Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 87 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
87
Dung lượng
2,84 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Văn Ngọc Thảo Quyên KHÁI NIỆM TẬP HỢP Ở TRUNG HỌC PHỔ THÔNG: SỰ NỐI KHỚP GIỮA HAI VAI TRỊ ĐỐI TƯỢNG VÀ CƠNG CỤ LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC Thành phố Hồ Chí Minh – 2014 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Văn Ngọc Thảo Quyên KHÁI NIỆM TẬP HỢP Ở TRUNG HỌC PHỔ THƠNG: SỰ NỐI KHỚP GIỮA HAI VAI TRỊ ĐỐI TƯỢNG VÀ CƠNG CỤ Chun ngành : Lí luận phương pháp dạy học mơn Tốn Mã số : 60 14 01 11 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: TS TRẦN LƯƠNG CÔNG KHANH Thành phố Hồ Chí Minh – 2014 LỜI CAM ĐOAN Tôi xin cam đoan luận văn cơng trình nghiên cứu độc lập hướng dẫn giáo viên hướng dẫn, trích dẫn nêu luận văn xác trung thực TP Hồ Chí Minh, ngày 09 tháng năm 2014 TÁC GIẢ Văn Ngọc Thảo Quyên LỜI CẢM ƠN Người Tơi muốn gửi lời cảm ơn chân thành Thầy Khanh Tôi xin phép gọi Thầy Thầy Khanh thay TS Trần Lương Cơng Khanh nhằm bày tỏ lòng biết ơn sâu sắc Thầy người hướng dẫn tận tình giúp đỡ tơi nhiều, ln theo sát để Tơi hồn thành luận văn Tôi xin trân trọng cảm ơn PGS.TS Lê Thị Hoài Châu, PGS.TS Lê Văn Tiến, TS Nguyễn Thị Nga, TS Lê Thái Bảo Thiên Trung, TS Vũ Như Thư Hương nhiệt tình giảng dạy cho chúng tơi kiến thức didactic tốn, cung cấp cho công cụ hiệu để thực việc nghiên cứu Tôi xin gửi lời cảm ơn đến Ban Giám Hiệu em học sinh trường THCS – THPT Lương Thế Vinh, quận 1, Thành phố Hồ Chí Minh giúp tơi thực thực nghiệm luận văn Cuối cùng, Tôi xin gửi lời cảm ơn chân thành đến tất bạn khóa, người tơi chia sẻ khó khăn suốt khóa học TP Hồ Chí Minh, ngày 09 tháng năm 2014 TÁC GIẢ Văn Ngọc Thảo Quyên MỤC LỤC Trang phụ bìa Lời cam đoan Lời cảm ơn Mục lục Danh mục chữ viết tắt Danh mục bảng MỞ ĐẦU Chương KHẢO SÁT KHOA HỌC LUẬN VỀ VAI TRỊ ĐỐI TƯỢNG VÀ CƠNG CỤ CỦA TẬP HỢP 1.1 Sự hình thành phát triển lý thuyết tập hợp Cantor 1.1.1 Lực lượng tập vô hạn 1.1.2 Giả thuyết continuum 1.1.3 Các nghịch lý lý thuyết tập hợp Cantor 1.2 Tiên đề hóa lý thuyết tập hợp: hệ tiên đề Zermelo-Fraenkel, hệ tiên đề von Neumann-Bernays-Gödel, hệ tiên đề Russell 12 1.2.1 Hệ tiên đề lý thuyết Zermelo-Fraenkel 12 1.2.2 Hệ tiên đề von Neumann-Bernays-Gödel lý thuyết lớp 13 1.2.3 Lý thuyết kiểu 14 1.3 Lý thuyết tập hợp toán học đại 15 1.3.1 Lý thuyết tập hợp chuyên luận Bourbaki 15 1.3.2 Vai trò lý thuyết tập hợp toán học đại 16 Kết luận chương 