Chuyên đề tứ giác nội tiếp Bài 98: Cho đường tròn tâm O ,đường kính AC .Vẽ dây BD vuông góc với AC tại K K nằm giữa A và O.Lấy điểm E trên cung nhỏ CD E không trùng C và D, AE cắt BD t[r]
(1)Chuyên đề tứ giác nội tiếp Chuyên đề: tứ giác nội tiếp I) C¸c kiÕn thøc cÇn nhí 1) Kh¸i niÖm: B Một tứ giác có bốn đỉnh nằm trên đờng tròn đợc gọi là tứ giác nội tiếp đờng tròn (Gọi t¾t lµ tø gi¸c nét tiÕp) A C O 2) §Þnh lÝ - Trong tứ giác nội tiếp, tổng số đo hai góc đối diện 1800 -Nếu tứ giác có tổng số đo hai góc đối diện 1800 thì tứ giácD đó nội tiếp đờng tròn 3) DÊu hiÖu nhËn biÕt (c¸c c¸ch chøng minh) tø gi¸c néi tiÕp - Tứ giác có tổng số hai góc đối diện 1800 - Tứ giác có góc ngoài đỉnh góc đỉnh đối diện - Tứ giác có bón đỉnh cách điểm(mà ta có thể xác định đợc) Điểm đó là tâm đờng trßn ngo¹i tiÕp tø gi¸c - Tứ giác có hai đỉnh kề cùng nhìn cạnh chứa hai đỉnh còn lại dới góc a II) Bµi tËp Bµi tËp : Cho Δ ABC vu«ng ë A Trªn AC lÊy diÓm M và vẽ đờng tròn đờng kính MC Kẻ BM cắt đờng tròn t¹i D §êng th¼ng DA c¾t §êng trßn t¹i S Chøng minh r»ng: a) Tø gi¸c ABCD néi tiÕp · · b) ABD = ACD · c) CA lµ ph©n gi¸c cña SCB Bµi tËp 2: Cho tø gi¸c ABCD néi tiÕp đờng tròn đờng kính AD Hai đờng chéo AC và BD cắt t¹i E VÏ EF vu«ng gãc víi AD Chøng minh: a) Tø gi¸c ABEF, tø gi¸c DCEF néi tiÕp b) CA lµ ph©n gi¸c cña ÐBCF c) Gäi M lµ trung ®iÓm cña DE Chøng minh tø gi¸c BCMF néi tiÕp Bài tập 4: Tứ giác ABCD nội tiếp đờng tròn đờng kính AD Hai đờng chéo AC , BD cắt E Hình chiếu vuông góc E trên AD là F Đờng thẳng CF cắt đờng trßn t¹i ®iÓm thø hai lµ M Giao ®iÓm cña BD vµ CF lµ N Chøng minh : a, CEFD lµ tø gi¸c néi tiÕp b Tia FA lµ tia ph©n gi¸c cña gãc BFM c BE DN = EN BD S M C B C E M A Bµi tËp 3: Cho tam gi¸c ABC vu«ng t¹i A ( AB < AC ) LÊy ®iÓm I thuéc c¹nh AC cho ABI C Đờng tròn tâm O đờng kính IC cắt đờng thẳng chứa BI D, c¾t BC ë M Chøng minh r»ng a, Tứ giác ABCD nội tiếp đờng tròn b, CA lµ tia ph©n gi¸c cña gãc BCD c, BI BD + CI CA = BC2 d, AD là tiếp tuyến đờng tròn ( O ) D A D F A D I O B C M B C E N A F D M Lª V¨n LÜnh (2) Chuyên đề tứ giác nội tiếp Bµi tËp 5: Cho tam gi¸c ABC vu«ng ë A vµ mét ®iÓm D nằm A và B đờng tròn đờng kính BD cắt BC E Các đờng thẳng CD , AE lần lợt cắt đờng tròn các điểm thø hai F , G Chøng minh : a) Tam giác ABC đồng dạng với tam giác EBD b) Tứ giác ADEC và AFBC nội tiếp đợc đờng trßn c) AC song song víi FG d) Các đờng thẳng AC , DE và BF đồng quy A D G C Lª V¨n LÜnh F B E (3) Chuyên đề tứ giác nội tiếp Bµi tËp 6: Cho tam gi¸c vu«ng ABC ( ÐA 90 ; AB > AC) vµ mét ®iÓm M n»m trªn ®o¹n AC (M kh«ng trïng víi A vµ C) Gäi N vµ D lÇn lît lµ giao ®iÓm thø hai cña BC và MB với đờng tròn đờng kính MC; gọi S là giao điểm thứ hai AD với đờng tròn đờng kính MC; T là giao ®iÓm cña MN vµ AB Chøng minh: a Bốn điểm A, M, N và B cùng thuộc đờng tròn b CM lµ ph©n gi¸c cña gãc ÐBCS TA TC c TD TB Bài tập 7: Cho đờng tròn (O) và điểm A nằm ngoài đờng tròn Qua A dựng hai tiếp tuyến AM và AN với đờng tròn (M, N là các tiếp điểm) và cát tuyến bất kì cắt đờng trßn t¹i P, Q Gäi L lµ trung ®iÓm cña PQ a/ Chứng minh điểm: O; L; M; A; N cùng thuộc đờng tròn T D A M S C B N M A · b/ Chøng minh LA lµ ph©n gi¸c cña MLN c/ Gäi I lµ giao ®iÓm cña MN vµ LA.Cminh MA2 = AI.AL d/ Gäi K lµ giao ®iÓm cña ML víi (O) Cminh KN // AQ e/ Chøng minh Δ KLN c©n P I L Q N K Bài tập 8: Từ điểm S ngoài đờng tròn (O) vẽ hai tiếp tuyến SA, SB và cát tuyến SCD đờng tròn đó Gọi E lµ trung ®iÓm cña d©y CD a Chøng minh ®iÓm S, A, E, O, B cùng thuộc đờng tròn b.NÕu SA = AO th× SAOB lµ h×nh g×? t¹i sao? AC.BD BC.DA c)cmr: A S AB.CD O C E D Bµi tËp 9: Cho đường tròn (O; R) tiếp xúc với đường thẳng d A Trên d lấy điểm H không trùng với điểm A và AH <R Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn hai điểm E và B ( E nằm B và H) Chứng minh ABH EAH Lấy điểm C trên d cho H là trung điểm đoạn AC, đường thẳng CE cắt AB K Chứng minh AHEK là tứ giác nội tiếp Xác định vị trí điểm H để AB= R Bài tập 10: Cho tam giác ABC có ba góc nhọn nội tiếp đờng tròn (O) Các đờng cao AD, BE, CF cắt H và cắt đờng tròn (O) lần lợt M,N,P.Chminh rằng: a.C¸c tø gi¸c AEHF, BFHD néi tiÕp b Bốn điểm B, C, E, F cùng nằm trên đờng tròn c.AE.AC = AH.AD; AD.BC = BE.AC d H và M đối xứng qua BC e.Xác định tâm đờng tròn nội tiếp tam giác DEF B C H E B K A O P A N F E H O C D B M Lª V¨n LÜnh (4) Chuyên đề tứ giác nội tiếp Bài tập 11: Cho tam giác cân ABC (AB = AC), các đờng cao AD, BE, cắt H Gọi O là tâm đờng tròn ngoại tiÕp tam gi¸c AHE 1.Chøng minh tø gi¸c CEHD néi tiÕp Bốn điểm A, E, D, B cùng nằm trên đờng tròn 3.Chøng minh ED = BC Cminh DE là tiếp tuyến đờng tròn (O) 5.Tính độ dài DE biết DH = cm, AH = cm A O E H C B D Bài tập 12: Cho ABC không cân, đờng cao AH, nội tiếp đờng tròn tâm O Gọi E, F thứ tự là hình chiếu B, C lên đờng kính AD đờng tròn (O) và M, N thứ tự lµ trung ®iÓm cña BC, AB Chøng minh: a Bốn điểm A,B, H, E cùng nằm trên đờng tròn tâm N và HE// CD b,M là tâm đờng tròn ngoại tiếp HEF A N O F C H B M E D Bài tập 13: Cho nửa đờng tròn (O; R) đờng kính AB Kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đờng trßn C¸c tia AC vµ AD c¾t Bx lÇn lît ë E, F (F ë gi÷a B vµ E) 1.Chứng minh AC AE không đổi Chøng minh Ð ABD = Ð DFB 3.Chøng minh r»ng CEFD lµ tø gi¸c néi tiÕp E C F D A B O Bài tập 14: Trên đờng thẳng d lấy ba điểm A,B,C theo thứ tự đó Trên nửa mặt phẳng bờ d kẻ hai tia Ax, By cùng vu«ng gãc víi dt Trªn tia Ax lÊy I Tia vu«ng gãc víi CI C cắt BI K đờng tròn đờng kính IC cắt IK P 1) Chứng minh tứ giác CBPK nội tiếp đợc đờng tròn 2) Chøng minh AI.BK = AC.CB 3) Giả sử A, B, I cố định hãy xác định vị trí điểm C cho diÖn tÝch h×nh thang vu«ng ABKI lín nhÊt Bài tập 14 Cho ABC vuông A Kẻ đờng cao AH, vẽ đờng tròn đờng kính AH, đờng tròn này cắt AB E, cắt AC t¹i F a) Chøng minh AEHF lµ h×nh ch÷ nhËt b) Chøng minh:BEFC lµ tø gi¸c néi tiÕp c) Chøng minh: AB.AE = AC.AF A F E B Bµi tËp 15 :Từ điểm M ngoài đường tròn (O) vẽ tiếp tuyến MA và MB Trên cung nhỏ AB lấy điểm C Vẽ CD AB; CE MA; CF MB Gọi I là giao điểm AC và DE; K là giao điểm