ,99 ,6 ,6 ,6 HD: 99 9999 99 9999 2n 99 99 992 n 1 n �N , n 1 99 ; 99 Ta thấy: thấy số lẻ nên 992 n1 99 992 99 01 99 n 2003 2003 2004 2005 2004 Bài :Tìm số tận : , ,74 ,18 68 , 74 Bài : Tìm chữ số : a, b, 492 n ;492 n 1 n �N 24 n.38n n �N 3n n 23n 3.3n 1 n �N c, 742 n ,74 n 1 n �N d, HD : 24 n.38 n n 32 4n 18 4n b, Bài : Chứng minh : 2n 10 n �N , n 1 M a, A 26 26M B 242 n 1 76M 100 n �N b, 2000 2000 2000 c, M 51 74 99 HD: c, Có chữ số tận 76 2008 Bài 7: Chứng minh rằng: A 10 125M45 HD: A có chữ số tận nên A M5 Mặt khác A có tổng chữ số :1+1+2+5=9 M9 nên AM9 20 Chú ý : Để đơn giản tìm chữ số tận số a, ta có TH : n + a chẵn => Tìm n nhỏ cho a 1M25 n 100 + a lẻ => Tìm n nhỏ cho a 1M 2003 Bài 8: Tìm dư chia cho 100 HD: 10 Ta có: tận 76 99 Bài : Tìm số dư chia cho 100 HD : n 100 n Ta có : số lẻ=> cần tìm 1M Khi : có tận 01 517 Bài 10 : Tìm số dư : chia cho 25 HD : 517 517 Tìm chữ số tận 43=> chia cho 25 dư 18 2002 2002 A 32002 2004 2002 Bài 11 : Tìm chữ số tận : HD : a �N , a;5 a 20 1M25 Dựa vào tính chất : 100 Thấy a chẵn => a M4, a lẻ=> a 1M4 a M5 a M25 A 12002 22 2002 1 20042 2004 2002 1 2 32 2004 2 chữ số tận A chữ số tận của tổng n n 1 2n 1 B 12 22 32 20042 với n= 2004 21 Dạng : NHÓM HỢP LÝ Bài 1: Chứng minh rằng: n n2 n n 10 a, M HD : a, Ta có: n2 n4 n n b, M30 VT 3n.9 2n.4 3n 2n 3n 1 2n 1.8 2n 1.2 3n.10 2n1.10M 10 VT 3n.9 2n.16 3n 2n 3n 1 2n 16 1 3n.10 n.15M30 b, Ta có: Bài 2: Chứng minh rằng: n n1 10 a, 8.2 M HD: n3 n3 n 1 n b, M6 8.2n 2n1 8.2n 2n.2 2n 10.2 n M 10 a, Ta có: n n n n n n b, Ta có: VT 27 3 30 12M6 n 1 n 2 Bài 3: Chứng minh rằng: M7 HD : n A 3.32 n 4.22 n 4.2n M 7.2n M7 Ta có : Bài 4: Chứng minh rằng: n n 81 a, 10 18n 1M27 b, D = 10 72n 1M HD: a, Ta có: VT 10n 1 18n 999 18n VT 9.1111 9.2n 111 2n M9 ( có n chữ số 9) 1111 n 3n mặt khác: 111 2n ( có n chữ số 1) = Xét: 111 n có tổng chữ số 1+1+1+ +1-n=0 nên chia hết cho 111 1+2n chia hết cho 3=> VT chia hết cho 27 b, Ta có: D 10n 72n 9.111 n 81n 9(111 n) 81n Xét 111 - n chia hết cho => D chia hết cho 81 n 1 n2 n 3 Bài 5: CMR : chia hết cho 13 với n HD: 3n 1 3n 3n 3 3n.3 3n.9 3n.27 3n.3 3n1.13M 13 Ta có: x 1 x 2 x 3 x 100 b, Chứng minh : chia hết cho 120 Bài 6: Chứng minh rằng: a, M7 11 b, M c, 10 10 10 M222 M555 59 d, 10 M HD: 53 52 1 52.21M7 a, Ta có: 74 1 4.55M 11 b, Ta có: 107 102 10 1 107.111M222 c, Ta có : M555 2.5 56 26 56.59M59 d, Ta có : 22 13 Bài : Chứng minh : 81 27 M45 HD : 34 33 32 Ta có : 13 328 327 326 326 32 1 326.5M 9.5 45 2004 Bài : Chứng minh : A M3;7;15 Bài : Chứng minh : 10 a, M55 45 15 30 b, 45 15 M75 54 24 10 63 c, 24 54 M72 10 40 20 d, 45 M25 10k 1M 19 k 1 , CMR :102 k 1M 19 Bài 10: Cho HD: 102 k 102 k 10k 10k 10k 10k 1 10k 1 Ta có: k 19 Nhận