17 Chương VAI TRỊ ĐỐI TƯỢNG VÀ CƠNG CỤ CỦA TẬP HỢP TRONG SÁCH GIÁO KHOA TOÁN TRUNG HỌC PHỔ THÔNG 18 2.1 Phân tích sách Đại số 10 18 2.1.1 Mục đích đưa khái niệm Tập hợp vào sách giáo khoa 18 2.1.2 Tập hợp - đối tượng dạy học chương trình Tốn THPT 19 2.2 Khảo sát chương trình Tốn THPT ban hành 29 2.2.1 Hàm số đồ thị 30 2.2.2 Phương trình bất phương trình_hệ phương trình hệ bất phương trình 33 2.2.3 Đại số tổ hợp 34 2.2.4 Xác suất thống kê 36 2.2.5 Hình học 39 Kết luận chương 41 Chương ĐỐI CHIẾU VÀ THỰC NGHIỆM KIỂM CHỨNG 43 3.1 Độ lệch chuyển hóa sư phạm khái niệm tập hợp 43 3.1.1 Kết chương 43 3.1.2 Kết chương 44 3.1.3 Chuyển hóa sư phạm khái niệm tập hợp nối khớp hai vai trò đối tượng công cụ tập hợp 44 3.2 Nghiên cứu thực nghiệm 46 3.2.1 Đối tượng thực nghiệm 46 3.2.2 Hình thức thực nghiệm 46 3.2.3 Phân tích tiên nghiệm phân tích hậu nghiệm tốn thực nghiệm 46 Kết luận chương 66 KẾT LUẬN 67 TÀI LIỆU THAM KHẢO 69 PHỤ LỤC DANH MỤC CÁC CHỮ VIẾT TẮT HS : Học sinh GV : Giáo viên SGK : Sách giáo khoa SGV : Sách giáo viên SBT : Sách tập THCS : Trung học sở THPT : Trung học phổ thông KNV : Kiểu nhiệm vụ Tr : Trang Nxb : Nhà xuất PT : Phương trình HPT : Hệ phương trình BPT : Bất phương trình HBPT : Hệ bất phương trình DANH MỤC CÁC BẢNG Bảng 2.1 Nhiệm vụ minh họa kiểu nhiệm vụ T1 27 Bảng 2.2 Thống kê tập hai kiểu nhiệm vụ T1 T2 28 Bảng 2.3 Thống kê tập hai kiểu nhiệm vụ T8 T9 36 Bảng 2.4 Ngôn ngữ biến cố 37 Bảng 3.1 Bảng chọn giá trị biến Bài 51 Bảng 3.2 Kết số lượng học sinh chọn chiến lược giải 52 Bảng 3.3 Bảng lựa chọn giá trị biến dạy học 54 Bảng 3.4 Số lượng học sinh chọn theo bạn giải thích thường gặp 56 Bảng 3.5 Bảng chọn giá trị biến Bài 60 Bảng 3.6 Thống kê số lượng học sinh chọn chiến lược giải 62 MỞ ĐẦU Ghi nhận câu hỏi ban đầu Tập hợp đưa vào giảng dạy trung học phổ thông từ lớp 10 Hơn nữa, tập hợp lại giới thiệu chương I sách giáo khoa Đại số 10 Bên cạnh đó, tập hợp sử dụng để định nghĩa nhiều khái niệm chương trình như: Đồ thị hàm số; Phương trình tương đương; Tổ hợp, Chỉnh hợp, Hốn vị; Quỹ tích… Các phép tốn tập hợp lại vận dụng triệt để việc giải bất phương trình, hệ bất phương trình “ Để giải hệ bất phương trình ta giải bất phương trình lấy giao tập nghiệm” [5, tr.10] Từ ghi nhận dẫn đến câu hỏi sau: Sự nối khớp vai trò đối tượng vai trị cơng cụ tập hợp thể sách giáo khoa thực tế giảng dạy trung học phổ thông? Khung lý thuyết tham chiếu Nghiên cứu đặt phạm vi Didactic toán, mà cụ thể thuyết nhân học hợp đồng Didactic