BC và DF Chứng minh rằng: a) Tứ giác AECD; BFCD nội tiếp b) CD2 = CE.CF c) IK CD Lª V¨n LÜnh C H A E I D O C M K F B (5) Chuyên đề tứ giác nội tiếp Bài tập 16: Cho tam giác ABC nội tiếp đờng tròn (O) M là điểm di động trên cung nhỏ BC Trên đoạn thẳng MA lÊy ®iÓm D cho MD = MC a) Chứng minh DMC b ) Chøng minh MB + MC = MA c) Chøng minh tø gi¸c ADOC néi tiÕp d) Khi M Di động trên cung nhỏ BC thì D di động trên đờng cố định nào ? A O D C B M Bài tập 17: Cho đờng tròn (O; R), từ điểm A trên (O) kẻ tiếp tuyến d với (O) Trên đờng thẳng d lấy điểm M bÊt k× ( M kh¸c A) kÎ c¸t tuyÕn MNP vµ gäi K lµ trung ®iÓm cña NP, kÎ tiÕp tuyÕn MB (B lµ tiÕp ®iÓm) KÎ AC MB, BD MA, gäi H lµ giao ®iÓm cña AC vµ BD, I lµ giao ®iÓm cña OM vµ AB 1.Chøng minh tø gi¸c AMBO néi tiÕp 2.Chøng minh n»m ®iÓm O, K, A, M, B cïng n»m trªn đờng tròn 3.Chøng minh OI.OM = R2; OI IM = IA2 Chøng minh OAHB lµ h×nh thoi 5.Chøng minh ba ®iÓm O, H, M th¼ng hµng 6.Tìm quỹ tích điểm H M di chuyển trên đờng th¼ng d Bài tập 18: Cho điểm A; B; C cố định thẳng hàng theo thứ tự Vẽ đờng tròn (O) qua B và C (BC không là đờng kính (O)) Kẻ từ các tiếp tuyến AE và AF đến (O) (E; F lµ c¸c tiÕp ®iÓm) Gäi I lµ trung ®iÓm cña BC; K lµ trung ®iÓm cña EF, giao ®iÓm cña FI víi (O) lµ D Chøng minh: 1.AE2 = AB.AC 2.Tø gi¸c AEOF néi tiÕp 3.Năm điểm A; E; O; I; F cùng nằm trên đờng tròn 4.ED song song víi AC 5.Khi (O) thay đổi tâm đờng tròn ngoại tiếp tam giác OIK luôn thuộc đờng thẳng cố định µ M C D H N K A O E D O K A I B C F A 45 D E H C B Bài 20 Cho tam giác nhọn PBC Gọi A là chân đờng cao kẻ từ P xuống cạnh BC đờng tròn đờng kính BC cắt PB, PC lần lợt M và N Nối N với A cắt đờng tròn đờng kính BC ë ®iÓm thø hai E a/ Chøng minh r»ng: ®iÓm A, B, N, P cïng n»m trªn đờng tròn Hãy xác định tâm và bán kính đờng tròn Êy b/ Chøng minh: EM vu«ng gãc víi BC c/ Gọi F là điểm đối xứng N qua BC Chứng minh r»ng AM.AF = AN.AE P I Bài tập 19: Cho ABC có các góc nhọn và A = 45 Vẽ đờng cao BD và CE ABC Gọi H là gia điểm cña BD vµ CE a.Chøng minh tø gi¸c ADHE néi tiÕp b TÝnh tØ sè DE BC c) Gọi O là tâm đờng tròn ngoại tiếp ABC Chứng minh OA DE B P N M B C A E F Lª V¨n LÜnh (6) Chuyên đề tứ giác nội tiếp Bµi tËp 21 Cho tam gi¸c vu«ng ABC ( ÐA 90 ); trªn ®o¹n AC lÊy ®iÓm D (D kh«ng trïng víi c¸c ®iÓm A vµ C) Đờng tròn đờng kính DC cắt BC các điểm thứ hai E; đờng thẳng BD cắt đờng tròn đờng kính DC điểm F (F kh«ng trïng víi D) Chøng minh: a Tam giác ABC đồng dạng với tam giác EDC b Tứ giác ABCF nội tiếp đờng tròn c AC lµ tia ph©n gi¸c cña gãc EAF Bµi tËp 22 Cho h×nh thang c©n ABCD (AB>CD; AB//CD) nội tiếp đờng tròn (O) Tiếp tuyến với đờng tròn (O) A và D cắt E Gọi I là giao điểm hai đờng chÐo AC vµ BD a/ Chøng minh: Tø gi¸c AEBI néi tiÕp b/ Chøng minh AD//EI c/ §êng th¼ng EI c¾t c¹nh bªn AD vµ BC cña h×nh thang t¬ng øng ë R vµ S Chøng minh: * I lµ trung ®iÓm cña RS * 1 + = AB CD RS Bài tập 23 Cho đờng tròn (O; R) có hai đờng kính AOB vµ COD vu«ng gãc víi LÊy ®iÓm E bÊt k× trªn OA, nối CE cắt đờng tròn F Qua F dựng tiếp