thấy: 10 1M 4 Bài 11: Chứng minh rằng: n n M HD: n n n n 1 n n 1 Ta có: , àm tích số tự nhiên liên tiếp nên chẵn Mà VP +1 nên số lẻ không chia hết cho 5 Bài 12: Chứng minh rằng: n �N , n n M HD: Vì Vì n n n n 1 n n 1 , tích số tự nhiên liên tiếp nên có chữ số tận 0; 2; n n 1 Khi đó: có tận 6;8;2 nên không chia hết cho 15 không chia hết cho 30 Bài 13: Chứng minh rằng: Với n 60n 45M với số tự nhiên n Bài 14: Chứng minh rằng: n n M HD: n n n n 1 Ta có: số lẻ nên khơng chia hết cho Tương tự chứng minh có chữ số tận khác nên không chia hết cho Bài 15: Chứng minh rằng: 11 a, M4 b, M30 HD: a, Ta có: A 32 33 310 311 3 32 310 1 A 32.4 34.4 310.4M4 b, Ta có: B 52 53 54 58 52 53 54 57 58 B 30 52.30 56.30 Bài 16: Chứng minh rằng: 60 15 a, M HD: 119 13 b, M a, Ta có: C 22 23 260 22 23 24 25 28 257 260 b, Ta có: D C 25 257 17 18 19 => C 15 25 257 23 D 13 33.13 317.13 13 33 317 M 13 Bài 17: Chứng minh rằng: 60 a, M3, 7,15 HD: a, Ta có: 1991 13, 41 b, M A 22 23 24 259 260 A 23 259 AM3 lại có: A 22 23 24 25 26 258 259 260 A 22 24 22 258 2 M7 Lại có: A 22 23 24 25 26 27 28 257 258 259 260 A 2.15 25.15 257.15M 15 b, Ta có: B 32 33 34 35 31989 31990 31991 B 13 33.13 31989.13M 13 Lại có: B 32 34 36 33 35 37 31984 31986 31988 31990 31985 31987 31989 31991 820 31984 31095 M41 Bài 18: Chứng minh rằng: 100 a, M31 HD: a, Ta có: 1998 12,39 b, M A 22 23 24 25 26 27 28 29 210 296 297 298 299 2100 A 2.31 26.31 296.31M 31 b, Ta có: S 32 33 34 31997 31998 S 12 32.12 31996.12M 12 mặt khác: S 32 33 34 35 36 31996 31997 31998 S 39 33.39 31995.39M 39 Bài 19: Chứng minh rằng: 1000 120 12 a, M b, 11 11 11 11 M HD: a, Ta thấy tổng B chia hết cho 3, ta cần chứng minh tổng B chia hết cho 40 B 32 33 34 3997 3998 3999 31000 32 33 31997 32 33 M40 Như A M120 b, Ta có: C 11 112 113 114 117 118 C 11 11 113 11 117 11 11 C 11.12 113.12 117.12M 12 Bài 20: Chứng minh rằng: 210 404 31 a, M210 b, M HD: a, Tổng A hiển nhiên chia hết cho (1) Nên ta cần chứng minh tổng A chia hết cho 105=5.21 24 A 42 43 44 4209 4210 A 43 4209 4.5 43.5 4209.5 M A 4 208 4 209 4 210 (2) A 16 4 16 4208 16 M21 (3) Từ (1), (2) (3) ta thấy: A M210 B 52 53 54 55 5402 403 5404 b, Ta có : B 31 53 52 5402 52 M31 Bài 21: Chứng minh rằng: 100 a, M HD: 21 22 23 29 13 b, M a, Ta có : A 22 23 24 299 2100 b, Ta có : B 3 3 3 A 23 299 2.3 23.3 299.3 M 21 22 B 321 32 324 3 3 3 3 1 1 23 24 25 26 27 27 3 3 28 29 B 321.13 324.13 327.13M 13 A 75.