Trong đó, thuyết nhân học giúp chúng tơi hình thành mối quan hệ thể chế tri thức tập hợp, bước chuyển hóa sư phạm việc dạy học tập hợp tổ chức tốn học (praxéologie) trình bày chương trình tốn trung học phổ thơng Qua phân tích thể chế, chúng tơi tìm ràng buộc qui tắc hợp đồng tồn chương trình Mục đích nghiên cứu Chúng tơi nghiên cứu luận văn nhằm mục đích là: nối khớp hai vai trò đối tượng công cụ tập hợp sách giáo khoa thực tế giảng dạy bậc trung học phổ thông Dựa vào khung lý thuyết tham chiếu đặt hai câu hỏi nghiên cứu sau: Q1: Đối với khái niệm tập hợp, tri thức bác học tri thức cần dạy lệch nào? Q2: Đối với kiểu nhiệm vụ có can thiệp tập hợp, sách giáo khoa cung cấp đủ khối logos để phục vụ cho khối praxis chưa? Cấu trúc luận văn Luận văn gồm: Mở đầu Chương 1: Khảo sát khoa học luận vai trị đối tượng cơng cụ tập hợp Chương 2: Vai trị đối tượng cơng cụ tập hợp sách giáo khoa toán THPT Chương 3: Đối chiếu thực nghiệm kiểm chứng Kết luận Phương pháp nghiên cứu Toàn nghiên cứu thực theo sơ đồ sau: Khảo sát khoa học luận Trả lời câu hỏi Phát biểu giả thuyết Phân tích thể chế Thực nghiệm Giải thích sơ đồ: Chúng thực khảo sát khoa học luận đối chiếu song song với phân tích thể chế chương trình tốn trung học phổ thơng Từ việc phân tích đối chiếu giúp trả lời câu hỏi nghiên cứu đặt phát biểu giả thuyết nghiên cứu Cuối thực nghiệm giúp bổ sung trả lời câu hỏi, việc khẳng định hay bác bỏ giả thuyết nghiên cứu ban đầu Phương hướng thực Dựa vào phương pháp nghiên cứu, định hướng nội dung chương sau: Chương 1: Khảo sát khoa học luận vai trị đối tượng cơng cụ tập hợp - Lịch sử hình thành lý thuyết tập hợp Cantor xuất ảnh hưởng 65 HS21: HS22: HS23: 66 Kết luận chương Kết đối chiếu chương chương cho thấy: Tập hợp khái niệm Toán học khơng định nghĩa từ giai đoạn hình thành lịch sử (lý thuyết tập hợp Cantor) đến cách giới thiệu SGK Việc không định nghĩa dẫn đến xuất nghịch lý trình hình thành phát triển lí thuyết tập hợp Mặc dù vậy, SGK không đưa tường minh ngầm ẩn qui ước giúp HS tránh nghịch lý Do đó, chúng tơi đề xuất qui ước bổ sung trình giảng dạy tập hợp Lý thuyết tập hợp vừa tảng, vừa ngơn ngữ biểu đạt ngành tốn học Trong phạm vi chương trình Tốn THPT, khái niệm tập hợp phép tốn xuất năm chủ đề 12 kiểu nhiệm vụ Công cụ khảo sát bao hàm thức SGK SBT dừng lại biểu đồ Ven (với số quy ước ngầm ẩn) thay sử dụng chứng minh chặt chẽ mệnh đề có huy động lượng tử phổ dụng (∀) lượng tử tồn (∃) Điều dẫn đến hệ lụy giải nhiệm vụ mà phát biểu qui tắc