1. Trang chủ
  2. » Giáo án - Bài giảng

Lý thuyết mạch điện :Lời giải phần tín hiệu và Phổ

19 322 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 298,5 KB

Nội dung

Bài giải - Đáp số - Chỉ dẫn 4.1. 1. a) Với đồ thị hình 4.23. thì đây là một hàm chẵn nên b k =0. Xung đầu tiên có biểu thức giải tích:          << ≤≤− −<<− = Tt t khi t t t khih t tTkhi )t(u x xx x 2 0 22 2 0 (*) T ht A T ht hdt T dt)t(u T a xx t t T T X X =→=== ∫∫ −− 0 2 2 2 2 0 2 22 (**) ,,k; T t ksin k h T t k T t ksin T htt T ksin T Tk h T t ksin Tk h )] t ksin( t k[sin Tk h t t tksin Tk h tdtkcos T h tdtkcos)t(u T a x x x xx xxx x x t t T T k X X 321 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 222 1 1 1 11 1 1 1 2 2 1 2 2 1 =π π = π π = π π = π =ω ω ω =ω−−ω ω = − ω ω =ω=ω= ∫∫ −− 139 b) Tìm phổ theo k . C : T t ksin k h T t k T t ksin T ht k t ksin T h k ee T h k ee T h t t k e T h dte T h dte)t(u T C x x x x x t jk t jk t jk t jk x x tjk t t tjk T T tjk k XX XX X X . π π = π π = ω ω = ω − = ω− − = − ω− === ω−ω ωω− ω− − ω− − ω− ∫∫ 1 1 1 22 1 22 1 2 2 2 2 2 2 2 2 1 11 11 1 11 Theo biểu thức cuối: (*) T ht CA x == 00 (**) T t k T t ksin T ht CA x x x kk π π == 2 2 Như vậy cả hai cách cho cùng một kết quả. Pha ϕ k của các hài bằng 0 nếu A k >0, bằng π nếu A k <0. 2. Từ đó có: 140 ∑ ∞ = =ϕ+ω+= 1 10 k kk )tkcos(AA)t(u ∑∑ ∞ = ω ∞ = π π +=ω π π + 11 1 1 121 k tjk x x x k x x x )e T t k T t ksin ( T ht )tkcos T t k T t ksin ( T ht (***) 3. Với t X =1 µS, T=5µS, độ cao h= 20 [V] thì 20 5 1 , S S T t x = µ µ = Tính theo công thức: 1231120 2 20 0 .,,k;k,sin k h A;h,A k =π π == Kết quả tính cho trong bảng 4.2 Bảng 4.2. k 0 1 2 3 4 5 6 A K 4. 7,484. 6,055. 4,036. 1,871. 0 -1,247. IA k I 4 7,484 6,055 4,036 1,871 0 1,247 ϕ k 0 0 0 0 0 0 π k 7 8 9 10 11 12 13 A K -1,73 -1,513 -0,832 0 0,680 1,01 0,931 IA k I 1,73 1,513 0,832 0 0,680 1,01 0,931 ϕ k π π π 0 0 0 0 Từ kết quả bảng 4.2 có đồ thị phổ biên độ hình 4.24.a), phổ pha hình 4.24b) (với ω 1 =2π/T=1 256 737 rad/s, F 1 = 200Khz.) 4.2. Theo tính chất trễ trong miền thời gian: Nếu u(t) có phổ là k . A thì phổ của tín hiệu bị trễ u(t ± τ) sẽ có phổ là k . A e ±j τ k ω 1 nên: -Tín hiệu hình 4.4a) vượt trước so với tín hiệu trong BT4.1 là t X /2→ phổ sẽ là biểu thức (**) trong BT(4.1) nhân với 1 2 ωk t j x e (thành phần A 0 giữ nguyên như (*) vì e 0 =1.) -Tín hiệu hình 4.4b) chậm so với tín hiệu trong BT4.1 là t X /2→ phổ sẽ là biểu thức (**) trong BT (4.1) nhân với 1 2 ω− k t j x e Như vậy phổ biên độ không thay đổi, chỉ thay đổi phổ pha so với BT(4.1). 