1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu hiệu suất đầu dò HPGe trong phổ kế gamma đối với mẫu chứa trong hộp marinelli sử dụng phương pháp monte carlo và phần mềm etna

60 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

xạ sử dụng đầu dò nhấp nháy NaI(Tl)” (2015), Luận án Tiến sĩ, Trường ĐHKHTN – ĐHQG TPHCM Nguyễn Thị Thanh Vân, “Khảo sát đường cong hiệu suất đầu dị HPGe GC3520 mơ GEANT4”, Luận văn tốt nghiệp, Trường ĐHKHTN – TPHCM Nguyễn Thị Mỹ Lệ, Hồng Đức Tâm, Huỳnh Đình Chương, Trần Thiện Thanh, Châu Văn Tạo (2015), “Áp dụng kĩ thuật gamma tán xạ ngược để xác định độ dày thành bình phương pháp Monte Carlo”, Tạp chí khoa học tự nhiên công nghệ Trường Đại học Sư phạm Tp.Hồ Chí Minh, số 70, 55 – 64 Trương Thị Hồng Loan (2010), “Áp dụng phương pháp mô Monte Carlo để nâng cao chất lượng hệ phổ kế gamma sử dụng đầu dò bán dẫn HPGe”, Luận án Tiến sĩ, Trường ĐHKHTN – TPHCM Đặng Nguyên Phương (2006), “Khảo sát đường cong hiệu suất đầu dò HPGe chương trình MCNP”, Luận văn tốt nghiệp, Trường ĐHKHTN – TPHCM Trần Thị Bích Hịa (2016), “Phương pháp Monte Carlo ứng dụng tính giá trị số Pi”, Chuyên đề khoa học giáo dục, số 05, 86 – 93 Đặng Nguyên Phương (2015), “Hướng dẫn sử dụng MCNP cho hệ điều hành Windows”, Tài liệu lưu hành nội Hoàng Đức Tâm (2014), “Bài giảng Phương pháp ghi đo xạ”, Trường ĐHSP – TPHCM Tiếng Anh Robert L Harrison (2010), “Introduction To Monte Carlo Simulation”, AIP Conf Proc 1204: 17–21 10 A.P Potylitsyn, A.M Kolchuzhkin (2017), “Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton 42 regimes”, Nuclear Instruments and Methods in Physics Research A 851, 82 – 91 11 Yu Huan-huan, Zhang Hong-wei, Liu Min (2011), “Design of threedimensional photoelectric stylus micro-displacement measuring system”, Procedia Engineering 15, 4200 – 4204 12 W Abdel-Rahman, E.B Podgorsak (2010), “Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach”, Radiation Physics and Chemistry 79, 552–566 13 Compton A.H (1923), “A quantum theory of the scattering of X- rays by light elements”, Physical Review 21, 483 – 502 14 Stephen Klassen (2011), “The Photoelectric Effect: Reconstructing the Story for the Physics Classroom”, Science & Education 20:719–731 15 Bronis law Sredniawa (2005), “Centenary of five fundamental Einstein’s papers”, Concepts of Physics, Vol III, 55 – 68 16 Daniela Radu, Doru Stanga, Octavian Sima (2009), “ETNA software used for efficiency transfer from a point source to other geometries”, Applied Radiation and Isotopes 67, 1686–1690 17 Laurentiu Done, Liviu Cornel Tugulan, Felicia Dragolici, Carmela Alexandru, Maria Sahagia (2014), “The efficiency dependence on the analyzed sample characteristics in gamma-ray spectrometric analysis”, National Institute for Physics and Nuclear Engineering “Horia Hulubei” 30, 1012 1024 18 Marie-Christine Lộpy, Marie-Martine Bộ, Franỗois Piton (2004), “ETNA (Efficiency Transfer for Nuclide Activity measurements) - Software for efficiency transfer and coincidence summing corrections in gamma-ray spectrometry”, Laboratoire National Henri Becquerel 19 L Moens, J De Donder O, Lin Xi-Lei , F De Corte , A De Wispelaere, A Simonits, J Hoste (1981), “Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries”, Nuclear Instruments and Methods 187, 451-472 43 20 S Jovanovi, A Dlaba, N Mihaljevi, P Vukoti (1997), “ANGLE: A PC-code for semiconductor detector efficiency calculations”, Journal of Radio analytical and Nuclear Chemistry, Vol 218, No 1, 13 – 20 21 D W O Rogers (2006), “Fifty years of Monte Carlo simulations for medical physics”, Physics in Medicine and Biology 51, 287 – 301 22 William R Leo (1987), “Techniques for nuclear and particle physics experiments”, Springer – Verlag 23 Glenn E Knoll (1999), “Radiation Detection and Measurement (Third Edition)”, John Wiley & Sons, Inc 24 A.L Hanson (1985), “An analytic solution to the Rayleigh scattering cross section integral”, Nuclear Instrumentsand Methodsin PhysicsResearch A234, 552 – 555 25 Hoang Duc Tam, Huynh Dinh Chuong, Tran Thien Thanh, Vo Hoang Nguyen, Hoang Thi Kieu Trang, Chau Van Tao (2015), “Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness”, Journal of Radioanalytical and Nuclear Chemistry 303, 693 – 699 26 Shivaramu, P Priyada, M Margret, R Ramar (2011), “Intercomparison of gamma ray scattering and transmission techniques for fluids interface level and density determination”, 5th Pan American Conference for NDT 27 Jure Bericic, Luka Snoj (2017), “On the calculation of angular neutron flux in MCNP”, Annals of Nuclear Energy 100, 128–149 28 M Esfandiari, S.P Shirmardi, M.E Medhat (2014), “Element analysis and calculation of the attenuation coefficients for gold, bronze and water matrixes using MCNP, WinXCom and experimental data”, Radiation Physics and Chemistry 99, 30–36 29 Laurent Ferreux, Sylvie Pierre, Tran Thien Thanh, Marie-Christine Lépy (2013), “Validation of efficiency transfer for Marinelli geometries”, Applied Radiation and Isotopes 81, 67 – 70 44 Trang web 30 NUCLÉIDE-LARA on the web (2016) Truy cập 16/09/2016 < http://www.nucleide.org/Laraweb/> 31 Compositions of Materials used in STAR Databases Truy cập 17/09/2016 < http://physics.nist.gov/cgi-bin/Star/compos.pl> 32 Atomic Weights and Isotopic Compositions for All Elements Truy cập 20/09/2016 33 Los Alamos National Laboratory: MCNP Home Page Truy cập 11/04/2017 < https://mcnp.lanl.gov/> 45 Phụ lục A Input khảo sát hiệu suất đỉnh lượng toàn phần lượng 1173,2keV đặt cách đầu dò GMX-4076 khoảng 10cm C HPGe Detector + 60-Co Source C Dis = 10 cm C *********** BLOCK 1: CELLS ************** C THE CELLS OF POPTOP DECTECTOR CAPSULE 1 -5.323 (12 -6 -19) (17:27) IMP:P=1 $ Ge CRYSTAL 12 -0.534 (12 -27 -17) (16:26) IMP:P=1 $ Li LAYER 13 -2.37 (12 -5 -20) (19:6)#4 IMP:P=1 $ Bo LAYER -2.699 (5 -4 -20) IMP:P=1 $ Al LAYER -2.699 (14 -13 85 -21):(13 -7 20 -21) IMP:P=1 $ Al MOUNTING CUP -2.699 (78 -14 83 -84):(79 -78 85 -21) IMP:P=1 $ Al MOUNTING CUP -8.960 (76 -26 -80):(77 -76 -81):(13 -77 -82) IMP:P=1 $ CONTACT PIN -8.960 15 -13 -85 IMP:P=1 $ COOLING ROD (12 -26 80 -16) IMP:P=1 $ VACUUM INSIDE MOUNTING CUP 10 (76 -12 80 -20):(77 -76 81 -20):(13 -77 82 -20) IMP:P=1 $ VACUUM INSIDE MOUNTING CUP 11 (78 -14 85 -83) IMP:P=1 $ VACUUM INSIDE MOUNTING CUP 12 -8.960 (11 -10 21 -22) IMP:P=1 $ Cu LOWER RING 13 -8.960 (8 -7 21 -22) IMP:P=1 $ Cu UPPER RING 14 (4 -3 -24):(7 -4 20 -24) IMP:P=1 $ VACUUM INSIDE ENDCAP 15 (8 -7 22 -24):(10 -8 21 -24):(11 -10 22 -24):(14 -11 21 -24) IMP:P=1 $ VACUUM INSIDE ENDCAP 16 (78 -14 84 -24):(79 -78 21 -24):(15 -79 85 -24) IMP:P=1 $ VACUUM INSIDE ENDCAP 17 -2.699 (15 -1 24 -25):(3 -1 20 -24) IMP:P=1 $ Al ENDCAP 18 -1.848 -2 -20 IMP:P=1 $ Be WINDOW C THE CELLS OF LID 46 30 -0.94 -93 90 -91 IMP:P=1 31 -0.94 (-93 -90 1)#(-94 -90 1) IMP:P=1 32 -0.94 (-93 -1 92)#(-25 -1 92) IMP:P=1 33 -94 -90 IMP:P=1 34 -20 -1 IMP:P=1 C THE CELLS OF SAMPLE 50 -0.94 (-100 -106 103)#53 IMP:P=1 $PLASTIC1 51 -0.94 (-100 -103 107)#(-102 -103 107) IMP:P=1 $PLASTIC2 52 -1.19 -102 105 -103 IMP:P=1 $DECAL 53 11 -3.990 -101 103 -104 IMP:P=1 $SAMPLE C OTHERS 90 10 -0.001205 -200#1#2#3#4#5#6#7#8#9#10#11#12& #13#14#15#16#17#18#30#31#32#33#34#50#51#52#53 IMP:P=1 91 200 IMP:P=0 C *********** BLOCK 2: SURFACES *********** C THE SURFACES OF DETECTOR PZ -0.05 PZ -0.1 PZ -0.15 PZ -0.54397 PZ -0.54697 PZ -0.54727 PZ -0.721 PZ -1.361 10 PZ -2.18 11 PZ -2.82 12 PZ -7.35 13 PZ -10.75 47 14 PZ -11.05 15 PZ -14.093 16 CZ 0.39 17 CZ 0.74 19 CZ 3.07488 20 CZ 3.07503 21 CZ 3.15503 22 CZ 3.25003 24 CZ 3.7 25 CZ 3.8 26 PZ -1.41 27 PZ -0.71 76 PZ -7.519 77 PZ -10.044 78 PZ -11.37 79 PZ -11.67 80 CZ 0.25 81 CZ 0.3725 82 CZ 1.0095 83 CZ 1.80 84 CZ 2.10 85 CZ 0.6125 C THE SURFACES OF LID 90 PZ 0.2 91 PZ 0.3 92 PZ -1.7 93 CZ 4.12 94 CZ 3.29 C THE SURFACES OF SAMPLE 48 100 CZ 1.27 $ OVERALL RADIUS 101 CZ 0.25 $ SAMPLE RADIUS 102 CZ 1.12 $ DECAL RADIUS 103 PZ 5.141 $ TOP OF SAMPLE - BOTTOM OF DECAL 104 PZ 5.459 $ BOTTOM OF SAMPLE 105 PZ 5.101 $ TOP OF DECAL 106 PZ 5.736 $ BOTTOM OF PLASTIC 107 PZ 5.001 $ TOP OF PLASTIC C OTHER 200 SO 30 C *********** BLOCK 3: DATA *************** MODE P PHYS:P SDEF POS=0 5.141 AXS 0 EXT=D5 RAD=D2& PAR=2 CEL=53 ERG=D1 SI1 L 1.173228 SP1 SI2 0.0 0.25 $ RADIAL SAMPLING RANGE: TO RMAX SP2 -21 $ RADIAL SAMPLING WEIGHTING: R^1 FOR DISK SOURCE SI5 -12 12 $ AXIAL RANGE OF CYL CONTAINING SRC CELLS F8:P E0 0.0 1E-5 0.033 16332I 4.033 FT8 GEB 0.000916181 0.0000461611 373.25429 RAND GEN=2 SEED=9219741426499971445 STRIDE=152917 HIST=1 NPS 5E8 M1 32070 -0.205 32072 -0.274 32073 -0.078 32074 -0.365 32076 -0.078 $ Ge MATERIAL M2 1001 -0.041960 6012 -0.625016 8016 -0.333024 $ MYLAR MATERIAL 49 M3 13027 -1.000 $ Al MATERIAL M4 29065 -0.3083 29063 -0.6917 $ Cu MATERIAL M5 4009 -1.000 $ Be MATERIAL M8 1001 -0.143711 6012 -0.856289 $ POLYETHYLENE M9 1001 -0.080538 6012 -0.599848 8016 -0.319614 $POLYMETHYL METHACRALATE M10 6012 -0.000124 7014 -0.755268 8016 -0.231781 18040 -0.012827 $ DRY AIR M11 27060 -0.4538944 17035 -0.5461056 $ COBALT DICHLORIEDE M12 3007 -1 $Litium M13 5011 -1 $Boron 50 Phụ lục B Cell Cards Surface Cards dạng hình học trụ C THE CELLS OF SAMPLE 53 11 -3.990 (-151 -152 153) IMP:P=1 $SOURCE 54 -0.94 (-150 -154 155)#53 IMP:P=1 C THE SURFACES OF SAMPLE 150 C/X 0.4 151 C/X 0.31 152 PX 0.35 153 PX -0.35 154 PX 0.375 155 PX -0.375 ... https://mcnp.lanl.gov/> 45 Phụ lục A Input khảo sát hiệu suất đỉnh lượng toàn phần lượng 1173,2keV đặt cách đầu dò GMX-4076 khoảng 10cm C HPGe Detector + 60-Co Source C Dis = 10 cm C ***********... analytical and Nuclear Chemistry, Vol 218, No 1, 13 – 20 21 D W O Rogers (2006), “Fifty years of Monte Carlo simulations for medical physics”, Physics in Medicine and Biology 51, 287 – 301 22 William... in gamma- ray spectrometric analysis”, National Institute for Physics and Nuclear Engineering “Horia Hulubei” 30, 1012 – 1024 18 Marie-Christine Lépy, Marie-Martine Bộ, Franỗois Piton (2004), ETNA

Ngày đăng: 20/06/2021, 17:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN