1. Trang chủ
  2. » Trung học cơ sở - phổ thông

nhi thuc niuton

7 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 116,68 KB

Nội dung

T×m hÖ sè cña sè h¹ng chøa x2 trong khai triÓn nhÞ thøc Niut¬n cña biÕt r»ng n lµ sè nguyªn d¬ng tháa m·n: Cnk lµ sè tæ hîp chËp k cña n phÇn tö... VËy hÖ sè cÇn t×m lµ.[r]

(1)Chủ đề 10 : NHỊ THỨC NEWTƠN A/ BAØI TAÄP MAÃU: 11  1   A  x     x   x  x   Tìm hệ số x5 khai triển biểu thức: Giaûi: Công thức khai triển biểu thức là: 11 k k 11 k 11 A  C x k 0 11   n      C7 x x   n 0   7 n xn k  A    1 C11k x11 k   C7n x14  n k 0 n 0 Để số hạng chứa x5 k=2 và n=3 Vậy hệ số x5 là C11  C7 90 1004 Tính tổng: S C2009  C2009  C2009   C2009 Giaûi: S C 2009 C 2009  S C C 2009 2009 2009 C   C 2008 2009 C 1004 2009 2007 2009 (1) 1005 k n k   C2009 (2) (vì Cn Cn ) 2009 1004 1005 2009  2S C2009  C2009  C2009   C2009  C2009   C2009   1  S 22008 n 1− x ¿ Khai triển và rút gọn biểu thức 1− x ¿2 + + n¿ thu đa thức 1− x+ 2¿ Tính hệ số a8 biết n là số nguyên dương thoả mãn + = C 2n C 3n n Ta cã §ã lµ + 3= ⇔ C n Cn n n≥ ! + = n(n −1) n( n− 1)( n− 2) n ¿{ 8 C +9 C9 =89 Giaûi: P( x)=a0 + a1 x + +a n x n (2) ⇔ n≥3 n2 −5 n −36=0 ⇔ n=9 ¿{ Suy a8 lµ hÖ sè cña Tính tổng x 1−x ¿ biÓu thøc 1− x ¿ 8+ ¿ 8¿ S C2009  2C12009  3C22009   2010C2009 2009 Xét đa thức: f(x) x(1  x) 2009 x(C 2009 Giaûi:  C12009 x  C22009 x   C2009 x 2009 ) 2009 2009 2010 C2009 x  C12009 x2  C22009 x3   C2009 x 2009 2009 f / (x) C2009  2C12009 x  3C2009 x   2010C2009 x * Ta có:  f / (1) C2009  2C12009  3C22009   2010C2009 2009 (a) / 2009  2009(1  x)2008 x (1  x)2008 (2010  x) Mặt khác: f (x) (1  x)  f / (1) 2011.22008 (b) * 2008 Từ (a) và (b) suy ra: S 2011.2    Chứngminh k,n  Z thõa mãn k n ta luơn cĩ: Cnk  3Cnk   2Cnk  Cnk3  Cnk   Cnk  k n k n k n k n 3 k n Giaûi:  C  Cnk  3Cnk   3Cnk   Cnk  Cnk3 k n C  3C  2C C  C Ta có: (5) k k k k k k k k k k k VT(5) Cn  Cn  Cn  Cn  Cn  Cn Cn 1  2Cn 1  Cn 1  Cn 1  Cn 1  Cnk  11  Ckn 12  = Cnk2  Cnk 12 Cnk3     ( điều phải chứng minh) x x x 2 x k Giải phương trình C x  2Cx  C x Cx 2 ( Cn là tổ hợp chập k n phần tử) Giaûi: 2  x 5  ĐK :  x  N x x x x 2 x x x x x x Ta có Cx  Cx  Cx  Cx Cx 2  Cx 1  Cx1 Cx2  Cx2 Cx2  (5  x)! 2!  x 3 100 Tính giá trị biểu thức: A 4C100  8C100 12C100   200C100 Giaûi: Ta có:  1 x 100 100 100 C100  C100 x  C100 x   C100 x (1)  (3) 1 x 100 100 100 C100  C100 x  C100 x  C100 x   C100 x (2) Lấy (1)+(2) ta được: 1 x 100  1 x 100 100 100 2C100  2C100 x  2C100 x   2C100 x Lấy đạo hàm hai vế theo ẩn x ta 99 100   x   100   x  99 100 99 4C100 x  8C100 x3   200C100 x Thay x=1 vào 99 100 => A 100.2 4C100  8C100   200C100 Tìm hệ số x3 khai triển ( x+ x n ) n −1 23 biết n thoả mãn: C2 n +C n+ .