4.3. Hàm lẻ. ∑ ∞ = ω+ + =      π =π− π = 0 1 12 12 4 4 0 1 2 k k t)ksin( )k( E )t(u lÎkkhi k E n½chkkhi )kcos( k E b 141 4.4. Trong chu kỳ đầu thì u(t)=At nên dtteA T C T t T jk k . ∫ π − = 0 2 1 Lấy tích phân từng phần: u=t; du=Adt; dV= T jk e V;dte t T jk t T jk π − = π − π − 2 2 2 → 2 0 2 2 2 2 0 2 2 22 0 2 2 2 1 0 2 π = π − π− π − π − π = π− =                 π − π− =             π + π − = ∫ j t T jk jk T t T jk t T jk k e k AT jk AT T ) T jk( e jk e T T A dte T jk T T jk e t T A C .    Chuỗi Fourrie ở dạng phức: ∑ ∞ −∞= π + π π = k )t T k(j e k AT )t(u 2 2 2 Chuỗi Fourrie ở dạng thực: ở đây phải tính các A k qua k . C ,lúc đó chú ý là từ biểu thức của k . C trên, khi k =0 thì k . C = ∞ nên tính riêng C 0 : 202 11 2 0 0 AT T At T Atdt T C T . === ∫ ; Với k=1,2,3,4 → 2 2 π π == j kk e k AT CA u(t)=       π + π π += π + π π + ∑∑ ∞ = ∞ = 11 2 221 1 22 2 2 kk )t T kcos( k AT )t T kcos( k ATAT 4.5. Chỉ thay A=50 mA, T=2 µS vào các biểu thức phổ trong BT(4.4) vừa xét để tính các vạch phổ A 0 ÷A 13 . 4.6.Theo hình 4.25 thì đây là hàm lẻ nên a k =0. có T=2 µS=2.10 -6 S.Tính b k với k=1,2,3,4… Chu kỳ đầu tiên có biểu thức: ]mA[t.At)t(s 6 104== với -10 -6 S ≤ t ≤ 10 -6 S 142 ;tdtksinAt T b T T k 1 2 2 2 ω= ∫ − Đặt t = u → du=dt ; dv=sinkω 1 tdt → v= 1 1 ω ω− k tkcos ;dt k tkcos T T k tkcos t T A b T T k             ω ω + − ω ω −= ∫ − 2 2 1 1 1 1 2 2 2 Thành phần thứ nhất trong tổng: .,,,k; k T )(Ab)lÎkvíi k T ;n½chkvíi k T kcos k T kcos k T )] T T kcos() T ( T T kcos T [ k k kk 43211 2 22 2 22 2 2 1 1 1 111 11 = ω −==⇒ ωω −=π ω − =π ω −= π −−− π ω − + Thành phần thứ hai trong tổng: 0 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 1 1 = ω π = ω ω = ω ω−ω ω ω − = − )k( ksin )k( ksin )k( ksin(ksin )k( tksin T ) TT T T Vậy π −= π −= ω −= +++ k AT )( T k T . T A )( k T . T A )(b kkk k 11 1 1 1 2 2 1 2 1 . (*) Với A=4,T=2.10 -6 thì π −== + k )(bA k kk 4 1 1 2.10 -6 s(t)=    π =ϕϕ+ω π ∑ ∞ = − .n½chkkhi .lÎkkhi víi)tksin( k . k k k 0 108 1 1 6 So sánh modun của biểu thức b k trong (*) với mondun A k trong bài giải của BT4.4 thì thấy chúng là một (!) vì các dãy xung có cùng cấu trúc,chỉ khác nhau ở quan hệ pha. 4.7. Xung xạ tần (tần số phát xạ được vào không gian) sử dụng trong kỹ thuật rada.ở dãy xung này cần phân biệt các thông số: - U 0m biên độ xung điều hoà cao tần. - f 0 = 0 1 T ,f 0 – tần số của dao động điều hoà cao tần (T 0 -chu kỳ của dao động điều hoà cao tần) - F= T 1 , F- tần số lặp của dãy xung (T- chu kỳ lặp của dãy xung); τ- động rộng của mỗi xung a) Biểu thức phổ: 143           + = + =ω= ∫∫ ∫∫ τ τ ω−ω− τ τ ω+ω− τ τ ω− ω−ω τ τ ω− 2 2 2 2 0 2 2 0 2 2 00 0101 1 00 1 2 2 1 dtedte T U dte ee T U dttecosU T . C t)k(jt)k(j m tjk tjtj m tjk m k Tính riêng từng tích phân trong dấu ngoặc: Tích phân thứ nhất: )k( )ksin( )k(j ee )k(j ee dte )k(j)k(j)k(j)k(j t)k(j 01 01 01 22 01 22 2 2 2 2 01010101 01 ω+ω τ ω+ω = ω+ω − = ω+ω− − = τ ω+ω− τ ω+ω τ ω+ω τ ω+ω− τ τ ω+ω− ∫ Thành phần này xấp xỉ bằng 0 vì trong thực tế tần số phát xạ rất lớn nên (kω 1 +ω 0 ) >>1. Tích phân thứ 2: ;. )k( )ksin( T U )k( )ksin( T U C )k( )ksin( )k(j )ksin(j )k(j ee )k(j ee )k(j e dte mm k . )k(j)k(j)k(j)k(j t)k(j t)k(j 01 01 0 01 01 0 01 01 01 01 01 22 01 22 01 2 2 22 2 2 2 2 2 2 01010101 01 01 ω−ω τ ω−ω = ω−ω τ ω−ω = ω−ω τ ω−ω = ω−ω τ ω−ω = ω−ω − = ω−ω− − = τ − τ ω−ω− = τ ω+ω− τ ω−ω τ ω−ω τ ω−ω− ω−ω− τ τ ω−ω− ∫ Để tiện biểu thức thường đưa về dạng x xsin : 2 2 2 2 2 2 2 2 2 10 10 0 10 10 0 10 10 0 τ ω−ω τ ω−ω τ == τ ω−ω τ ω−ω τ = τ ω−ω τ ω−ω τ = )k( )ksin( . T .U CA )k( )ksin( T U )k( )ksin( T U C m k . k . mm k . b) Tính phổ: Với T 0 =10 -6 S ; τ=5T 0 -mỗi xung hình sin có 5 chu kỳ dao động cao tần. 144 U 0m =100V ;S/rad.;Mhz,Hz T f ;, T ;STT;S.T;S/rad.;Mhzf 5 1 5 1 5 0 6 0 6 0 6 0 1021010 1 501010210551021 10 1 π=ω=== = τ ==τ===τπ=ω== −− − 0 105 2 105 102 2 0 6 0 0 6 6 0 0 0 0 0 0 = ω π = ω π = ω τ ω == − .sin T U . sin T U sin T U CA mmm . A K với k=1,2,3,4…: )]k(,[ )]k(,sin[ .U., . ).k.( ] . ).k.sin[ . T .UA mmk −π −π = π−π π−π τ = − − 1050 1050 50 2 105 102102 2 105 102102 0 6 56 6 56 0 Với ω 0 =10ω 1 thì k=10 hay A 10 sẽ được tính theo công thức 1 0 = → x xsin lim x đạt max nên A 10 =0,5U 0m .Ta tính được A k theo công thức cuối với k=0÷20 ở bảng 4.3. Bảng 4.3. k 0 1 2 3 4 5 6 7 A k [V] 0 3,535 0 4,545 0 6,365 0 10,61 k 8 9 10 11 12 13 14 15 A k [V] 0 31,83 50 31,83 0 10,61 0 6,365 k 16 17 18 19 20 21 22 23 A k [V] 0 4,545 0 3,535 0 2,89 0 2,445 Từ bảng dựng đồ thị phổ biên độ hình 4.26 145 4.8. tsin )k( A )( A )tcos( )k( A )( A )t(s e )k( )(A CA A C k k k k j k K . ,,k . . 1 1 2 1 1 1 2 1 2 2 1 321 0 14 12 2 14 12 14 12 2 ω −π −+ π = π −ω −π −+ π = −π − == π = ∑∑ ∞ = + ∞ = + π − + = 4.9. 2222 0 22 00 00 4 4 2 2 Tk( TU k) T ( T U A; T U CA k α+π α = + π α π α π = α == 4.10. Biểu thức giải tích trong một chu kỳ:            ≤≤− ≤≤+− ≤≤− −≤≤−+ −≤≤−− = −− −− −− −− −− S.tS.khiE S.tSkhiE)t( ;StSkhiE StS.khiE)t( ;S.tS.khiE )t(u 66 666 66 666 66 104103 10310210 1010 10103210 103104 T=8 µs = 8.10 -6 S.; ω 1 =2π/T=2π.0,125.10 6 rad/S. 146 Từ đồ thị đã cho ở hình 4.27.ta thấy tín hiệu thuộc hàm chẵn nên chỉ có a k còn b k =0. Thành phần a 0 = ∫ − − − 6 6 104 104 . . dt)t(u chính là phần diện tích được bôi trên đồ thị nên sẽ bằng 0. Chỉ xác định a k với k=1,2,3,4… Biểu thức giải tích của một chu kỳ là:     π−+π+− +π+π+ +     π−=ω= ∫∫ ∫ ∫ ∫∫ − − − − − − − − − − − − − − − − − 6 6 6 6 6 6 6 6 6 6 104 103 6 103 10 66 10 103 10 10 666 103 104 6 6 2 2 1 101250211012502210 10125021012502210 10125021 108 22 . . . . . . T T k dt)t.,.k(cos)(dt)t.,.kcos()t( dt)t.,.k(cosdt)t.,.kcos()t( dt)t.,.k(cos)( . E tdtkcos)t(u T a Tính riêng từng tích phân: trong dấu ngoặc: +Tích phân thứ nhất: =π−−π− π − π π −=π− −− = − − − − − − − ∫ − − )] .,.k(sin) .,.k([sin .,.k .,.k )t.,.k(sin dt)t.,.k(cos . . . . 6666 6 6 104 6 103 6 6 103 104 6 10410125021031012502 1012502 1 1012502 1012502 1012502 6 6 666 1012502 4 3 1012502 4 3 412502312502 1012502 1 .,.k ksin .,.k ksinksin ].,.k(sin).,.k([sin .,.k π π = π π− π =π−−π− π − +Tích phân thứ 2: 147 11 10 103 6 10 103 66 10 103 66 6 6 6 6 6 6 10125022 1012502101012502210 BAdt)t.,.kcos( dt)t.,.kcos(.t(dt)t.,.kcos()t( . +=π +π=π+ ∫ ∫∫ − − − − − − − − − − − − ]NM[dt .,.k )t.,.k(sin .,.k )t.,.k(sin .t .,.k )t.,.k(sin v dt)t.,.kcos(dv dtdutu dt)t.,.kcos(.tA . . 11 6 10 103 6 6 6 6 6 6 6 6 10 103 66 1 10 1012502 1012502 1012502 1012502 10 1012502 1012502 1012502101250210 6 6 6 6 −=         π π − π π =                 π π = π= =→= =π= ∫ ∫ − − − − − − − − = π π− −− π π− −= − − − − 6 66 6 6 66 6 1 1012502 3101012502 103 1012502 101012502 10 .,.k ) ,.k(sin ).( .,.k ) ,.k(sin ).(M 6 6 1012502 4 3 3250 10 .,.k )ksin()k,(sin π π −π − 626 266 66 11 6 1 2626 6666 6 103 6 10 26 6 10 103 6 6 1 1012502 4 3 250 1012502 4 3 3250 1012502 4 3 250 1012502 4 3 3250 101010 1012502 4 3 250 1012502 1031012502101012502 1012502 1012502 1012502 1012502 6 6 ),.k( )k(cos)k,(cos .,.k )ksin()k,(sin ).,.k( )k(cos)k,(cos .,.k )ksin()k,(sin ]NM[A ).,.k( )k(cos)k,(cos ).,.k( ) .,.k(cos) ,.k(cos ).,.k( )t.,.k(cos dt .,.k )t.,.k(sin N . . π π −π + π π −π =             π π −π + π π −π =−= π π −π −= π π−π − = π π −= π π = − −− − − − − − − ∫ − − + π π −π + π π −π =+ π π +π− =π= ∫ − − − − 626 11 6 10 103 6 1 1012502 4 3 250 1012502 4 3 3250 1012502 4 3 2520 210125022 6 6 ),.k( )k(cos)k,(cos .,.k )ksin()k,(sin BA .,.k )ksin()k,sin( dt)t.,.kcos(B . 6626 1012502 4 3 250 1012502 4 3 250 1012502 4 3 2520 2 .,.k )ksin()k,(sin ),.k( )k(cos)k,(cos .,.k )ksin()k,sin( π π +π − π π −π = π π +π− +Tích phân thứ 3: 148 . t sin .ee t t sin xx xx 1 1 2 2 1 2 2 2 2 2 2 2 12 2 1 2 2 2 22 1 2 2 2 2 2 22 22 2 22 22 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 ω +−−ω− ω − ω − ω − ω − ω − ω. .,.k .ksin BA 6 6 626 6 626 6 22 10 125 02 250 10 125 02 4 3 10 125 02 250 4 3 10 125 02 250 2 10 125 02 4 3 2 10 125 02 250 4 3 10 125 02 2 520 10 125 02 4 3 3 π π − π π −

Ngày đăng: 17/12/2013, 20:28

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w