tuyến Fx với đờng tròn, qua E dựng Ey vuông góc với OA Gọi I là giao ®iÓm cña Fx vµ Ey a/ Chứng minh I; E; O; F cùng nằm trên đờng tròn b/ Tø gi¸c CEIO lµ h×nh g×? v× sao? c/ Khi E chuyển động trên AB thì I chuyển động trên đờng nµo? F A D B C E D A I E R S O B C A F y I E x C D O B Bài tập 24 Cho nửa đờng tròn đờng kính BC bán kính R và điểm A trên nửa đờng tròn (A khác B và C) Từ A hạ AH vu«ng gãc víi BC Trªn nöa mÆt ph¼ng bê BC chøa điểm A vẽ nửa đờng tròn đờng kính BH cắt AB E, nửa đờng tròn đờng kính HC cắt AC F a Tø gi¸c AFHE lµ h×nh g×? T¹i sao? b Chøng minh BEFC lµ tø gi¸c néi tiÕp c Hãy xác định vị trí điểm A cho tứ giác AFHE có diện tích lớn Tính diện tích lớn đó theo R A F E B C H Bµi tËp 25: Cho ®iÓm M, N, P th¼ng hµng theo thø tù đó Một đờng tròn (O) thay đổi qua hai điểm M, N Từ P kẻ các tiếp tuyến PT, PT’ với đờng tròn (O) 1.Chứng minh: PT2 = PM.PN Từ đó suy (O) thay đổi qua M, N thì T, T’ thuộc đờng tròn cố định 2.Gäi giao ®iÓm cña TT’ víi PO, PM lµ I vµ J K lµ trung ®iÓm cña MN Chøng minh: C¸c tø gi¸c OKTP, OKIJ néi tiÕp 3.Chứng minh rằng: Khi đờng tròn (O) thay đổi qua M, N thì TT’ luôn qua điểm cố định 4.Cho MN = NP = a Tìm vị trí tâm O để góc é TPT’ = 600 Lª V¨n LÜnh T O I P N J M K T' (7) Chuyên đề tứ giác nội tiếp Bµi tËp 26: Cho ABC vu«ng ë A Trªn AC lÊy ®iÓm M (M≠A và C) Vẽ đờng tròn đờng kính MC Gọi T là giao điểm thứ hai cạnh BC với đờng tròn Nối BM kéo dài cắt đờng tròn điểm thứ hai là D Đờng thẳng AD cắt đờng tròn (O) điểm thứ hai S Chứng minh: 1.Tø gi¸c ABTM néi tiÕp · Khi M chuyển động trên AC thì ADM có số đo không đổi 3.AB//ST Bµi tËp 27: Cho ABC vuông A (AB < AC) H nằm A và C Đường tròn (O) đường kính HC cắt BC I BH cắt (O) D a) Chứng minh tứ giác ABCD nội tiếp b) AB cắt CD M Chứng minh điểm H; I; M thẳng hàng c) AD cắt (O) K Chứng minh CA là tia phân giác KCB Bài tập 28: Cho đờng tròn (O), đờng kính AB cố định, ®iÓm I n»m gi÷a A vµ O cho AI = 2/3 AO KÎ d©y MN vu«ng gãc víi AB t¹i I, gäi C lµ ®iÓm tuú ý thuéc cung lín MN cho C kh«ng trïng víi M, N vµ B Nèi AC c¾t MN t¹i E a.Chøng minh tø gi¸c IECB néi tiÕp b.Chứng minh tam giác AME đồng dạng với tam giác ACM c.Chøng minh AM2 = AE.AC d.Chøng minh AE AC – AI.IB = AI2 e.Hãy xác định vị trí C cho khoảng cách từ N đến tâm đờng tròn ngoại tiếp tam giác CME là nhỏ A D S M B C T M D A K H B C I M C E I A B O N Bµi tËp 29: Cho nửa đường tròn (O;R) đường kính AB, dây AC Gọi E là điểm chính cung AC bán kính OE cắt AC H, vẽ CK song song với BE cắt AE K a.Chứng minh tứ giác CHEK nội tiếp b Chứng minh KH AB c.Cho BC = R Tính BK K E C H A O B Bài tập 30: Cho tam giác cân ABC (AB = AC), I là tâm đờng tròn nội tiếp, K là tâm đờng tròn bµng tiÕp gãc A , O lµ trung ®iÓm cña IK 1.Chứng minh B, C, I, K cùng nằm trên đờng tròn 2.Chøng minh AC lµ tiÕp tuyÕn cña ®trßn (O) Tính bán kính đờng tròn (O) Biết AB = AC = 20 cm, BC = 24 cm Bài tập 31: Cho điểm A bên ngoài đờng tròn (O ; R) Từ B A vẽ tiếp tuyến AB, AC và cát tuyến ADE đến đờng tròn (O) Gäi H lµ trung ®iÓm cña DE