hợp đồng sau: Đối với toán dùng biểu đồ Ven để minh họa tính Đúng/ Sai mệnh đề liên quan đến bao hàm thức, học sinh khơng có nhiệm vụ minh họa tất trường hợp xảy tập hợp cho mệnh đề Sau tiến hành thực nghiệm 123 HS với thời gian làm 20 phút chia thành hai phiếu, chúng tơi kiểm chứng tính hợp thức qui tắc cho thấy SGK chưa cung cấp đủ khối logos để phục vụ cho khối praxis toán “Dùng biểu đồ Ven minh họa tính Đúng/ Sai mệnh đề liên quan bao hàm thức tập hợp” 67 KẾT LUẬN Qua nghiên cứu, luận văn trả lời hai câu hỏi: Q1: Đối với khái niệm tập hợp, tri thức bác học tri thức cần dạy lệch nào? Q2: Đối với kiểu nhiệm vụ có can thiệp tập hợp, sách giáo khoa cung cấp đủ khối logos để phục vụ cho khối praxis chưa? - Việc nghiên cứu hội tụ chuỗi lượng giác đưa Cantor đến toán khảo sát, so sánh phân loại lực lượng tập vô hạn mà lời giải trở thành phần quan trọng lý thuyết tập hợp Cantor - Vì khái niệm tập hợp khơng định nghĩa, q trình hình thành phát triển lý thuyết tập hợp làm nảy sinh hai nhóm nghịch lý: nghịch lý liên quan đến ngơn ngữ chưa hình thức hóa nghịch lý liên quan đến tính chất đặc trưng tập - Việc giải nghịch lý khiến nhà tốn học phải tiên đề hóa khái niệm tập hợp Trong số hệ tiên đề Zermelo-Fraenkel, hệ tiên đề von NeumannBernays-Gödel hệ tiên đề Russell, hệ tiên đề ZF cơng nhận tiên đề hóa phù hợp với lý thuyết tập hợp Cantor - Khái niệm tập hợp đưa vào SGK với mục đích: ơn tập hệ thống lại kiến thức tập hợp HS biết trước Mặc dù ngôn ngữ mệnh đề SGV xem điểm so với chương trình Tốn lớp 6, cơng cụ khảo sát bao hàm thức SGK SBT dừng lại biểu đồ Ven (với số quy ước ngầm ẩn) thay sử dụng chứng minh chặt chẽ mệnh đề có huy động lượng tử phổ dụng (∀) lượng tử tồn (∃) - Tập hợp khái niệm Toán học khơng định nghĩa từ giai đoạn hình thành lịch sử (lý thuyết tập hợp Cantor) đến cách giới thiệu SGK Việc không định nghĩa dẫn đến xuất nghịch lý q trình hình thành phát triển lí thuyết tập hợp Mặc dù vậy, SGK không đưa tường minh ngầm ẩn qui ước giúp HS tránh nghịch lý Do đó, chúng tơi đề xuất qui ước bổ sung trình giảng dạy tập hợp: 68 Khơng có tập hợp tất tập hợp Khơng có tập hợp phần tử Một tập hợp E hồn tồn xác định với phần tử x bất kỳ, ta kiểm tra cách khách quan x ∈ E x ∉ E Khi định nghĩa khái niệm phần bù tập, tập xét SGK quy ước tập tập E Điều khơng vi phạm quy ước “Khơng có tập hợp tất tập hợp” Thật vậy, với tập A , A , …, A n , tồn E = n A chứa tất tập A i i i =1 - Ngày nay, lý thuyết tập hợp vừa tảng, vừa ngôn ngữ biểu đạt ngành