❇❐ ●■⑩❖ ❉Ö❈ ❱⑨ ✣⑨❖ ❚❸❖ ✣❸■ ❍➴❈ ✣⑨ ◆➂◆● ✖✖✖✖✖ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ●■❷■ ●❺◆ ✣Ĩ◆● P❍×❒◆● ❚❘➐◆❍ tỹ ữợ ❞➝♥✿ ▲➊ ❍❷■ ❚❘❯◆● ✣➔ ◆➤♥❣✱ ✵✺✴✷✵✶✺ ▲❮■ ❈❷▼ ❒◆ ❚❙✳ ▲➯ ❍↔✐ ❚r✉♥❣ ❙❛✉ ♠ët t❤í✐ ❣✐❛♥ ❤å❝ t➟♣ ự ữợ sỹ ữợ sỹ ❜↔♦ t➟♥ t➻♥❤ ❝õ❛ t❤➛② ❣✐→♦ ✱ ✤➳♥ ♥❛② ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ❝õ❛ ❡♠ ✤➣ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤✳ ❊♠ ①✐♥ ❜➔② tä sü ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ ✤➳♥ ❇❛♥ ●✐→♠ ❍✐➺✉ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ P❤↕♠ ✲ ✣↕✐ ❍å❝ ✣➔ ◆➤♥❣✱ ❇❛♥ ❝❤õ ♥❤✐➺♠ ❦❤♦❛ ❚♦→♥✱ ✤➣ t↕♦ ❝ì ❤ë✐ ❝❤♦ ❝❤ó♥❣ ❡♠ ✤÷đ❝ ❧➔♠ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣✳ ❈❤ó♥❣ ❡♠ ①✐♥ ❣û✐ ❧í✐ ❝↔♠ ì♥ s➙✉ s➢❝ ✤➳♥ t➜t ❝↔ ❝→❝ t❤➛② ❝ỉ ❣✐→♦ tr♦♥❣ tr÷í♥❣✱ ✤➦❝ ❜✐➺t ❧➔ ❝→❝ t❤➛② ❝æ ❣✐→♦ tr♦♥❣ ❦❤♦❛ ❚♦→♥ ✤➣ t➟♥ t➻♥❤ ❝❤➾ ❞↕②✱ tr✉②➲♥ ✤↕t ❝❤♦ ❝❤ó♥❣ ❡♠ ♥❤ú♥❣ ❦✐➳♥ tự qỵ tr sốt tớ ✈ø❛ q✉❛✳ ❳✐♥ ❝↔♠ ì♥ sü ❣✐ó♣ ✤ï✱ ❝❤✐❛ s➫ ❝õ❛ t➜t ❝↔ ❝→❝ ❜↕♥ tr♦♥❣ ❧ỵ♣ tr♦♥❣ t❤í✐ ❣✐❛♥ ❝❤ó♥❣ ❡♠ ❧➔♠ ♥❣❤✐➯♥ ❝ù✉✳ ❈✉è✐ ❝ị♥❣✱ ❝❤ó♥❣ ❡♠ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ t❤➛② ▲➯ ❍↔✐ ❚r✉♥❣ ✲ ♥❣÷í✐ trỹ t ữợ ú ổ q t ✤ë♥❣ ✈✐➯♥ ❝❤➾ ❞➝♥ t➟♥ t➻♥❤ ✤➸ ❝❤ó♥❣ ❡♠ ❤♦➔♥ t❤➔♥❤ tèt ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ♥➔②✳ ❚✉② ✤➣ ❝â ♥❤✐➲✉ ❝è ❣➢♥❣ s♦♥❣ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ✈➝♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ t❤✐➳✉ sât ✈➲ ♥ë✐ ❞✉♥❣ ❧➝♥ ❤➻♥❤ t❤ù❝ tr➻♥❤ ❜➔②✱ r➜t ♠♦♥❣ ♥❤➟♥ ✤÷đ❝ ❊♠ ①✐♥ ❝❤➙♥ t ỡ sỹ õ õ qỵ t ổ ✈➔ ❜↕♥ ✤å❝✳ ✣➔ ◆➤♥❣✱ t❤→♥❣ ✺ ♥➠♠ ✷✵✶✺ ❙✐♥❤ ✈✐➯♥ t❤ü❝ ❤✐➺♥ ◆❣✉②➵♥ ❚❤à ✣✐➸♠✳ ✷ ▼ö❝ ❧ö❝ ▲❮■ ❈❷▼ ❒◆ ▼Ð ✣❺❯ ✶ ▼❐❚ ❙➮ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✶✳✶ ◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥ ✶✳✷ ❙ü tỗ t ữỡ tr ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✾ ✶✳✸ ❑❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✶✳✹ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ t❤÷í♥❣ ❞ò♥❣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✵ ✷ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✷✳✶ ✶✷ ●■❰■ ❚❍■➏❯ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✷✳✶✳✶ ✣➦t ✈➜♥ ✤➲ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ị tữ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✷ ✷✳✶✳✸ ❙ü ❤ë✐ tö ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✷✳✶✳✹ ❈→❝❤ ❝❤å♥ ✤✐➸♠ ✷✳✶✳✺ x0 ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ❚❤✉➟t t♦→♥ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✶✹ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✺ ✷✳✷ ❙❆■ ❙➮ ❈Õ❆ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✼ ✷✳✸ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✣➮■ ❱❰■ ❍➏ P❍×❒◆● ❚❘➐◆❍ ✶✽ ✷✳✹ ▼❐❚ ❙➮ ❇⑨■ ❚❖⑩◆ ❚➐▼ ◆●❍■➏▼ ●❺◆ ✣Ĩ◆● ❈Õ❆ P❍×❒◆● ❚❘➐◆❍ ❱❰■ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✳ ✳ ✳ ✶✾ ✸ Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✷✸ ✸✳✶ ●■❰■ ❚❍■➏❯ ❱➋ P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ✳ ✳ ✳ ✳ ✳ ✸✳✷ Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✷✸ ✷✹ ❑➌❚ ▲❯❾◆ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ✷✾ ✸✵ ✹ ❉❆◆❍ ▼Ö❈ ❈⑩❈ ❇❷◆● ❙è ❤✐➺✉ ❜↔♥❣ ✷✳✶ ❚➯♥ ❜↔♥❣ ❚r❛♥❣ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ √ g(x) = x + ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❈→❝ ❣✐→ trà ♥❣❤➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ g(x) = x −3 −40 ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❈→❝ ❣✐→ trà ♥❣❤➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ √ g(x) = 3x+5 ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ✶✻ ✷✳✷ ✷✵ ✷✳✸ ✷✶ ✷✳✹ ✺ ✷✷ ❉❆◆❍ ▼Ö❈ ❈⑩❈ ❍➐◆❍ ❙è ❤✐➺✉ r ỗ t ú t ỗ t g1 (x) ỗ t g2 (x) ỗ t g3 (x) ỗ t g(x) ú ✈➔ s❛✐ sè t÷ì♥❣ ù♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✷✽ ✸✳✻ ◆❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✷✽ ✻ ▼Ð ỵ ỹ t t♦→♥ tr♦♥❣ t❤ü❝ t➳ t❤÷í♥❣ ❞➝♥ ✤➳♥ ✈✐➺❝ ❝➛♥ ♣❤↔✐ ❣✐↔✐ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥✳ ❚✉② ♥❤✐➯♥✱ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ♥➔② t❤÷í♥❣ ♣❤ù❝ t↕♣✱ ❞♦ ✤â ♥â✐ ❝❤✉♥❣ ❦❤â ❝â t❤➸ ❣✐↔✐ ✤÷đ❝ ❜➡♥❣ ❝→❝ ❜✐➳♥ ✤ê✐ ✤↕✐ sè✳ ❍ì♥ ♥ú❛✱ ✈➻ ❝→❝ ❝ỉ♥❣ t❤ù❝ ♥❣❤✐➺♠ t❤÷í♥❣ ♣❤ù❝ t↕♣✱ ỗ ũ õ ổ tự t ✈✐➺❝ ❦❤↔♦ s→t ❝→❝ t➼♥❤ ❝❤➜t ♥❣❤✐➺♠ q✉❛ ❝æ♥❣ t❤ù❝ ❝ô♥❣ ✈➝♥ ❣➦♣ r➜t ♥❤✐➲✉ ❦❤â ❦❤➠♥✳ ❱➻ ✈➟②✱ tr♦♥❣ ❦ÿ t❤✉➟t✱ t❛ t❤÷í♥❣ ❞ị♥❣ ❝→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ✤➸ t❤❛② t❤➳ ❝❤♦ ❣✐→ trà ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ ❜➔✐ t♦→♥ ♥❤➡♠ ✤ì♥ ❣✐↔♥ ❤â❛ ✈✐➺❝ t➼♥❤ t♦→♥ ✈➔ ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤✳ ✣➦❝ ❜✐➺t✱ tr♦♥❣ t❤í✐ ✤↕✐ t✐♥ ❤å❝ ❤✐➺♥ ♥❛② t❤➻ ✈✐➺❝ →♣ ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❝â sü ❤é trđ ❝õ❛ ❝→❝ ♣❤➛♥ ♠➲♠ ♠→② t➼♥❤ ♥❣➔② ❝➔♥❣ trð ♥➯♥ ♣❤ê ❜✐➳♥ ♥❤➡♠ t✐➳t ❦✐➺♠ t❤í✐ ❣✐❛♥ ✈➔ t➠♥❣ tè❝ ✤ë t➼♥❤ t♦→♥✳ ◆❣❛② tø t❤í✐ ❆r❝❤✐♠❡❞❡s ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ✤➣ ✤÷đ❝ ①➙② ❞ü♥❣ t❤ỉ♥❣ q✉❛ ✈✐➺❝ ♥❣❤✐➯♥ ❝ù✉ ✈➔ ÷ỵ❝ t➼♥❤ ❣✐→ trà sè π ✤➸ ①→❝ ✤à♥❤ ❞✐➺♥ t➼❝❤ ❤➻♥❤ trá♥✳ ❈→❝ ✈➜♥ ✤➲ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝ơ♥❣ ✤÷đ❝ ♥❤✐➲✉ ♥❤➔ t♦→♥ ❤å❝ ❝õ❛ ❝→❝ t❤➳ ❤➺ s tr t ợ ự t tr ữủ ù♥❣ ❞ö♥❣ rë♥❣ r➣✐ tr♦♥❣ t❤ü❝ t✐➵♥✳ ▼➔ ♥ê✐ ❜➟t ♥❤➜t ✤â ❧➔ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✱ ❜ð✐ t➼♥❤ ✤ì♥ ❣✐↔♥✱ ❞➵ sû ❞ư♥❣ ♠➔ ❧↕✐ ❝❤♦ ❦➳t q✉↔ ✈ỵ✐ ✤ë ❝❤➼♥❤ ①→❝ ❝❛♦✳ ❱ỵ✐ ♠♦♥❣ ♠✉è♥ ❧➔ t➻♠ ❤✐➸✉ ✈➔ ♥❣❤✐➯♥ ❝ù✉ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr ỗ tớ ữủ sỹ ủ ỵ ữợ ♥➯♥ tỉ✐ ❧ü❛ ❝❤å♥ ✤➲ t➔✐✿✧ P❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✷✳ ▼ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ✤➲ t➔✐ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤✧ ❧➔♠ ✤➲ t➔✐ ❧✉➟♥ ✈➠♥ tèt ♥❣❤✐➺♣ ❝❤♦ ♠➻♥❤✳ ▼ö❝ t✐➯✉ ♥❣❤✐➯♥ ❝ù✉ ❝õ❛ ✤➲ t➔✐ ❧➔ sû ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✱ tø ✤â s♦ s→♥❤ s❛✐ sè ợ ữỡ tr õ ỗ tớ ♥❣❤✐➯♥ ❝ù✉ ù♥❣ ❞ö♥❣ ♣❤➛♥ ♠➲♠ ✼ ▼❛t❤❡♠❛t✐❝❛ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✈➔ ♠ỉ t ữỡ tr ỗ t t❤ỉ♥❣ q✉❛ ❝→❝ ❣â✐ ❝➙✉ ❧➺♥❤ ✸✳ ✣è✐ t÷đ♥❣ ✈➔ ♣❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉ ✤➣ ✤÷đ❝ ❧➟♣ tr➻♥❤✳ ✣è✐ t÷đ♥❣ ♥❣❤✐➯♥ ❝ù✉✿ ◆❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❧➟♣ tr➻♥❤ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ tr♦♥❣ ▼❛t❤✲ ❡♠❛t✐❝❛✳ P❤↕♠ ✈✐ ♥❣❤✐➯♥ ❝ù✉✿ ◆❣❤✐➯♥ ❝ù✉ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ❝❤♦ ❝→❝ ❜➔✐ t♦→♥ tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥✳ P❤÷ì♥❣ ♣❤→♣ ♥❣❤✐➯♥ ❝ù✉✿ ❚➻♠ t ữỡ ỡ ị ♥❣❤➽❛ ❦❤♦❛ ❤å❝ ✈➔ t❤ü❝ t✐➵♥ ❝õ❛ ✤➲ t➔✐ ♣❤➙♥ t➼❝❤ t➔✐ ❧✐➺✉❀ ❤➺ t❤è♥❣ ❤â❛❀ ❦❤→✐ q✉→t ❤â❛ t➔✐ ự t õ ỵ t ỵ tt õ t sỷ ữ t ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❞➔♥❤ ❝❤♦ s✐♥❤ ✈✐➯♥ ✈➔ ❝→❝ ✤è✐ t÷đ♥❣ q✉❛♥ t➙♠ ✤➳♥ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✺✳ ❈➜✉ tró❝ ❝õ❛ ❧✉➟♥ ✈➠♥ ✤ì♥✳ ◆❣♦➔✐ ♣❤➛♥ ▼ð ✤➛✉ ✈➔ ❑➳t ỗ ữỡ ữỡ tự ❝❤✉➞♥ ❜à✳ ❈❤÷ì♥❣ ♥➔② tr➻♥❤ ❜➔② ♠ët sè ❦❤→✐ ♥✐➺♠✱ ỵ sỹ tỗ t ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ tr♦♥❣ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥ ✈➔ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ t❤÷í♥❣ ❞ị♥❣✳ ❈❤÷ì♥❣ ✷✿ ❚r➻♥❤ ❜➔② ♥ë✐ ❞✉♥❣ ✈➔ s❛✐ sè ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ỡ ỗ tớ ữ r ởt số t ữỡ tr➻♥❤ ♠ët ➞♥ ✤÷đ❝ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ t❤❡♦ ♣❤÷ì♥❣ ỡ ữỡ ợ t tt ✈➔ tr➻♥❤ ❜➔② ♥❤ú♥❣ ù♥❣ ❞ö♥❣ ❝õ❛ ♣❤➛♥ ♠➲♠ ♥➔② tr♦♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ✽ ❈❤÷ì♥❣ ✶ ▼❐❚ ❙➮ ❑■➌◆ ❚❍Ù❈ ❈❍❯❽◆ ❇➚ ✶✳✶ ◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥ ❳➨t ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥✿ f (x) = ❚r♦♥❣ ✤â ●✐→ trà x0 f (x) ❧➔ ♠ët ❤➔♠ trữợ ố số x ữủ ♥❣❤✐➺♠ ❝õ❛ ✭✶✳✶✮ ♥➳✉✿ f (x0 ) = ✶✳✷ ỹ tỗ t ữỡ tr ỵ f (x) ◆➳✉ ❤➔♠ sè ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ ❬❛❀ ❜❪ ✈➔ f (a), f (b) tr→✐ ❞➜✉✱ tù❝ ❧➔✿ f (a) · f (b) < ✭✶✳✷✮ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ❝â ➼t ♥❤➜t ♠ët ♥❣❤✐➺♠ tr♦♥❣ ✤♦↕♥ ❬❛❀ ❜❪✳ ◆➳✉ ❤➔♠ f ✤ì♥ ✤✐➺✉ t❤➻ ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞✉② ♥❤➜t ♥❣❤✐➺♠✳ ❈❤ù♥❣ ♠✐♥❤✿ ●✐↔ sû f (x) ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ ❬❛❀ ❜❪ ✈➔✿ f (a) · f (b) < 0✳ ❑❤✐ ✤â =⇒ ∃c ∈ (a; b) s❛♦ ❝❤♦ f (c) = P❤÷ì♥❣ tr➻♥❤ ❝â ➼t ♥❤➜t ♠ët ♥❣❤✐➺♠ tr➯♥ ✤♦↕♥ ❬❛❀ ❜❪✳ ✲ ◆➳✉ t❤➯♠ ✤✐➲✉ ❦✐➺♥ ❤➔♠ f ✤ì♥ ✤✐➺✉ tr➯♥ ✤♦↕♥ ❬❛❀ ❜❪ t❤➻✿ ✾ c, c ∈ [a; b] ❧➔ ✷ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ =⇒ t❛ ❝â✿ f (c) = ✈➔ f (c ) = =⇒ f (c) = f (c ) = ✭tr→✐ ❣✐↔ t❤✐➳t✮✳ ●✐↔ sû tr➻♥❤ ✭✶✳✶✮ s❛♦ ❝❤♦✿ c=c ❱➟② ♣❤÷ì♥❣ tr➻♥❤ ❝â ❞✉② ♥❤➜t ♥❣❤✐➺♠ tr➯♥ ✤♦↕♥ ❬❛❀ ❜❪✳ ✶✳✸ ❑❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ✣à♥❤ ♥❣❤➽❛ ✶✳✶✳ ✣♦↕♥ ❬❛❀ ❜❪ ✤÷đ❝ ❣å✐ ❧➔ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮ ♥➳✉ ♥â ❝❤ù❛ ♠ët ✈➔ ❝❤➾ ♠ët ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤â✳ ✣à♥❤ ỵ số f (x) tử ỡ ✤✐➺✉ tr➯♥ ❬❛❀ ❜❪ ✈➔ f (a)·f (b) < t❤➻ ✤♦↕♥ ❬❛❀❜❪ ❧➔ ♠ët ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✭✶✳✶✮✳ ✶✳✹ ▼ët sè ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ t❤÷í♥❣ ❞ị♥❣ ◆❤✐➲✉ ❜➔✐ t♦→♥ ❦❤♦❛ ❤å❝ ❦ÿ t❤✉➟t q✉② ✈➲ ✈✐➺❝ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥✳ ◆❤÷♥❣ ✤❛ sè ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥ ♠ỉ t↔ ❤➺ ỡ ỵ õ rt ự t ❈❤➼♥❤ ✈➻ ✈➟②✱ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤ ♠ët ➞♥ r➜t ✤÷đ❝ q✉❛♥ t➙♠✱ ♥❣❤✐➯♥ ❝ù✉✳ ❙❛✉ ✤➙② ❧➔ ♠ët sè ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾ t❤÷í♥❣ ❞ị♥❣✳ • P❤÷ì♥❣ ♣❤→♣ ❝❤✐❛ ✤ỉ✐ ❳➨t ❜➔✐ t♦→♥ f (x) = ✈ỵ✐ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ ❬❛❀ ❜❪✳ ❚➼♥❤ tr ú ữợ tự tr➯♥ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♥❣❤✐➺♠ [ai ; bi ] ✭✐ t ổ tự xi = ợ ữợ + bi a0 = a❀ b0 = b✳ ❙❛✉ ✤â ①→❝ ✤à♥❤ ❦❤♦↔♥❣ ♣❤➙♥ ❧✐ ♠ỵ✐ ❝❤♦ ♥❣❤✐➺♠ ð t❤ù i + ❧➔ [ai+1 ; bi+1 ]✳ ❈ù t✐➳♣ tư❝ ♣❤➨♣ ❧➦♣ ♥❤÷ t❤➳ ❝❤♦ ✤➳♥ ❦❤✐ ♥➔♦ tọ t ã Pữỡ ♣❤→♣ ❞➙② ❝✉♥❣ ✶✵ ❝✳ x = g3 (x) = √ x+1 ❚❛ ❧➛♥ ❧÷đt ①➨t tø♥❣ tr÷í♥❣ ❤đ♣✿ ❛✳ g1 (x) = 3x2 =⇒ max g1 (x) = 12 ❜✳ g2 (x) = −x−2 x3 =⇒ g2 (1) = ❝✳ g3 (x) = (x+1) · =⇒ g3 ≤ · 1✳ 22 ❘ã r➔♥❣✱ ♣❤➨♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ tr÷í♥❣ ❤đ♣ t❤➻ ❤ë✐ tư✳ ❱➟②✱ t❛ ❝❤å♥ ❤➔♠ g(x) = √ = 0.21 =✿ q < g1 , g2 x + 1✳ ⑩♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ợ g(x) = ỏ trữớ ủ x+1 ✈➔ x0 = g3 t❛ ❝â ❦➳t q✉↔ ✤÷đ❝ ❝❤♦ ❜ð✐ ❜↔♥❣ s❛✉✿ ① ✶ ✶✳✷✻✵ ✶✳✸✶✷ ✶✳✸✷✷ ✶✳✸✷✹ ✶✳✸✷✺ g(x) = √ x+1 ✶✳✷✻✵ ✶✳✸✶✷ ✶✳✸✷✷ ✶✳✸✷✹ ✶✳✸✷✺ ✶✳✸✷✺ ❇↔♥❣ ✷✳✶✿ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ g(x) = ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ √ x+1 ◆❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ t ỗ t sè ✈➔ y = g(x) y=x ❚ø ✤â ❝â t❤➸ t ỗ t ú ũ ợ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ✈ø❛ t➼♥❤ ✤÷đ❝ t❤ỉ♥❣ q✉❛ ♣❤➛♥ ♠➲♠ tt ỗ t ❣➛♥ ✤ó♥❣ ❝õ❛ ❜➔✐ t♦→♥ ✶✻ ✷✳✷ ❙❆■ ❙➮ ❈Õ❆ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✣➸ ✤→♥❤ ❣✐→ s❛✐ sè ❝õ❛ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ f (x) = t↕✐ |xn − x¯| ≤ q n |x0 − x¯| ♣❤÷ì♥❣ tr➻♥❤ ❧➔✿ xn x ữợ tự t❛ ❝â t❤➸ sû ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ✭✷✳✹✮ ✤➸ ✤→♥❤ ❣✐→ s❛✐ sè ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ❚✉② ♥❤✐➯♥✱ tr tỹ t tr x ữ t trữợ ♥➯♥ t❛ ♣❤↔✐ t❤❛② ✤♦↕♥ [¯ x; x0 ] ❜➡♥❣ ✤♦↕♥ ❬❛❀ ❜❪ ✈➔ ♥❤÷ ✈➟②✿ |xn − x¯| ≤ q n |b − a| ✭✷✳✻✮ ❚✉② ♥❤✐➯♥✱ ❝æ♥❣ t❤ù❝ ♥➔② ♣❤ư t❤✉ë❝ ✈➔♦ ❬❛❀ ❜❪ ✈➔ ❦❤ỉ♥❣ s→t ✈ỵ✐ t❤ü❝ t➳✱ ♥❤➜t ❧➔ ❦❤✐ ❬❛❀ ❜❪ q✉→ ❧ỵ♥✳ ❙❛✉ ✤➙② ❝❤ó♥❣ t❛ s➩ ✤÷❛ r❛ ♠ët ❝→❝❤ ✤→♥❤ ❣✐→ ❦❤→❝✱ s→t t❤ü❝ t➳ ❤ì♥ ❜➡♥❣ ❝→❝❤ ①➨t ❤✐➺✉✿ |xn − x¯|✳ ❚ø ❝❤ù♥❣ ♠✐♥❤ ð ♣❤➛♥ sü ❤ë✐ tö t❛ ❝â✿ |xn − x¯| ≤ q |xn−1 − x¯| = q |xn−1 − xn + xn − x¯| ≤ q |xn−1 − xn | + q |xn − x¯|✳ ❱➟② (1 − q) |xn − x¯| ≤ q |xn−1 − xn |✱ ❤❛② |xn − x¯| ≤ q · |xn−1 − xn | 1−q ✭✷✳✼✮ ▼➦t ❦❤→❝✱ →♣ ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ▲❛❣r❛♥❣❡ t❛ ❝â✿ xn − xn−1 = g(xn−1 ) − g(xn−2 ) = g (cn ) (xn−1 − xn−2 )✳ ❚r♦♥❣ ✤â✿ ❙✉② r❛✿ cn ∈ [xn−1 ; xn−2 ]✳ |xn − xn−1 | = g (cn ) · |xn−1 − xn−2 | ❙û ❞ö♥❣ ❜➜t ✤➥♥❣ t❤ù❝ tr➯♥ ❝❤♦ tr÷í♥❣ ❤đ♣ ♥ ❂ ✷✱ ✸✱ ✹✱ ✳✳✳ t❛ t❤✉ ✤÷đ❝✿ |x2 − x1 | ≤ q |x1 − x0 | |x3 − x2 | ≤ q |x2 − x1 | ≤ q |x1 − x0 | |xn − xn−1 | ≤ q n−1 |x1 − x0 | ❚❤❛② ✈➔♦ ✭✷✳✼✮ t❛ ✤÷đ❝✿ |xn − x¯| ≤ qn q · q n−1 |xn − xn−1 | = |x1 − x0 | 1−q 1−q ✶✼ ✭✷✳✽✮ ❈ỉ♥❣ t❤ù❝ ✭✷✳✽✮ ❝❤♦ t❛ t❤➜② ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ❤ë✐ tö ❝➔♥❣ ♥❤❛♥❤ ♥➳✉ ε q ❝➔♥❣ ❜➨✳ ❚ø ❝ỉ♥❣ t❤ù❝ ✭✷✳✽✮ t❛ ❝ơ♥❣ s✉② r❛ r➡♥❣✿ ✤➸ ✤↕t ✤ë ①➜♣ ①➾ ✭♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ s❛✐ ❦❤→❝ ♥❣❤✐➺♠ ✤ó♥❣ ❦❤æ♥❣ q✉→ ♣❤↔✐ t❤ü❝ ❤✐➺♥ Nε ε✱ |xn − x¯| < t ữợ tr õ )/ln q + Nε > ln( |xε(1−q) −x0 | ❚ø ✭✷✳✽✮ t❛ ❝â t❤➸ ❦➳t ❧✉➟♥✿ ◆➳✉ ❞➣② {xn } ❤ë✐ tö t❤➻ ❦❤✐ ♥ ✤õ ❧ỵ♥ ❤❛✐ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ xn ✈➔ xn−1 ①➜♣ ①➾ ❜➡♥❣ ♥❤❛✉✳ ❱➻ ✈➟②✱ ❦❤✐ t❤ü❝ ❤✐➺♥ t➼♥❤ t♦→♥ t❛ s➩ ❞ø♥❣ q✉→ tr➻♥❤ ❧➦♣ ❦❤✐ ❝→❝ ❦➳t q✉↔ ❧✐➯♥ t✐➳♣ xn−1 , xn , ✱ ✤↕t ✤ë ①➜♣ ①➾ t❤❡♦ ②➯✉ ❝➛✉✳ ✷✳✸ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✣➮■ ❱❰■ ❍➏ P❍×❒◆● ❚❘➐◆❍ ●✐↔ sû t❛ ❝➛♥ ❣✐↔✐ ❤➺ ♥ ♣❤÷ì♥❣ tr➻♥❤ ♥ ➞♥ f (x) = 0, ✈ỵ✐ x = (x1 , x2 , , xn )✱ f = (f1 , f2 , , fn )✳ ✣➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ tr➯♥ t↕✐ ❧➙♥ ❝➟♥ ✤✐➸♠ M = (a1 ; a2 ; ; an ) t❛ ✤÷❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ✈➲ ❞↕♥❣✿ x = g(x), ✈ỵ✐ x = (x1 , x2 , , xn ), g = (g1 , g2 , , gn ), s❛♦ ❝❤♦ q = sup g (x) ∞ x∈M ❑❤✐ ✤â✱ t❤❛② ✈➻ t➻♠ ♥❣❤✐➺♠ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✿ f1 (x) = 0, f (x) = 0, f (x) = 0, ✭✷✳✾✮ n ✈ỵ✐ ❝→❝ ❧➙♥ ❝➟♥ ✤✐➸♠ (a1 ; a2 ; ; an ) t❛ ①➨t ❤➺ ♣❤÷ì♥❣ tr➻♥❤ s❛✉✿ x1 = g1 (x), x = g (x), 2 x = g (x), n n ❱➼ ❞ö✱ ①➨t ❤➺ ✷ ♣❤÷ì♥❣ tr➻♥❤✿ ✶✽ ✭✷✳✶✵✮ f (x, y) = 0, g(x, y) = 0, t↕✐ ❧➙♥ ❝➟♥ ✤✐➸♠ (a1 ; a2 ), t❛ t✐➳♥ ❤➔♥❤ ①➨t ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t÷ì♥❣ ✤÷ì♥❣✿ x = g1 (x, y), y = g2 (x, y) õ ổ tự ữủ t ữợ ❞↕♥❣✿ xn = g1 (xn−1 ; yn−1 ), yn = g2 (xn−1 ; yn−1 ), ✈ỵ✐ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❜❛♥ ✤➛✉ x = a1 ✈➔ ✭✷✳✶✶✮ y = a2 ✳ ✷✳✹ ▼❐❚ ❙➮ ❇⑨■ ❚❖⑩◆ ❚➐▼ ◆●❍■➏▼ ●❺◆ ✣Ĩ◆● ❈Õ❆ P❍×❒◆● ❚❘➐◆❍ ❱❰■ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ❱➼ ❞ư ✷✳✸✳ ❙û ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✿ x5 − 40x + = 0, ✈ỵ✐ x ∈ [0; 1] f (x) = x5 − 40x + 3✱ ✈ỵ✐ x ∈ [0; 1] ❉♦ f (0) = ✈➔ f (0.5) = (0.5) − 40 · 0.5 + ≈ −16, 9688 =⇒ f (0) · f (0.5) < =⇒ x0 = 0✳ ❈â ➼t ♥❤➜t ✸ ❝→❝❤ ❜✐➳♥ ✤ê✐ ✈➲ ❤➔♠ g(x)✿ ❚❛ ❝â✿ ❛✳ g1 (x) = x5 +3 40 ❜✳ g2 (x) = −3 x4 −40 ❝✳ g3 (x) = √ 40x − ❚❛ ❧➛♥ ❧÷đt ①➨t tø♥❣ tr÷í♥❣ ❤đ♣✿ ❛✳ g1 = x4 ❜✳ g2 = (x4 −40) ❝✳ g3 = 8(40x − 3)−4/5 =⇒ g3 (x) =⇒ max g1 (x) = 12x3 =⇒ g3 (x) = = 0.125 =✿ q1 12 392 ≈ 0.00789 =✿q2 ✶✾ ❚❛ t❤➜②✱ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ ✷ tr÷í♥❣ ❤đ♣ ❧➔ ♣❤➙♥ ❦➻✳ ❚✉② ♥❤✐➯♥✱ ❞♦ q2 < q1 ✈➔ q2 = 0.00789 g1 , g2 ❧➔ ❤ë✐ tö✱ ❝á♥ g3 ♥➯♥ t❛ ❝❤å♥ ❤➔♠ g2 ❧➔ ❤➔♠ ❧➦♣✳ ⑩♣ ❞ö♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ tr÷í♥❣ ❤đ♣ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❜❛♥ ✤➛✉ x0 = 0✳ g(x) = −3 (x4 −40)2 ợ õ t q ữủ s ố ữợ ✵✳✵✼✺✵✵✵✶ g(x) = −3 x4 −40 ✵✳✵✼✺ ✵✳✵✼✺✵✵✵✶ ✵✳✵✼✺✵✵✵✶ ❇↔♥❣ ✷✳✷✿ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ g(x) = −3 x4 −40 ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❙û ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ✭✷✳✽✮ t❛ t➼♥❤ ✤÷đ❝ s❛✐ sè ❝õ❛ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❧➔✿ ❱➼ ❞ư ✷✳✹✳ q 0.00789 |xn − xn−1 | = |x3 − x2 | ≈ 1−q − 0.00789 ❙û ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✿ √ 3x − x − = 0, ✈ỵ✐ x ∈ [2; 3] ✈➔ t➼♥❤ s❛✐ sè t÷ì♥❣ ù♥❣✳ √ f (x) = 3x − x − 5✱ ✈ỵ✐ x ∈ [2; 3]✳ √ ❉♦ f (2) = · − 2 − ≈ −1.181 < √ f (2.5) = · 2.5 − 2.5 − ≈ 0.257 > =⇒ f (2) · f (2.5) < =⇒ ❝❤å♥ x0 = 2✳ ❈â ➼t ♥❤➜t ✷ ❝→❝❤ ❜✐➳♥ ✤ê✐ ❤➔♠ f (x) ✈➲ ❞↕♥❣ ❚❛ ❝â ❛✳ g1 (x) = ❜✳ g2 (x) = ❤➔♠ √ x+5 3x−5 ❚❛ ❧➛♥ ❧÷đt ①➨t tø♥❣ tr÷í♥❣ ❤đ♣✿ 12 ·x −7 =⇒ g1 (x) ≈ 0.0454 =: q < ❛✳ g1 (x) = ❜✳ g2 (x) = 4(3x − 5)7 =⇒ g2 (x) ✷✵ g(x)✿ ❚❛ t❤➜②✱ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ tr÷í♥❣ ❤đ♣ ♣❤➙♥ ❦➻✳ ❱➻ ✈➟②✱ ❝❤å♥ g(x) = √ x0 = 2✳ ❧➔ ❤ë✐ tö✱ ❝á♥ x+5 ❧➔ ❤➔♠ ❧➦♣✳ ⑩♣ ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ tr÷í♥❣ ❤đ♣ ❣➛♥ ✤ó♥❣ ❜❛♥ ✤➛✉ g1 g(x) = g2 ❧➔ √ x+5 ✱ ✈ỵ✐ ♥❣❤✐➺♠ ❚❛ ❝â ❦➳t q✉↔ ✤÷đ❝ ❝❤♦ ❜ð✐ ❜↔♥❣ s ố ữợ ✷ ✷✳✸✾✸✻✼ ✷✳✹✶✵✶✾ ✷✳✹✶✵✽✷ ✷✳✹✶✵✽✺ g(x) = √ x+5 ✷✳✸✾✸✻✼ ✷✳✹✶✵✶✾ ✷✳✹✶✵✽✷ ✷✳✹✶✵✽✺ ✷✳✹✶✵✽✺ ❇↔♥❣ ✷✳✸✿ ❈→❝ ❣✐→ trà ♥❣❤➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ g(x) = √ x+5 ✤÷đ❝ t➼♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❙û ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ✭✷✳✽✮ t❛ t➼♥❤ ✤÷đ❝ s❛✐ sè ❝õ❛ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❧➔✿ ❱➼ ❞ư ✷✳✺✳ q 0.0454 |xn − xn−1 | = |x5 − x4 | ≈ 1−q − 0.0454 ❙û ❞ư♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤✿ x − y + 1.3 ln x = y − 2x + − x1 = 0, ð ❧➙♥ ❝➟♥ ✤✐➸♠ ✭✸✳✹❀✷✳✷✮ ✈➔ t➼♥❤ s❛✐ sè t÷ì♥❣ ù♥❣✳ ❚❛ ✤÷❛ ✈➲ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t÷ì♥❣ ✤÷ì♥❣✿ x = (y+5)x−1 √ y = x + 1.3 ln x, ❳➨t tr➯♥ ❤➻♥❤ ❝❤ú ♥❤➟t [3; 4] × [2; 2.6] t❛ t❤➜② ❣✐→ trà ❤➔♠ g1 (x, y) := x(5+y)−1 t❤✉ë❝ ✤♦↕♥ ❬✸❀ ✹❪ √ g2 (x, y) := x + 1.3 ln x t❤✉ë❝ ✤♦↕♥ ❬✷❀ ✷✳✻❪✳ ▼➦t ❦❤→❝✱ tr➯♥ ❤➻♥❤ ❝❤ú ♥❤➟t [3; 4] × [2; 2.6] ❝â✿ max( (g1 )x + (g2 )y ) √ √ 2(5 + y) 2x = max( + ) x(5 + y) − x(5 + y) − ✷✶ < 0.6 + 0.32 = 0.92; x + 1.3 √ + |0|) < 0.42 2x x + 1.3 ln x max( (g2 )x + (g2 )y ) = max( ❱➟② ❤➺ sè q = 0.92 < 1✳ ✣✐➲✉ ❦✐➺♥ ❧➦♣ ✤ì♥ ✤÷đ❝ t❤ä❛ ♠➣♥✳ ❱ỵ✐ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❜❛♥ ✤➛✉ x0 = 3.4✱ y0 = 2.2✳ ❙û ❞ư♥❣ ♣❤➨♣ ❧➦♣ ✭✷✳✶✶✮ t❛ t❤✉ ✤÷đ❝ ú ữỡ tr s ữợ ❧➔✿ tt ✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶✵ x ✸✳✹ ✸✳✹✷✻✸✼ ✸✳✹✹✽✻✻ ✸✳✹✻✷✸✺ ✸✳✹✼✶✷✶ ✸✳✹✼✻✽✽ ✸✳✹✽✵✺✶ ✸✳✹✽✷✽✸ ✸✳✹✽✹✸✷ ✸✳✹✽✺✸✼ x= x(5+y)−1 ✸✳✹✷✻✸✼ ✸✳✹✹✽✻✻ ✸✳✹✻✷✸✺ ✸✳✹✼✶✷✶ ✸✳✹✼✻✽✽ ✸✳✹✽✵✺✶ ✸✳✹✽✷✽✸ ✸✳✹✽✹✸✷ ✸✳✹✽✺✸✼ ✸✳✹✽✺✽✼ y y= √ ✷✳✷ ✷✳✷✸✹✵✸ ✷✳✷✹✷✶✼ ✷✳✷✹✾✵✶ ✷✳✷✺✸✶✾ ✷✳✷✺✺✾ ✷✳✷✺✼✻✷ ✷✳✷✺✽✼✸ ✷✳✷✺✾✹✸ ✷✳✷✺✾✽✽ x + 1.3 ln x ✷✳✷✸✹✵✸ ✷✳✷✹✷✶✼ ✷✳✷✹✾✵✶ ✷✳✷✺✸✶✾ ✷✳✷✺✺✾ ✷✳✷✺✼✻✷ ✷✳✷✺✽✼✸ ✷✳✷✺✾✹✸ ✷✳✷✺✾✽✽ ✷✳✷✻✵✶✼ ❇↔♥❣ ✷✳✹✿ ❈→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❙û ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ t❛ t➻♠ ✤÷đ❝ ♥❣❤✐➺♠ ❝❤➼♥❤ ①→❝ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ❧➔✿ x = 3.48695, y = 2.26068 =⇒ |xn − x¯| = |x10 − x¯| = |3.48587 − 3.48695| = 0.00108 =⇒ |yn − y¯| = |y10 − y¯| = |2.26017 − 2.26068| = 0.00051 ✷✷ ❈❤÷ì♥❣ ✸ Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ✸✳✶ ●■❰■ ❚❍■➏❯ ❱➋ P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ▼❛t❤❡♠❛t✐❝❛ ❧➔ ♥❣æ♥ ♥❣ú ❧➟♣ tr➻♥❤ t➼❝❤ ❤ñ♣ ♥❤➜t ❝→❝ t➼♥❤ t♦→♥ ❦ÿ t❤✉➟t✳ ▲➔ ổ ỳ ỹ tr ỵ ỷ ỵ ❞ú ❧✐➺✉ t÷đ♥❣ tr÷♥❣✳ ❚❤➳ ❤➺ ♥❣ỉ♥ ♥❣ú ❣✐↔✐ t➼❝❤ ✤➛✉ t✐➯♥ ✤â ❧➔ ▼❛❝s②♠❛✱ ❘❡❞✉❝❡ ✳✳✳ r❛ ✤í✐ tø ♥❤ú♥❣ ♥➠♠ ✻✵ ❝õ❛ ❚❑ ❳❳✳ ❈→❝ ♥❣æ♥ ♥❣ú ♥➔② ũ t t ỵ ❧÷đ♥❣ ❝❛♦✳ ◆❤÷đ❝ ✤✐➸♠ ❝õ❛ ❝❤ó♥❣ ❧➔ ❝❤õ ②➳✉ ✤÷đ❝ ữợ tr t ợ t t❤❡♦ ❧➔ ❝→❝ ♥❣æ♥ ♥❣ú ▼❛♣❧❡✱ ▼❛t❤❧❛❜✱ ▼❛t❤❡♠❛t✐❝❛✱ ✳✳✳ ❈→❝ ♥❣ỉ♥ ♥❣ú ♥➔② ❝â ÷✉ ✤✐➸♠ ❧➔ ❝❤↕② ♥❤❛♥❤ ❤ì♥ ✈➔ ❝❤➜♣ ♥❤➟♥ ❜ë ♥❤ỵ ♥❤ä ❤ì♥✱ ❝❤↕② ❤♦➔♥ ❤↔♦ tr➯♥ ♠→② t➼♥❤ ❝→ ♥❤➙♥✳ ❚r♦♥❣ ❝→❝ ♥❣æ♥ ♥❣ú t➼♥❤ t♦→♥ ❧♦↕✐ ♥➔②✱ ♥é✐ ❜➟t ❧➯♥ ♥❣ỉ♥ ♥❣ú ▼❛t❤❡♠❛t✐❝❛ ✈ỵ✐ ÷✉ ❞✐➸♠ ✈÷đt trë✐ ✈ỵ✐ ❣✐❛♦ ❞✐➺♥ t❤➙♥ t❤✐➺♥✱ ✈➲ ỗ t s t ỷ ỵ ❞ú ❧✐➺✉ ❦❤æ♥❣ t❤✉❛ ❦➨♠ ❝→❝ ♥❣æ♥ ♥❣ú ❧➟♣ tr➻♥❤ ❦❤→❝✳ ◆❤í ❦❤↔ ♥➠♥❣ ♠ỉ ❤➻♥❤ ❤â❛ ✈➔ ♠ỉ ♣❤ä♥❣ ❝→❝ ❤➺ ❧ỵ♥✱ ❦➸ ❝↔ ❤➺ ✤ë♥❣ ♠➔ ▼❛t❤❡♠❛t✐❝❛ ❦❤ỉ♥❣ ữủ ự tr ỹ t ỵ t❤✉➟t ✈➔ t♦→♥ ❤å❝ ♠➔ ❝á♥ ✤÷đ❝ ♠ð rë♥❣ ù♥❣ ❞ư♥❣ tr♦♥❣ ❝→❝ ❧➽♥❤ ✈ü❝ ♥❤÷ s✐♥❤ ❤å❝✱ ❦❤♦❛ ❤å❝ ✲ ①➣ ❤ë✐✱ ❦➸ ❝↔ tr♦♥❣ ❧➽♥❤ ✈ü❝ t➔✐ ❝❤➼♥❤ ♣❤ù❝ t↕♣✳ ▼❛t❤❡♠❛t✐❝❛ ❧➛♥ ✤➛✉ t✐➯♥ ✤÷đ❝ ❤➣♥❣ ❲♦❧❢r❛♠ ❘❡s❡❛r❝❤ ♣❤→t ❤➔♥❤ ✈➔♦ ✷✸ ♥➠♠ ✶✾✽✽ ❧➔ ♠ët ❤➺ t❤è♥❣ ♥❤➡♠ t❤ü❝ ❤✐➺♥ ❝→❝ t➼♥❤ t♦→♥ t♦→♥ ❤å❝ tr➯♥ ♠→② t➼♥❤ ✤✐➺♥ tû✳ ❚→❝ ❣✐↔ ❝õ❛ ▼❛t❤❡♠❛t✐❝❛ ❧➔ ❙t❡♣❤❡♥ ❲♦❧❢r❛♠✱ ♥❣÷í✐ ✤÷đ❝ ①❡♠ ❧➔ ♥❤➔ s→♥❣ t↕♦ q✉❛♥ trå♥❣ ♥❤➜t tr♦♥❣ ❧➽♥❤ ✈ü❝ t➼♥❤ t♦→♥ ❦❤♦❛ ❤å❝ ✈➔ ❦ÿ t❤✉➟t ♥❣➔② ♥❛②✳ ➷♥❣ s✐♥❤ ♥➠♠ ✶✾✺✾ t❛✐ ▲♦♥❞♦♥ ✈➔ ❤å❝ t↕✐ tr÷í♥❣ ❊t♦♥✱ ❖①❢♦r❞ ✈➔ ❈❛❧t❡❝❤✳ ➷♥❣ ❜➢t ✤➛✉ ♣❤→t tr✐➸♥ ▼❛t❤❡♠❛t✐❝❛ ✈➔♦ ♥➠♠ ✶✾✽✻✳ ❱❡rs✐♦♥ ✤➛✉ t✐➯♥ ❝õ❛ ▼❛t❤❡♠❛t✐❝❛ ✤÷đ❝ ❝ỉ♥❣ ❜è ✈➔♦ ♥❣➔② ✷✸ t❤→♥❣ ✻ ♥➠♠ ✶✾✽✽✳ ❈ỉ♥❣ tr➻♥❤ ♥➔② ✤÷đ❝ ①❡♠ ❧➔ t❤➔♥❤ tü✉ ❝❤➼♥❤ tr♦♥❣ ❧➽♥❤ ✈ü❝ ❦❤♦❛ ❤å❝ t➼♥❤ t♦→♥ ❝ơ♥❣ ♥❤÷ ❧➔ ♠ët ♣❤➛♥ ♠➲♠ t♦→♥ ❤å❝ ♥ê✐ t✐➳♥❣ ✈➔♦ ❜➟❝ ♥❤➜t ❤✐➺♥ ♥❛②✳ ✸✳✷ Ù◆● ❉Ư◆● P❍❺◆ ▼➋▼ ▼❆❚❍❊▼❆❚■❈❆ ❈❍❖ P❍×❒◆● P❍⑩P ▲➄P ✣❒◆ ❱ỵ✐ sü ♣❤→t tr✐➸♥ ❝õ❛ ❝ỉ♥❣ ❝ư t✐♥ ❤å❝✱ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❧↕✐ ❝➔♥❣ ❝â ỵ tỹ t ợ ởt ữỡ tr ❜➡♥❣ t❛② tr➯♥ ❣✐➜②✱ ❝â ❦❤✐ ♣❤↔✐ ♠➜t ❤➡♥❣ ♥❣➔② ✈ỵ✐ ♥❤ú♥❣ s❛✐ sât ❞➵ ①↔② r❛✱ t❤➻ ✈ỵ✐ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ t❛ ❝❤➾ ❝➛♥ ✈➔✐ ♣❤ót✳ ❚✉② ♥❤✐➯♥✱ ✈✐➺❝ t❤ü❝ ❤✐➺♥ t➼♥❤ t♦→♥ t♦→♥ ❤å❝ tr➯♥ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ♠ët ❝→❝❤ ❞➵ ❞➔♥❣ ❝➔♥❣ ✤á✐ ❤ä✐ ♥❣÷í✐ sû ❞ư♥❣ õ t s s ỡ ỵ tt t t ỵ tt s ữủ s♦✐ s→♥❣ ❤ì♥ tr♦♥❣ t❤ü❝ ❤➔♥❤ t➼♥❤ t♦→♥ ❝ư t❤➸✳ ❉♦ ✤â✱ ✈✐➺❝ →♣ ❞ö♥❣ t❤➔♥❤ t❤↕♦ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ✤➸ ❣✐↔✐ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ ❧➔ ❝➛♥ t❤✐➳t ❝❤♦ ♠å✐ s✐♥❤ ✈✐➯♥✳ ❱➻ ✈➟② tr♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔②✱ tỉ✐ ♥❣❤✐➯♥ ❝ù✉ ù♥❣ ❞ư♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡✲ ♠❛t✐❝❛ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ t❤ỉ♥❣ q✉❛ ❝→❝ ❣â✐ ❝➙✉ ❧➺♥❤ ✤➣ ✤÷đ❝ ❧➟♣ tr➻♥❤✳ ◗✉❛② trð ❧↕✐ ✈➼ ❞ư ✷✳✸ ✤➸ t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❜➔✐ t♦→♥✿ x5 − 40x + = 0, x ∈ [0; 1] ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✱ t❛ ❧➔♠ ữ s ữợ ữ g(x) tọ ữỡ tr ✈➲ ❞↕♥❣ t÷ì♥❣ ✤÷ì♥❣ x = g(x) ✈➔ ❝❤å♥ ❤➔♠ sup g (x) ≤ q < ❱ỵ✐ ❝→❝❤ ❣✐↔✐ ❜➡♥❣ t❛② ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ t❛ ❧➔♠ ♥❤÷ s❛✉✿ ✷✹ ❈â ➼t ♥❤➜t ✸ ❝→❝❤ ❜✐➳♥ ✤ê✐ ✈➲ ❤➔♠ ❛✳ g1 (x) = x5 +3 40 ❜✳ g3 (x) = −3 x4 −40 ❝✳ g3 (x) = √ g(x)✿ 40x − ❚❛ ❧➛♥ ❧÷đt ①➨t tø♥❣ tr÷í♥❣ ❤đ♣✿ ❛✳ g1 = x4 ❜✳ g3 = 12x3 (x4 −40) ❝✳ g3 = 8(40x − 3)−4/5 =⇒ sup g3 (x) =⇒ max g1 (x) = =⇒ g3 (x) = = 0.125 12 392 ≈ 0.00789✳ ❚❛ t❤➜②✱ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✭✷✳✸✮ ❝❤♦ ✷ tr÷í♥❣ ❤đ♣ ❧➔ ♣❤➙♥ ❦➻✳ ❚✉② ♥❤✐➯♥✱ ❞♦ q2 < q1 ✈➔ q2 = 0.00789 g1 , g2 ❧➔ ❤ë✐ tö✱ ❝á♥ g3 ♥➯♥ t❛ ❝❤å♥ ❤➔♠ g2 ❧➔ ❤➔♠ ❧➦♣✳ ❚✉② ♥❤✐➯♥✱ ♥❤÷đ❝ ✤✐➸♠ ❝õ❛ ♣❤÷ì♥❣ ♣❤→♣ ♥➔② ❧➔✿ ✤è✐ ✈ỵ✐ ♠ët sè ❜➔✐ t♦→♥ ❝❤♦ t❛ ❤➔♠ g(x) ♣❤ù❝ t↕♣ t❤➻ ✈✐➺❝ t➻♠ ❤➔♠ g (x) ✈➔ ①→❝ ✤à♥❤ sup g (x) ❧➔ r➜t ❦❤â ❦❤➠♥ ✈➔ ỳ s sõt ữ ợ ▼❛t❤❡♠❛t✐❝❛ t❛ ❝❤➾ ❝➛♥ ①→❝ ✤à♥❤ ❝→❝ ❤➔♠ t❤➸ ①↔② r ỗ t ỗ t ❤➔♠ g (x)✳ g(x) ❝â ❑❤✐ ✤â✱ q ❝❤➼♥❤ ❧➔ ❝➟♥ tr➯♥ ❝õ❛ g (x)✳ ✣➸ ①→❝ ✤à♥❤ ❤➔♠ g(x) t❤❡♦ ✈➼ ❞ư ✷✳✸ t❛ ❧➔♠ ♥❤÷ s❛✉✿ ❈â ➼t ♥❤➜t ❤❛✐ ❝→❝❤ ❜✐➳♥ ✤ê✐ ✈➲ ❤➔♠ ❛✳ g1 (x) = x5 +3 40 ❜✳ g2 (x) = −3 x4 40 õ ỗ t g1 (x) g(x)✿ t❛ ❞ò♥❣ ❝➙✉ ❧➺♥❤✿ g[x− ] = x5 + 40 Plot[Abs[g [x]], {x, 0, 1}] ✈➔ ♥❤➜♥ tê ❤đ♣ ♣❤➼♠ s❤✐❢t ✈➔ ❡♥t❡r t❛ s➩ ✤÷đ❝ ❦➳t q✉↔ ữ tr ứ ỗ t t t q1 > 0.07 ♥➯♥ ❝â t❤➸ ❧➜② ✷✳✸ ✷✺ q1 = 0.125 ữ tr ỗ t ❤➔♠ g1 (x) g2 (x) = ❱ỵ✐ −3 x4 −40 t ỗ t g2 (x) tữỡ tỹ ♥❤÷ tr➯♥✱ t❛ t❤✉ ✤÷đ❝ ❦➳t q✉↔ ♥❤÷ tr♦♥❣ ❤➻♥❤ ỗ t g2 (x) ứ ỗ t❤à t❛ t❤➜② q2 > 0.004 =⇒ ❝â t❤➸ ❧➜② q2 = 0.00789 ♥❤÷ tr♦♥❣ ✈➼ ❞ư ✷✳✸ ❚❛ ❝ơ♥❣ t ữủ ỗ t g3 (x) g3 (x) ♥❤÷ tr♦♥❣ ❤➻♥❤ ✭✸✳✸✮ q2 < q1 < q3 g2 ữợ x0 ❉♦ sup g3 (x) ✈ỵ✐ q = 0.00789 t❛ ữủ ợ ❣✐↔✐ ❜➡♥❣ t❛② t❤ỉ♥❣ t❤÷í♥❣ t❛ ❧➔♠ ♥❤÷ s❛✉✿ ❉♦ f (0) = ✈➔ f (0.5) = (0.5)5 − 40 · 0.5 + ≈ −16, 9688 ✷✻ ❍➻♥❤ ỗ t g3 (x) = f (0) à f (0.5) < =⇒ x0 = 0✳ ❚❤æ♥❣ q✉❛ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ t❛ ❝ơ♥❣ ①→❝ ✤à♥❤ ✤÷đ❝ ✤✐➸♠ ❝→❝❤ ỗ t g(x) x0 ợ g[x− ] = x4−3 −40 Plot[g[x], {x, 0, 1}] ✈➔ ♥❤➜♥ tê ❤đ♣ ♣❤➼♠ s❤✐❢t ✈➔ ❡♥t❡r t❛ t❤✉ ✤÷đ❝ t q ữ ỗ t g(x) ứ ỗ t t t ú ữỡ tr x0 = ữợ x [0; 0.0751]✳ ❱➻ ✈➟② ❝❤å♥ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ❙û ❞ư♥❣ ❝ỉ♥❣ t❤ù❝ ✭✷✳✸✮ t❛ t❤✉ ✤÷đ❝ ú ữỡ tr tổ q tự ữợ ❧➦♣ ❝ư t❤➸✳ ✷✼ ❚✉② ♥❤✐➯♥✱ ❝❤➾ ✈ỵ✐ ♠ët t❤➟t t♦→♥ ✤ì♥ ❣✐↔♥ tr♦♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ t❛ ❝ơ♥❣ ❝â t❤➸ t➻♠ ✤÷đ❝ ❝→❝ ❣✐→ trà ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ✈➔ s số õ ự ợ tứ ữợ t❤➸ ♠ët ❝→❝❤ ♥❤❛♥❤ ❝❤â♥❣ ♥❤÷ tr♦♥❣ ❤➻♥❤ ✭✸✳✺✮✳ ❍➻♥❤ ✸✳✺✿ ◆❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ✈➔ s❛✐ sè t÷ì♥❣ ù♥❣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ❇➯♥ ❝↕♥❤ ✤â ✈✐➺❝ ❣✐↔✐ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ t❤ỉ♥❣ q✉❛ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛ ❝ơ♥❣ ❦❤ỉ♥❣ q✉→ ♣❤ù❝ t↕♣✱ ❝â t❤➸ ①❡♠ ❤➻♥❤ ✭✸✳✻✮✳ ❍➻♥❤ ✸✳✻✿ ◆❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t❤❡♦ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ✷✽ ❑➌❚ ▲❯❾◆ ✣➲ t➔✐ ✑ P❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ♣❤÷ì♥❣ tr➻♥❤ ✑ ✤➣ ✤↕t ✤÷đ❝ ♥❤ú♥❣ ❦➳t q✉↔ s❛✉✿ ✶✳ ✣➲ t➔✐ ✤÷❛ r❛ ♥❤ú♥❣ ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ✷✳ ✣➲ t➔✐ ✤➣ ✤÷❛ r❛ ♠ët sè ✈➼ ❞ư ❝ơ♥❣ ♥❤÷ ❜➔✐ t➟♣ ✤÷đ❝ ❣✐↔✐ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ✸✳ ✣➲ t➔✐ ✤➣ ✤÷❛ r❛ ♠ët ♣❤➛♥ ♠➲♠ ù♥❣ ❞ư♥❣ ♠❛♥❣ t tt õ ỵ trủ ữỡ tr➻♥❤ ✈➔ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ♣❤✐ t✉②➳♥ ♠ët ❝→❝❤ ♥❤❛♥❤ ❝❤â♥❣✱ ❞➵ ❞➔♥❣✳◗✉❛ ✤â s♦ s→♥❤ ✤÷đ❝ ÷✉ ✤✐➸♠ ✈➔ ữủ t ợ ❞ư♥❣ ❝→❝ ♣❤÷ì♥❣ ♣❤→♣ ✈➔ ✈✐➺❝ ❣✐↔✐ ❜➡♥❣ ♠→② t➼♥❤ ❦❤✐ sû ❞ö♥❣ ♣❤➛♥ ♠➲♠ ▼❛t❤❡♠❛t✐❝❛✳ ✹✳ ✣➲ t➔✐ ❝â þ ♥❣❤➽❛ t❤ü❝ t✐➵♥ ❧➔ ❝â t❤➸ ❧➔♠ t➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❝❤♦ s✐♥❤ ✈✐➯♥ ❝→❝ ♥❣➔♥❤ ❚♦→♥✱ s✐♥❤ ✈✐➯♥ s÷ ♣❤↕♠✱ ❝û ♥❤➙♥ ❚♦→♥ ✲❚✐♥ ✈➔ ❝→❝ ✤è✐ t÷đ♥❣ q✉❛♥ t➙♠ ✤➳♥ ♣❤÷ì♥❣ ♣❤→♣ ❧➦♣ ✤ì♥✳ ❉♦ ❦❤↔ ♥➠♥❣ ❝õ❛ ❜↔♥ t❤➙♥ ❝á♥ ❤↕♥ ❝❤➳✱ ♠➦❝ ❞ò ✤➣ ❝â ♥❤✐➲✉ ❝è ❣➢♥❣ s♦♥❣ ❧✉➟♥ ✈➠♥ ❦❤æ♥❣ tr→♥❤ ❦❤ä✐ ♥❤ú♥❣ s sõt rt ữủ ỳ ỵ õ õ qỵ t ổ ✤➸ ✤➲ t➔✐ ✤÷đ❝ ❤♦➔♥ t❤✐➺♥ ❤ì♥✳ ✷✾ ❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦ ❬✶❪ ❚ỉ♥ ❚➼❝❤ ⑩✐✳ P❤÷ì♥❣ ♣❤→♣ sè✳ ❬✷❪ P❤↕♠ ❑➻ ❆♥❤✳ ●✐↔✐ ❚➼❝❤ sè✳ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ✷✵✵✶✳ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ✷✵✵✽✳ ❬✸❪ ❚r➛♥ ❆♥❤ ❇↔♦✱ ◆❣✉②➵♥ ❱➠♥ ❑❤↔✐✱ P❤↕♠ ❱➠♥ ❑✐➲✉✱ ◆❣ỉ ❳✉➙♥ ❙ì♥✳ ●✐↔✐ t➼❝❤ sè✳ ◆❳❇ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✳ ✷✵✵✼✳ ❬✹❪ ◆❣✉②➵♥ ❍ú✉ ✣✐➸♥✱ ◆❣✉②➵♥ ▼✐♥❤ ❚✉➜♥✳ ❚r❛ ❝ù✉ ✈➔ s♦↕♥ t❤↔♦ ▲❛t❡①✳ ◆❳❇ ✣↕✐ ❤å❝ ◗✉è❝ ❣✐❛ ❍➔ ◆ë✐✳ ✷✵✵✶✳ ❬✺❪ ❚↕ ❱➠♥ ✣➾♥❤✳ P❤÷ì♥❣ ♣❤→♣ t➼♥❤✳ ❬✻❪ ❉♦➣♥ ❚❛♠ ❍á❡✳ ◆❳❇ ●✐→♦ ❞ö❝ ❍➔ ◆ë✐✳ ✶✾✾✼✳ ❚♦→♥ ❤å❝ t➼♥❤ t♦→♥✳ ◆❤➔ ①✉➜t ❜↔♥ ●✐→♦ ❉ö❝✳ ✷✵✵✽✳ ❬✼❪ ❊❞✈❛r❞s ❈✳❍❛♥❞r②✱ ❉❛✈✐❞ ❊✳P❡♥♥❡②✳ t✐♦♥s ✇✐t❤ ❜♦✉♥❞❛r② ✈❛❧✉❡ ♣r♦❜❧❡♠s✳ ❬✽❪ ❘♦❣❡r ❈♦♦❦❡✳ ❊❧❡♠❡♥t❛r② ❞✐❢❢❡r❡♥t✐❛❧ ❡q✉❛❞✲ Pr❡♥t✐❝❡ ❍❛❧❧✳ ✷✵✵✼✳ ❚❤❡ ▼❛t❤❡♠❛t✐❝s ♦❢ ❙♦♥②❛ ❑♦✈❛❧❡✈s❦❛②❛✳ ❙♣r✐♥❣❡r✲ ❱❡r✲ ❧❛❣✳ ✶✾✽✹✳ ✸✵