a) Chøng minh n¨m ®iÓm : A, B, H, O, C cïng n»m trªn đờng tròn O b) Chøng minh HA lµ tia ph©n gi¸c cña BHC c) DE c¾t BC t¹i I Chøng minh : AB AI.AH R OH= TÝnh HI theo R d) Cho AB=R vµ Lª V¨n LÜnh A D I E H C (8) Chuyên đề tứ giác nội tiếp Bài tập 32: Cho nửa đờng tròn tâm O đờng kính AB và M điểm M bất kì trên nửa đờng tròn ( M khác A,B) Trên nửa F mặt phẳng bờ AB chứa nửa đờng tròn kể tiếp tuyến Ax Tia BM c¾t Ax t¹i I; tia ph©n gi¸c cña gãc IAM c¾t nöa ®I êng trßn t¹i E; c¾t tia BM t¹i F tia BE c¾t AI t¹i H, c¾t AM t¹i K K a) Chøng minh r»ng: EFMK lµ tø gi¸c néi tiÕp b) E H Chøng minh r»ng: AI = IM IB c)Chøng minh BAF lµ tam gi¸c c©n A B d) Chøng minh r»ng : Tø gi¸c AKFH lµ h×nh thoi e) Xác định vị trí M để tứ giác AKFI nội tiếp đợc đờng tròn Bµi 33: Cho hai đường tròn (O1), (O2) có bán kính và cắt A và B Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đường tròn E và F (E Î (O1); F Î (O2)) 1.Chứng minh AE = AF 2.Vẽ cát tuyến CBD vuông góc với AB ( CÎ (O1); D Î (O2)) Gọi P là giao điểm CE và DF Chứng minh rằng: Các tứ giác AEPF và ACPD nội tiếp đường tròn 3.Gọi I là trung điểm EF chứng minh ba điểm A, I, P thẳng hàng 4.Khi EF quay quanh B thì I và P di chuyển trên đường nào? Bµi tËp 34: Cho h×nh vu«ng ABCD Trªn c¹nh BC, CD A B EAF 45 lÇn lît lÊy ®iÓm E, F cho BiÕt BD c¾t 45 AE, AF theo thø tù t¹i G, H Chøng minh: a.ADFG, GHFE lµ c¸c tø gi¸c néi tiÕp G b CGH vµ tø gi¸c GHFE cã diÖn tÝch b»ng E H D Bài tập 35: Cho đờng tròn tâm O bán kính R, hai điểm C và D thuộc đờng tròn, B là trung điểm cung nhỏ CD Kẻ đờng kính BA; trên tia đối tia AB lấy điểm S, nối S víi C c¾t (O) t¹i M; MD c¾t AB t¹i K; MB c¾t AC t¹i H a Chứng minh: éBMD = éBAC , từ đó suy tứ giác AMHK néi tiÕp b Chøng minh: HK // CD c Chøng minh: OK.OS = R2 C F S A M H K O D C B Bài tập 36: Cho ba điểm A, B, C trên đờng thẳng theo thø tù Êy vµ ®ưêng th¼ng d vu«ng gãc víi AC t¹i A Vẽ đờng tròn đờng kính BC và trên đó lấy điểm M bất kì Tia CM cắt đờng thẳng d D; Tia AM cắt đờng tròn điểm thứ hai N; Tia DB cắt đờng tròn điểm thứ hai P a.Chứng minh: Tứ giác ABMD nội tiếp đợc b.Chøng minh: TÝch CM CD kh«ng phô thuéc vµo vÞ trÝ ®iÓm M c.Tø gi¸c APND lµ h×nh g×? T¹i sao? d.Chøng minh träng t©m G cña tam gi¸c MAB chạy trên đờng tròn cố định D M N A B C P Lª V¨n LÜnh (9) Chuyên đề tứ giác nội tiếp Bài tập 37: Cho đờng tròn (O) và điểm A nằm ngoài đờng tròn Các tiếp tuyến với đờng tròn kẻ từ A tiếp xúc với đờng tròn B và C Gọi M là điểm tuỳ ý trên đờng tròn (M khác B và C) Gọi H; K; I lần lợt là chân các đờng vuông gãc kÎ tõ M xuèng BC; CA; AB a/ Chøng minh: Tø gi¸c MHBI, MHCK néi tiÕp B I · · b/ Chøng minh: MHI = MK H N O A M H E c/ Chøng minh: MH = MI.MK d/ Chøng minh NE HM K C Bài tập 38: Cho đờng tròn (O) đờng kính AB = 2R Đờng thẳng (d) tiếp xúc với đờng tròn (O) A M và Q là hai điểm trên (d) cho M≠A, M≠Q, Q≠A Các đờng thẳng BM và BQ lần lợt cắt đờng tròn (O) các điểm thứ hai là N vµ P Chøng minh: Tích BN.BM không đổi 2,Tø gi¸c MNPQ néi tiÕp Bất đẳng thức: BN + BP + BM + BQ > 8R M N Q P A Bài tập 39: Cho tứ giác ABCD nội tiếp đờng tròn t©m O vµ P lµ trung ®iÓm cña cung AB kh«ng chøa C vµ D Hai d©y PC vµ PD lÇn lît c¾t d©y AB t¹i E vµ F C¸c d©y AD vµ PC kÐo dµi c¾t t¹i I, c¸c d©y BC vµ PD kÐo dµi c¾t t¹i K Chøng minh r»ng: a Gãc CID b»ng gãc CKD b Tứ giác CDFE nội tiếp đợc đờng tròn c IK // AB B O D C O F A E B P I Bài tập 40:Trên đờng tròn (O; R) đờng kính AB, lấy hai ®iÓm M, E theo thø tù A, M, E, B (hai ®iÓm M, E kh¸c hai ®iÓm A, B) AM c¾t BE t¹i C; AE c¾t BM t¹i D a Chøng minh MCED lµ mét tø gi¸c néi tiÕp vµ CD vu«ng gãc víi AB b.Gäi H lµ giao ®iÓm cña CD vµ AB Chøng minh BE.BC = BH.BA c.Chứng minh các tiếp tuyến M và E đờng tròn (O) cắt điểm nằm trên đờng thẳng CD 0 d.Cho biÕt ÐBAM 45 vµ ÐBAE 30 TÝnh diÖn tÝch tam gi¸c ABC theo R Lª V¨n LÜnh K C M A E D H O B (10) Chuyên đề tứ giác nội tiếp Bài tập 41: Cho đờng tròn (O) đờng kính AB Một cát tuyÕn MN quay xung quanh trung ®iÓm H cña OB Gäi I lµ trung ®iÓm cña MN Tõ A kÎ Ax vu«ng gãc víi MN t¹i K Gäi C lµ giao ®iÓm cña Ax víi tia BI a/ Chøng minh r»ng: BN// MC b/ Chøng minh r»ng: Tø gi¸c OIKC lµ h×nh ch÷ nhËt c/ Tiếp tuyến Bt với đờng tròn (O) cắt tia AM E, cắt tia Ax ë F Gäi D lµ giao ®iÓm thø hai cña tia Ax víi (O) Chøng minh r»ng: tø gi¸c DMEF néi tiÕp E F M D K C I A O B H N Bµi tËp 42 Cho ABC c©n (AB = AC) vµ gãc A nhá h¬n 600; trên tia đối tia AC lấy điểm D cho AD = AC a Tam gi¸c BCD lµ tam gi¸c g×? t¹i sao? b.Kéo dài đờng cao CH ABC cắt BD E Vẽ đờng trßn t©m E tiÕp xóc víi CD t¹i F Qua C vÏ tiÕp tuyÕn CG đờng tròn này Chứng minh: Bốn điểm B, E, C, G thuộc đờng tròn c.Các đờng thẳng AB và CG cắt M, tứ giác AFGM lµ h×nh g×? T¹i sao? d.Chøng minh: MBG c©n D A F E H B C G M Bài tập 43: Cho BC là dây cung cố định đờng tròn (O; R) (0 < BC < 2R) A là điểm di động trên cung lớn BC cho Δ ABC nhọn Các đờng cao AD; BE; CF c¾t t¹i H (D BC; E CA; F AB) 1.Chứng minh: Tứ giác BCEF nội tiếp Từ đó suy AE.AC = AF.AB 2.Gäi A' lµ trung ®iÓm cña BC Chøng minh r»ng: AH = 2OA' 3.Kẻ đờng thẳng d tiếp xúc với đờng tròn (O) A Đặt S lµ diÖn tÝch Δ ABC, 2p lµ chu vi Δ DEF Chøng minh: a d // EF b S = p.R Bài tập 44: Cho đờng tròn (O) bán kính R, đờng thẳng d không qua O và cắt đờng tròn hai điểm A, B Từ điểm C trên d (C nằm ngoài đờng tròn), kẻ hai tiếp tuyến CM, CN với đờng tròn (M, N thuộc (O)) Gọi H là trung điểm AB, đờng thẳng OH cắt tia CN K a Chứng minh bốn điểm C, O, H, N cùng nằm trên đờng tròn b Chøng minh KN.KC = KH.KO c Đoạn thẳng CO cắt đờng tròn (O) I, chứng minh I cách CM, CN và MN d Một đờng thẳng qua O và song song với MN cắt các tia CM, CN lần lợt E và F Xác định vị trí C trên d cho diÖn tÝch tam gi¸c CEF lµ nhá nhÊt Lª V¨n LÜnh d A E F H O B D A' C E M I O C A B H F KN (11) Chuyên đề tứ giác nội tiếp Bài tập 45: Cho hình thang ABCD có đáy lớn AD và đáy nhỏ BC nội tiếp đờng tròn tâm O; AB và CD kéo dài cắt I Các tiếp tuyến đờng tròn tâm O B và D c¾t t¹i ®iÓm K a Chøng minh c¸c tø gi¸c OBID vµ OBKD lµ c¸c tø gi¸c néi tiÕp b Chøng minh IK song song víi BC c Hình thang ABCD phải thoả mãn điều kiện gì để tứ giác AIKD lµ h×nh b×nh hµnh Bài tập 46: Cho đờng tròn (O;R) và điểm A nằm trên đờng tròn Một góc xAy = 900 quay quanh A và luôn thoả mãn Ax, Ay cắt đờng tròn (O) Gọi các giao điểm thứ hai Ax, Ay với (O) tơng ứng là B, C Đờng tròn đờng kính AO c¾t AB, AC t¹i c¸c ®iÓm thø hai t¬ng øng lµ M, N Tia OM cắt đờng tròn P Gọi H là trực tâm tam giác AOP Chøng minh r»ng a AMON lµ h×nh ch÷ nhËt 1.MN//BC Tø gi¸c PHOB néi tiÕp 3.Xác định vị trí góc xAy cho tam giác AMN có diÖn tÝch lín nhÊt I K C B O A D x B O y M C H P N A Bài tập 47: Cho đờng tròn (O) đờng kính AB điểm I nằm gi÷a A vµ O (I kh¸c A vµ O) KÎ d©y MN vu«ng gãc víi AB t¹i I Gäi C lµ ®iÓm tuú ý thuéc cung lín MN (C kh¸c M, N kh¸c B) Nèi AC c¾t MN t¹i E Chøng minh: a) Tø gi¸c IECB néi tiÕp b) AM2 = AE.AC c) AE.AC – AI.IB = AI2 M C E A I B O N Bài tập 48: Cho nửa đờng tròn (O) đờng kính AB và hai điểm C, D thuộc nửa đờng tròn cho cung AC nhỏ 900 và góc COD = 900 Gọi M là điểm trên nửa đờng trßn cho C lµ ®iÓm chÝnh gi÷a cung AM C¸c d©y AM, BM c¾t OC, OD lÇn lît t¹i E, F a) Tø gi¸c OEMF lµ h×nh g×? T¹i sao? b) Chøng minh: D lµ ®iÓm chÝnh gi÷a cung MB c) Một đờng thẳng d tiếp xúc với nửa đờng tròn M và c¾t c¸c tia OC, OD lÇn lît t¹i I, K Chøng minh c¸c tø gi¸c OBKM và OAIM nội tiếp đợc d) Giả sử tia AM cắt tia BD S Hãy xác định vị trí C và D cho điểm M, O, B, K, S cùng thuộc đờng trßn Bài tập 49: Cho đờng tròn (O) và hai điểm A, B phân biệt thuộc (O) cho đờng thẳng AB không qua tâm O Trên tia đối tia AB lấy điểm lấy điểm M khác A, từ M kẻ hai tiếp tuyến phân biệt ME, MF với đờng tròn (O) (E, F lµ c¸c tiÕp ®iÓm) Gäi H lµ trung ®iÓm cña d©y cung AB Các điểm K và I theo thứ tự là giao điểm đờng thẳng EF với các đờng thẳng OM và OH a)Chứng minh điểm M, O, H, E, F cùng nằm trên đờng tròn b) Chøng minh: OH.OI = OK OM c) Chứng minh: IA, IB là các tiếp tuyến đờng tròn (O) S K M I D C F E A O B E O K H A B M F I Lª V¨n LÜnh (12) Chuyên đề tứ giác nội tiếp Bài tập 50: Cho đờng tròn (O) đờng kính AC Trên bán kÝnh OC lÊy ®iÓm B tuú ý (B kh¸c O, C ) Gäi M lµ trung ®iÓm cña ®o¹n AB Qua M kÎ d©y cung DE vu«ng gãc víi AB CD cắt đờng tròn đờng kính BC I 1.Chøng minh tø gi¸c BMDI néi tiÕp 2.Chøng minh tø gi¸c ADBE lµ h×nh thoi 3.Chøng minh BI // AD Chøng minh I, B, E th¼ng hµng 5.Chứng minh MI là tiếp tuyến đờng tròn đờng kính BC D I A M C B O E Bài tập 51: Cho đờng tròn (0) và điểm A nằm ngoài đờng tròn Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến AMN với đờng tròn (B, C, M, N thuộc đờng tròn và AM < AN) Gäi E lµ trung ®iÓm cña d©y MN, I lµ giao ®iÓm thø hai đờng thẳng CE với đờng tròn 1.Chứng minh: Bốn điểm A, 0, E, C cùng thuộc đờng trßn 2.Chøng minh: gãc AOC b»ng gãc BIC Chøng minh: BI // MN 4.Xác định vị trí cát tuyến AMN để diện tích tam giác AIN lín nhÊt Bài tập 52: Cho đờng tròn (O) có tâm O, đờng kính AB Trên tiếp tuyến đờng tròn O A lấy điểm M (M kh«ng trïng víi A) Tõ M kÎ c¸t tuyÕn MCD (C n»m gi÷a M vµ D; tia MC n»m gi÷a tia MA vµ tia MO) vµ tiÕp tuyÕn