toán học Trong chương trình Tốn THPT, ngơn ngữ tập hợp dùng để diễn đạt kiến thức Toán năm chủ đề 12 kiểu nhiệm vụ: Hàm số đồ thị Phương trình hệ phương trình Đại số tổ hợp Xác suất thống kê Hình học - Hai kiểu nhiệm vụ liên quan khái niệm tập hợp có mặt sách Đại số 10 là: T1 Dùng biểu đồ Ven để minh họa tính đúng, sai mệnh đề liên quan đến bao hàm thức T2 Thực phép toán tập hợp tập hợp số - Qua thực nghiệm kiểm chứng qui tắc hợp đồng: “Đối với toán dùng biểu đồ Ven để minh họa tính đúng, sai mệnh đề liên quan đến bao hàm thức, học sinh khơng có nhiệm vụ minh họa tất trường hợp xảy tập hợp cho mệnh đề” 69 TÀI LIỆU THAM KHẢO Tiếng Việt Đậu Thế Cấp (2004), Lý thuyết tập hợp logic, Nhà xuất giáo dục Phan Hữu Chân, Trần Lâm Hách (1997), Nhập môn lý thuyết tập hợp logic, Nhà xuất giáo dục Phan Đức Chính (1972), Từ điển Tốn học Anh – Việt, Nxb Khoa học kỹ thuật Phan Đình Diệu (2006), Logich toán & sở toán học, Nxb ĐH Quốc gia Hà Nội Trần Văn Hạo, Vũ Tuấn, Doãn Minh Cường, Đỗ Mạnh Hùng, Nguyễn Tiến Tài (2009), SGK Đại số 10 (cơ bản), Nxb Giáo dục Trần Văn Hạo, Vũ Tuấn, Doãn Minh Cường, Đỗ Mạnh Hùng, Nguyễn Tiến Tài (2009), SGV Đại số 10 (cơ bản), Nxb Giáo dục Trần Văn Hạo,Vũ Tuấn, Đào Ngọc Nam, Lê Văn Tiến, Vũ Viết Yên (2007), SGK Đại số Giải tích 11 (cơ bản), Nxb Giáo dục Trần Văn Hạo, Vũ Tuấn, Đào Ngọc Nam, Lê Văn Tiến, Vũ Viết Yên (2007), SBT Đại số Giải tích 11, Nxb Giáo dục Trần Văn Hạo, Vũ Tuấn, Đào Ngọc Nam, Lê Văn Tiến, Vũ Viết Yên (2007), SGV Đại số Giải tích 11 (cơ bản), Nxb Giáo dục 10 Trần Lương Công Khanh (2013), Lịch sử lý thuyết tập hợp, giảng dành cho học viên cao học ngành Lý luận phương pháp dạy học mơn tốn, Trường Đại học Sư phạm Tp Hồ Chí Minh, tài liệu lưu hành nội 11 Lê Duy Ninh (11/1997), Các yếu tố lý thuyết Tập hợp Logic toán với giáo dục khái niệm tập hợp THPT, Tạp chí NCGD (T2023) 12 Nguyễn Nhật Phương (2012), Thay đổi phạm vi hệ thống biểu đạt giải biện luận phương trình chứa tham số THPT, Luận văn thạc sĩ, Trường Đại học Sư phạm TP Hồ Chí Minh 13 TS Chu Trọng Thanh, TS Trần Hưng, Cơ sở toán học đại kiến thức mơn tốn phổ thơng, 2011, Nhà xuất giáo dục Việt Nam 14 Vũ Tuấn, Doãn Minh Cường, Trần Văn Hạo, Đỗ Mạnh Hùng, Phạm Phu, 70 Nguyễn Tiến Tài (2009), SBT Đại số 10 (cơ bản), Nxb Giáo dục 15 Hoàng Tụy (1964), Lý thuyết tập hợp gì?, Nxb Giáo dục 16 Nguyễn Thanh Sơn (1999), Lý thuyết tập hợp, Giáo trình cho Trường ĐHKT TP.HCM Tiếng Anh 17 Muller F A (2011), Cantor-Von Neumann Set-Theory, Logique et Analyse, volume 