+ C2 n =2 Khai triển: (1+x)2n thay x=1;x= -1 và kết hợp giả thiết n=12 Giaûi: Khai triển: ( x+ x 12 12 ) =∑ C k=0 k 12 k x 24− k hệ số x3: C712 27 =101376 T×m hÖ sè cña sè h¹ng chøa x2 khai triÓn nhÞ thøc Niut¬n cña biÕt r»ng n lµ sè nguyªn d¬ng tháa m·n: ( Cnk lµ sè tæ hîp chËp k cña n phÇn tö) Giaûi: I =∫ ¿ 1 ¿ C 0n x+ C 1n x + C 2n x +⋯+ C n x n+1 ¿20 n+1 n ( ) n +1 suy I ¿ 2C 0n + C1n + C 2n+⋯+ C n (1) n+1 n 3n+1 −1 n+1 1+ x ¿ ¿ 0= n+ MÆt kh¸c (2) I= ¿ n+1 n +1 n+1 Tõ (1) vµ (2) ta cã ¿ 2C 0n + C1n + C 2n+⋯+ C nn ¿ − n+1 n+1 n+1 Theo bµi th× −1 =6560 ⇔3 n+1=6561 ⇒n=7 n+1 n+1 7 14 −3 k −k k k k =∑ k C x Ta cã khai triÓn √ x+ =∑ C ( √ x ) √x √x 14 −3 k Sè h¹ng chøa x2 øng víi k tháa m·n =2 ⇔ k =2 ( ) 2√x n +1 2 6560 2C 0n + C1n + C 2n+⋯+ C nn= n+1 n+ n 1+ x ¿ dx ¿ ¿ ( √ x+ ( ) ) n (4) VËy hÖ sè cÇn t×m lµ 21 C 7= 10 Tìm hệ số x8 khai triển (x2 + 2)n, biết: A 3n −8 C 2n+ C1n=49 Điều kiện n  Giaûi: n n k k n −k Ta có: ( x + ) =∑ C n x k=0 Hệ số số hạng chứa x8 là Cn4 n− Ta có: A n  8Cn  Cn 49  (n – 2)(n – 1)n – 4(n – 1)n + n = 49  n3 – 7n2 + 7n – 49 =  (n – 7)(n2 + 7) =  n = Nên hệ số x8 là C74 23 =280 B- BAØI TẬP TỰ LUYỆN : (CĐ_Khối D 2008) Tìm số hạng không chứa x rtrong khai triển nhị thức Newton ( 2 x+ √x 18 ) (ĐH_Khối , (x>0) số nguyên dương n thỏa mãn hệ thức C +C +⋯+C =2048 ( C là số tổ hợp chập k n phần tử) (ĐH_Khối D 2007) Tìm hệ số x5 khai triển thành đa thức x(12x)5+x2(1+3x)10 2n 2n D 2008) n −1 2n k n 4 (ĐH_Khối D 2005) 2 Tìm M= Tính giá trị biểu thức Cn +1 +2C n+2 +2 C n+3 +C n+4 =149 (n là số nguyên dương, n phần tử và Cnk là số tổ hợp chập k n phần tử) k An A n+1 +3 An , ( n+1 ) ! biết là số chỉnh hợp chập k (ĐH_Khối D 2004) Tìm số hạng không chứa x rtrong khai triển nhị thức Newton ( √ x+ √x ) với x>0 (ĐH_Khối D 2003) Với n là số nguyên dương, gọi a3n3 là hệ số x3n3 khai triển thành đa thức (x2+1)n(x+2)n Tìm n để a3n3=26n n n (ĐH_Khối D 2002) Tìm số nguyên dương n cho Cn +2 C n+ C n +⋯+ C n=2048 (ĐH_Khối B 2008) Chứng minh n+1 1 + k+1 = k k n+2 C n+1 C n+1 C n ( ) (n, k là các số nguyên dương, k≤n, Cnk là số tổ hợp chập k n phần tử) (ĐH_Khối B 2007) Tìm hệ số số hạng chứa x10 khai triển nhị thức Newton (2+x)n, biết: 3nCn03n1Cn1+3n2Cn23n3Cn3+ … +(1)nCnn=2048 (n là số nguyên dương, Cnk là số tổ hợp chập k n phần tử) (5) 10 (ĐH_Khối C0n + B 2003) Cho n là n +1 − 1 −1 2 −1 n k C n+ C n +⋯+ C n , ( Cn n+1 số nguyên dương Tính tổng là số tổ hợp chập k n phần tử) 11 (ĐH_Khối A 2008) Cho khai triển (1+2x)n=a0+a1x+ … +anxn, đó nN* và các hệ số a0, a1,…an thỏa mãn hệ thức a0 + a1 a +⋯+ nn =4096 Tìm số lớn các số a0, a1,… 2 an 12 (ĐH_Khối A 2007) 1 22 n −1 1 C2 n + C2 n + C n+ ⋯+ C 22 n− = C2 n , ( n 2n 2n+1 Chứng minh k là số tổ hợp chập k n phần tử) 13 (ĐH_Khối A 2006) Tìm số hạng chứa x26 khai triển nhị thức Newton Cn ( +x x n ) , biết C12 n +1+C 22 n+1 +⋯+C n2n +1=220 − , (n nguyên dương và Cnk là số tổ hợp chập k n phần tử) 14 (ĐH_Khối A 2005) C n +1 − 2C 2 n+1 +3 C 2n +1 Tìm −4.2 C n+1 số nguyên dương n n n+1 k +⋯+ ( n+1 ) C n+1=2005 , ( Cn cho là số tổ hợp chập k n phần tử) 15 (ĐH_Khối A 2004) Tìm hệ số x8 khai triển thành đa thức [1+x2(1x)]8 16 (ĐH_Khối A 2003) Tìm số hạng chứa x8 khai triển nhị thức Newton ( + x5 √ x n ) n k , biết Cnn +1 +4 −C n+3 =7 ( n+3 ) , (n nguyên dương, x>0, ( Cn là số tổ hợp chập k n phần tử) 17 (ĐH_Khối A 2002) Cho khai triển nhị thức (2 x− −x n +2 x− n x −1 n − −x x−1 − x n −1 ) =C (2 ) +C ( ) (2 ) +⋯+C ( )(2 ) n n n −1 n −x n ( ) +C nn (n là số nguyên dương) Biết khai triển đó C3n =5 C1n và số hạng thứ 20n, tìm n và x 2n  3x  18 (ĐH-A DB2-2005) Tìm hệ số số hạng chứa x khai triển ña thức:  biết n 1 k n là số nguyên dương thoả mãn: C2 n 1  C2 n 1  C2 n 1   C2n 1 1024 ( Cn là tổ hợp chập k n phần tử ) 19 (ĐH A–DB1-2006) Aùp dụng công thức Newtơn (x2+x)100 Chứng minh rằng: 99 100 100C 1  1    101C100    2  2 20 (ĐH-D-2004) 100 99 100   199C  1    2 198 100 100  200C  1    2 199 0 Tìm số hạng không chứa x khai triển nhị thức Newton  3  x4  x  với x >    x   x   21 (ĐH-A-2004) Tìm hệ số x khai triển biểu thức:  (6) 22 (ĐH-A-2003) Tìm hệ số số hạng chứa x khai triển nhị thức Newton của: n   n 1 n  3 x  x  , biết rằng: Cn 4  Cn 3 7(n  3) ( n là số nguyên dương, x > ) 3n 23 (ĐH-D-2003) Với n là số nguyên dương, gọi a3n  là hệ số x khai triển thành x đa thức   1 n n  x   Tìm n để a3n  26n 26 24 (ĐH-A-2006) Tìm hệ số số hạng chứa x khai triển nhị thức Newton của: n  7 n 20  x  x  , biết rằng: C2 n 1  C2 n 1  C2 n 1   C2 n 1 2  ( n là số nguyên dương, x > ) 25 (ĐH B –DB2-2007) Tìm hệ số x8 khai triển (x2 + 2)n, biết: A 3n −8 C 2n+ C1n=49 26 (ĐH D -DB1-2007) Chứng minh với n nguyên dương luôn có nC 0n − ( n −1 ) C1n + + (− )n −2 C nn −2 + ( − )n −1 C nn −1=0 27 (ĐH A –DB2-2008) Tìm hệ số số hạng chứa x5 khai triển nhị thức Newton (1+3x)2n biết A 3n +2 A 2n=100 (n là số nguyên dương) 28 (ĐH B –DB1-2008) Cho số nguyên n thỏa mãn A3n+C 3n =35(n ≥ 3) Tính tổng (n −1)(n −2) − 1¿ n n2 C nn S=22 C 2n −32 C3n +42 C4n − +¿ 29 (ĐH B –DB2-2008) Khai triển nhị thức Newton n n x+ 1¿ =C n x +Cn x n −1 +C n x n −2 n + + Cn ¿ 30 (ĐH D –DB1-2008) Chứng minh với n là số nguyên dương n.2n C0n  (n  1).2n  C1n   2C nn  2n.3n  1 2x Cho khai triển:  31 (ĐH-A-2008) a0  a0 , a1, , an n a0  a1 x   an x n * Trong đó n  N và các hệ số a a1   nn 4096 2 Tìm số lớn các số: a0 , a1 , , an thỏa mãn hệ thức: 32 (ĐH-A-2002) Cho khai triển nhị thức: n n x x x  x2    0 1    Cn    Cn  2        n x  3x    3x  n      Cn          n n  3x  C     ( n là số nguyên n n dương ) Biết khai triển đó Cn 5Cn và số hạng thứ tư 20n, tìm n và x 33 (ĐH-A-2005) C n 1  2.2C 2 n 1  3.2 C23n1  4.23 C24n 1    2n  1 2 n C22nn11 2005 34 (ĐH-B-2003) Cn0  Tìm số nguyên dương n cho: Cho n là số nguyên dương Tính tổng: 1 1 2n 1  n Cn  Cn   Cn n 1 35 (ĐH-D-2002) n n Tìm số nguyên dương n cho: Cn  2Cn  4Cn   Cn 243 (7) M 36 (ĐH-D-2005) Tính giá trị biểu thức: C n 1  2C n2  2C n 3 C n4 149 An41  An3 ,  n  1 ! ( n là số nguyên dương ) biết rằng: (8)

Ngày đăng: 29/06/2021, 12:28

TỪ KHÓA LIÊN QUAN

w