(42004 42003 1) 25M 100 2: CMR Bài HD: 2004 2003 Đặt B , Tính B thay vào A ta : A 75 42005 1 : 25 25 42005 1 25 25 42005 1 25.42005 Bài 23: CMR: M 2012 2012 2012 2012 HD: 2010 M100 M 2013 M 2012 20122 20123 20124 20122009 20121010 M 2012 2012 20123 2012 20122009 2012 M 2012.2013 20123.2013 2012 2009.2013M2013 2008 Bài 24: Cho A , Tìm dư A chia cho HD: A 22 23 25 26 27 22006 2007 2008 A 22 22 25 22 22006 22 A 22.7 25.7 2006.7 , Nhận thấy A chia dư n 3 25 n 25 n1 chia hết cho 31 n số nguyên dương Bài 25: CMR : A HD: A 22 23 24 25 26 27 28 29 25 n 5 25 n 4 25 n3 25 n 2 25 n 1 A 31 25 2 23 24 25n 5 2 23 24 A 31 25.31 25 n 5.31M 31 Bài 26: Cho n số nguyên dương, CMR : , bội 10 bội 10 HD: n n n Nếu , Là bội 10 có tận số 0=> có tận n4 n 10 (đpcm) Mà 3 .9.81 M n n 25 2012 Bài 27: CMR : N bội 30 HD: N 52 53 54 52011 52012 N 30 52 52 52010 52 30 52.30 52010.30M30 2004 2004 Bài 28: Cho S , CMR S chia hết cho 10 3S+4 chia hết cho HD: S 42 43 44 42003 42004 S 43 42003 4.5 43.5 2003.5 S M5, S M2 S M 10 2005 Mặt khác: 4S S S 3S 42005 3S 42005 M42004 Bài 29: Cho HD: N N 0,7 2007 2009 20131999 , CMR: N số nguyên 2007 2009 20131999 10 , Để Chứng minh N alf số nguyên N chia hết cho 10 hay: 2007 2009 20131999 2007 2008.2007 20131996.20133 1.2007 0M 10 Vậy N chia hết cho 10, Khi N số nguyên Bài 30: CMR: a a M6 2008 2007 2006 Bài 31: Chứng minh : B M31 HD : B 52006 52 1 31.52006 M31 Ta có : 20 17 Bài 32: Chứng minh : M HD : C 23 220 224 220 220 24 1 220.17M 17 Ta có: Bài 33: Chứng minh rằng: D 313 299 313 36M7 HD: D 3135 299 313.36 3135 1567 M7 Ta có: n 1 74 n M 400 Bài 34: Chứng minh rằng: A HD: Ta có: 400 , nhóm số hàng tổng A Bài 35: Chứng minh rằng: 3 3 a, A M2 n 1 b, B M30 A 2 23 22008 2002 Bài 36: Tìm số dư A chia A cho biết: HD: Nhóm số hạng Bài 37: Chứng minh rằng: 18 13 99 28 14 a, M b, 81 27 M405 c, 10 M9 d, 10 8M72 39 40 41 e, M28 HD: 218 23 1 a, c, Tổng chữ số Bài 38: Chứng minh rằng: 26 a, M 16 b, M 2008 c, 2000 2000 2000 2000 M2001 1991 13 M41 Bài 39: Chứng minh rằng: A M HD: Nhóm nhóm Bài 40: Chứng minh rằng: a, A M30 29 b, B M273 HD: b, Nhóm 3 120 Bài 41: Chứng minh rằng: A M217 HD: Ta có: 217=7.31 101 100 Bài 42:Cho C , CMR: A M40 HD: Nhóm x1 x x x100 Bài 43: Chứng minh rằng: chia hết cho 120 với x số tự nhiên HD : 3x1 3x2 3x3 3x100 3x1 3x 3x3 3x 3x 3x 3x 3x8 3x 97 3x 98 3x99 3x100 3 3 3 x x 4 x 96 3x.120 3x 4.120 3x96.120 120 3x 3x 3x 96 M 120 648 Bài 44: Cho biểu thức : B , Tìm số dư chia B cho 91 27 ... 51 99 99 66 66 65 133 .6 76. 6 56 141 01. 161 01 2 241 01 2 242 2 24 76. 2 24 24 50 99 2k k 1 2n n 1 99 5n 5n 1 66 Bài 3: Tìm chữ số tận của: 51 ,51 ,99 ,99 ,99 ,6 ,6 ,6 HD: 99 9999... 2 6. 64 6 .4 .4 nên chia hết cho 10 Bài 35: Chứng minh rằng: 36 10 28 a, 36 M45 b, 10 8M72 HD: 36 10 a, Ta có: 36 9 .1.81 36 10 Chia hết cho 5, ta thấy 36M9 36 M9,9... Bài 23: Chứng minh số có dạng HD: 4n 41 n 1 4. 4n 1 C 34 34 n Ta có: 4n 1 81 Bài 24: Tìm chữ số hàng đơn vị của: 1111 1111 5555 a, 66 66 1111 66 10n 555n 66 6n ,