54, no 213, pp 31-48, Belgian National Centre for Logical Investigation Tiếng Pháp 18 Borel E (1908), Annales scientifiques de l’École Normale Supérieure, série 3, tome 25, Les paradoxes de la théories des ensembles, p 443-448, GauthierVillars 19 Bourbaki N (1970), Éléments de mathématiques, Livre I, Théorie des ensembles, Éditions Hermann, nouvelle édition, Paris 20 Dahan-Dalmendico A., Peiffer J (1986), Une histoire des mathématiques, routes et dédales, Éditions du Seuil 21 Richard J A (1905), Les principes des mathématiques et le problème des ensembles, Revue générale des sciences pures et appliquées, no 12, 30/6/1905, p 541-543 22 Vidal C (2003), Georg Cantor et la découverte des infinis, mémoire de mtrise de philosophie, université Paris Panthéon-Sorbonne PHỤ LỤC Phụ lục Hệ tiên đề Zermelo-Fraenkel Hệ tiên đề Zermelo-Fraenkel Hệ tiên đề Zermelo-Fraenkel (hệ tiên đề ZF) gồm tiên đề sau: Tiên đề đẳng thức: Hai tập hợp chúng có phần tử A = B ⇔ (∀x, x ∈ A ⇒ x ∈ B) ∧ (∀x, x ∈ B ⇒ x ∈ A) Tiên đề tập rỗng: Tồn tập hợp khơng có phần tử (tập rỗng), ký hiệu ∅ Bản số tập rỗng ký hiệu Thật ra, tiên đề tập rỗng suy từ tiên đề cịn lại Tiên đề đôi: Cho hai tập hợp, tồn tập thứ ba có hai phần tử hai tập ∀A, ∀B, ∃C (A ∈ C ∧ B ∈ C) Ký hiệu C = {A, B} Lưu ý A, B không thiết phải hai tập phân biệt Tiên đề cho phép chứng minh tồn tập có phần tử (singleton) cách đặt A = B Tiên đề phép hợp: Với tập bất kỳ, tồn tập mà phần tử chứa phần tử tập ban đầu ∀A, ∃B (∀C, C ∈ B ⇔ ∃D (D ∈ A ∧ D ∈ C)) Ký hiệu B = ∪A B = x x∈a Ví dụ: A = {x , x , x } D D D C C C D C B = ∪A = { x1 }, { x }, {x3 } B = ∪A = {x1 , x }, { x } B = ∪A = D D C D D D D D D D D D x1 , x }, { x } B = ∪A = { x1 }, {x , x } B = ∪A = {x1 , x , x } { C C C C C Tiên đề tập tập con: Với tập bất kỳ, tồn tập chứa tập tập ban đầu ∀A, ∃B (∀C (C ∈ B ⇔ C ⊂ A)) Chú ý: C ⊂ A cách viết tắt ∀D, D ∈ C ⇒ D ∈ A Ký hiệu B = ℘(A) Tiên đề vô hạn: Tồn tập hợp X thỏa ∅ ∈ X với x ∈ X, x ∪ {x} ∈ X Ý nghĩa tiên đề tồn tập vô hạn Thật vậy, xây dựng tập N từ tiên đề cách đặt ∅ = 0, {0} = 1, {0, 1} = 2… Tiên đề cách hiểu: Với tập hợp E, với tính chất 18 P diễn đạt ngôn ngữ lý thuyết tập hợp, tồn tập F chứa phần tử E thỏa mãn tính chất P Có thể phát biểu cách hình thức tiên đề sau: ∀E, ∀P, ∃F, ∀x [x ∈ F ⇔ (x ∈ E ∧ P(x)] Tiên đề thay thế: Một quan hệ hàm với n tham số a , a , , a n cơng thức phép tính vị từ n + biến x, y, a , a , , a n gắn phần tử x với phần tử y Khi đó: ∀ a , a , , a n , ∀x, ∀y, ∀y' {[F(x, y, a , a , , a n ) ∧ F(x, y', a , a , , a n )] ⇒ y = y'} ⇒ ∀a, ∃b, ∀y (y ∈ b ⇔ [∃x, x ∈ a ∧ F(x, y, a , a , , a n )] Tiên đề hợp thức: Với tập không rỗng A, tồn tập B phần tử A cho phần tử A phần tử B A ≠ ∅ ⇒ (∃B (B ∈ A ∧ A ∩ B = ∅)) Chứng minh không tồn tập tất tập hợp Giả sử tồn S tập tất tập hợp Theo tiên đề cách hiểu, A = {E ∈ S| E ∉ E} tập A ∈ S theo định nghĩa S Vì A ∈ S nên theo định nghĩa A, đặt vấn đề A ∈ A hay A ∉ A Nếu A ∈ A theo định nghĩa A, ta có A ∉ A Nếu A ∉ A thì theo định nghĩa A, ta có A ∈ A Mâu thuẫn 18 Tính chất hiểu cơng thức phép tính vị từ biến chứng tỏ không tồn tập tất tập hợp Chứng minh không tồn tập hợp phần tử Giả sử ∃A, A ∈ A Theo tiên đề đôi, tồn {A} Theo tiên đề hợp thức, tồn B ∈ {A}, B ∩ {A} = ∅ Vì {A} có phần tử B ∈ {A} nên B = A, tức A ∩ {A} = ∅ Mặt khác A ∈ A (giả sử phản chứng) A ∈ {A} (do B ∈ {A}) nên A ∈ A ∩ {A} Điều mâu thuẫn với A ∩ {A} = ∅ Vậy ∀A, A ∉ A Mối liên hệ tập tất tập hợp tập hợp phần tử Kết cho thấy tập hợp thỏa hệ tiên đề ZF khơng phần tử Do đó, “tập” tập hợp khơng phần tử cách diễn đạt khác “tập” tất tập hợp hai “tập” không tồn lý thuyết ZF Phụ lục Hệ tiên đề von Neumann-Bernays-Gödel Trong hệ tiên đề này, ta dùng chữ thường a, b, c… để tập hợp chữ in hoa A, B, C để lớp Lưu ý ∀a, ∃A (a ∈ A) cách viết {{x}, {x,y}} thay Tiên đề tập hợp gồm: Tiên đề đẳng thức: a = b ⇔ (∀x, x ∈ a ⇒ x ∈ b) ∧ (∀x, x ∈ b ⇒ x ∈ a) Tiên đề tập rỗng ∃ x, ∀y (y ∉ x) Tiên đề đôi ∀a, ∀b, ∃c (a ∈ c ∧ b ∈ c) Tiên đề phép hợp ∀a, ∃b (∀c, c ∈ b ⇔ ∃d (d ∈ a ∧ d ∈ c)) Tiên đề tập tập ∀a, ∃b (∀c (c ∈ b ⇔ (∀d, d ∈ c ⇒ d ∈ a) ) ) Tiên đề vô hạn ∃x (∅ ∈ x ∧ ∀y (y ∈ x ⇒ y ∪ {y} ∈ x) ) Tiên đề thay ∀X ( (∀u ∃!v ∈ X) ⇒ ∀u, ∃v, ∀t ( t ∈v ⇔ ∃w ( w ∈ u ∧ ∈ X) ) ) Các tiên đề lập lớp gồm: Tiên đề đẳng thức A = B ⇔ ∀x ( x ∈ A ⇔ x ∈ B) Hai lớp chúng có phần tử Tiên đề tách lớp ∀X, ∀Y, ∃Z, ∀u ( u ∈ Z ⇔ u ∈ X ∧ u ∈ Y ) Giao hai lớp lớp: với hai lớp X, Y, tồn lớp Z gồm phần tử thuộc X thuộc Y 10 Tiên đề lớp đầy đủ ∀X, ∃Y, ∀v ( u ∈ Y ⇔ u ∉ X ) 11 ∀X, ∀Y, ∃u ( u ∈ Y ⇔ ∃v ( < v,u > ∈ X ) ) 12 ∀X, ∃Y, ∀u ( u ∈ Y ⇔ ∃r, ∃s ( u = < r,s > ∧ s ∈ X ) ) 13 ∀X, ∃Y, ∀a ( a ∈ Y ⇔ ∃b, ∃c ( < b,c > = a ∧ < c,b > ∈ X ) ) 14 ∀X, ∃Y, ∀u ( u ∈ Y ⇔ ∃a, ∃b, ∃c ( < a,b,c > ∈ X ∧ < b,c,a > ∈ Y ∧ < b,c,a > = u ) ) 15 ∀X, ∃Y, ∀u ( u ∈ Y ⇔ ∃a, ∃b, ∃c ( < a,b,c > ∈ X ∧ < a,c,b > ∈ Y ∧ < a,c,b > = u ) ) 16 Tiên đề chọn ∃X, ∀a ( a ≠ ∅ ⇒ ∃!u ( u ∈ a ∧ < a,u > ∈ X ) ) 17 Tiên đề hợp thức ∀X ( X ≠ ∅ ⇒ ∃u ( u ∈ X ∧ u ∩ X = ∅) Một lớp khơng rỗng chứa tập khơng có phần tử chung với lớp cho Phụ lục Các qui tắc định kiểu Gồm bốn qui tắc: Qui tắc khởi tạo: Để giải thích kiểu R p q đối tượng kiểu ta dùng giản đồ: p q pRq Qui tắc giới thiệu: Để giới thiệu phần tử A B kiểu R ta dùng giản đồ: p: A q: B (p, q): A R B Qui tắc giản ước: Qui tắc dùng để giản ước phần tử kiểu từ giả thiết ban đầu Một kiểu có nhiều cách giản ước Do đó, kiểu có nhiều giản đồ để giản ước phần tử Qui tắc tính tốn: Qui tắc qui định cách thức tính tốn biểu thức kiểu trở nên đơn giản Phụ lục Phiếu thực nghiệm HS PHIẾU SỐ Các em học sinh thân mến! Bài làm khơng nhằm mục đích đánh giá lực học sinh mà giúp tiến hành nghiên cứu: “Khái niệm tập hợp Trung học phổ thông: nối khớp hai vai trị đối tượng cơng cụ” Vì vậy, em cho biết số ý kiến Lưu ý làm bài: Khơng dùng bút xóa Bài 1: Cho hình minh họa sau: Hình Hình Hình B A Hình Hình Hình Câu hỏi dành cho em : Hãy chọn hình minh họa tương ứng với tập hợp cho bên cách điền số thích hợp vào dấu “…”: minh họa hình … minh họa hình … minh họa hình … minh họa hình … minh họa hình … PHIẾU SỐ Bài 2: Dùng biểu đồ Ven minh họa tính Đúng/ Sai mệnh đề: Sau làm hai bạn A B Bài làm bạn A Bài làm bạn B Xét minh họa: Xét minh họa: C A B Ta có: Nên mệnh đề Vậy Ta thấy : nên mệnh đề sai Câu hỏi dành cho em : Em nêu ý kiến (bằng cách đánh dấu X vào cột Chọn cột Khơng chọn bảng sau) Sau giải thích em chọn Nếu được, em đề xuất cách giải khác Bài làm hai bạn Chọn Không chọn A B Giải thích: …………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… Cách giải khác …………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… …………………………………………………………………………………………… Bài 3: Hãy dùng biểu đồ Ven minh họa tính Đúng/ Sai mệnh đề ……………………………………………………………………………… …………………………………………………………………………………… …………………………………………………………………………………… …………………………………………………………………………………… …………………………………………………………………………………… …………………………………………………………………………………… ... TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH Văn Ngọc Thảo Quyên KHÁI NIỆM TẬP HỢP Ở TRUNG HỌC PHỔ THÔNG: SỰ NỐI KHỚP GIỮA HAI VAI TRỊ ĐỐI TƯỢNG VÀ CƠNG CỤ Chuyên ngành : Lí luận phương pháp dạy học mơn... lĩnh vực tốn học có diện lý thuyết tập hợp Chương 2: Vai trị đối tượng cơng cụ tập hợp sách giáo khoa toán THPT - Mục đích đưa vào khái niệm tập hợp - Việc xây dựng khái niệm tập hợp sách giáo... vào gì? “[…] tập hợp khái niệm nguyên thủy Tuy nhiên, khái niệm tập hợp trực quan với học sinh Hơn nữa, học sinh biết khái niệm tập hợp, phần tử, tập hợp từ lớp Vì vậy, SGK khái niệm trình bày