thứ hai MI (I là tiếp điểm) với đờng tròn (O) Đờng thẳng BC và BD cắt đờng thẳng OM lần lợt tai E và F Chứng minh: a Bốn điểm A, M, I và O nằm trên đờng tròn b ÐIAB ÐAMO c O lµ trung ®iÓm cña FE I B N E M O A C M I C E A B O F D Bài tập 53: Cho nửa đờng tròn (0) đờng kính AB, M thuéc cung AB, C thuéc OA Trªn nöa mÆt ph¼ng bê AB cã chøa M kÎ tia Ax,By vu«ng gãc víi AB §êng th¼ng qua M vu«ng gãc víi MC c¾t Ax, By t¹i P vµ Q AM c¾t CP t¹i E, BM c¾t CQ t¹i F a/ Chøng minh : Tø gi¸c APMC, EMFC néi tiÕp b/ Chøng minh : EF//AB c/ Tìm vị trí điểm C để tứ giác AEFC là hình bình hµnh x y P M Q E A Bài tập 54: Cho đờng tròn (O) và đờng thẳng xy ngoài đờng tròn Đờng thẳng qua O vuông góc với xy H cắt đờng tròn (O) A và B M là điểm trên (O), đờng thẳng AM cắt xy E, đờng thẳng BM cắt xy F, tiếp tuyến M cắt xy I, đờng thẳng AF cắt (O) K Nối E với K a Chøng minh: IM = IF b.Chứng minh: điểm E, M, K, F cùng thuộc đờng trßn c.Chøng minh: IK lµ tiÕp tuyÕn cña (O) d.Tìm tập hợp tâm đờng tròn ngoại tiếp Δ AMH M di động trên (O) Lª V¨n LÜnh F C B O B O M A K x y F I H E (13) Chuyên đề tứ giác nội tiếp Bài tập 55 : Cho đờng tròn (O; R) có đờng kính AB; điểm I nằm hai điểm A và O Kẻ đờng thẳng vuông góc với AB I, đờng thẳng này cắt đờng tròn (O; R) M và N Gọi S là giao điểm BM và AN Qua S kẻ đờng thẳng song song với MN, đờng thẳng này cắt các đờng thẳng AB và AM lÇn lît ë K vµ H H·y chøng minh: 1) Tø gi¸c SKAM lµ tø gi¸c néi tiÕp vµ HS.HK=HA.HM 2) KM là tiếp tuyến đờng tròn (O; R) 3) Ba ®iÓm H; N; B th¼ng hµng S M K A N H Bài 56: Cho đờng tròn (0; R), dây CD có trung điểm M Trên tia đối tia DC lấy điểm S, qua S kẻ các tiếp tuyến SA, SB với đờng tròn Đờng thẳng AB cắt các đờng th¼ng SO ; OM t¹i P vµ Q 1.Chøng minh tø gi¸c SPMQ, ABOM néi tiÕp 2.Chøng minh SA2 = SD SC Chøng minh OM OQ kh«ng phô thuéc vµo vÞ trÝ ®iÓm S 4.Khi BC // SA Chøng minh ABC c©n t¹i A 5.Xác định vị điểm S trên tia đối tia DC để C, O, B th¼ng hµng vµ BC // SA B O I Q A M C D S P O B Bài tập 57: Cho nửa đờng tròn (0) đờng kính AB, M là mét ®iÓm chÝnh gi÷a cung AB K thuéc cung BM ( K kh¸c M vµ B ) AK c¾t MO t¹i I a Chứng minh : Tứ giác OIKB nội tiếp đợc đờng tròn b.Gäi H lµ h×nh chiÕu cña M lªn AK Chøng minh : Tø gi¸c AMHO néi tiÕp c.Tam gi¸c HMK lµ tam gi¸c g× ? d Chøng minh : OH lµ ph©n gi¸c cña gãc MOK e.Xác định vị trí điểm K để chu vi tam giác OPK lớn nhÊt (P lµ h×nh chiÕu cña K lªn AB) Bài tập 58: Cho tam giác ABC với ba góc nhọn nội tiếp đờng tròn (0) Tia phân giác góc B, góc C cắt đờng tròn này thứ tự D và E, hai tia phân giác này cắt t¹i F Gäi I, K theo thø tù lµ giao ®iÓm cña d©y DE víi c¸c c¹nh AB, AC a.Chøng minh: c¸c tam gi¸c EBF, DAF c©n b) Chøng minh tø gi¸c DKFC néi tiÕp vµ FK // AB c) Tø gi¸c AIFK lµ h×nh g× ? T¹i ? d) Tìm điều kiện tam giác ABC để tứ giác AEFD là hình thoi đồng thời có diện tích gấp lần diện tích tứ giác AIFK Bài tập 59: Cho tứ giác ABCD nội tiếp đờng tròn (O;R) (AB < CD) Gäi P lµ ®iÓm chÝnh gi÷a cña cung nhá AB ; DP c¾t AB t¹i E vµ c¾t CB t¹i K ; CP c¾t AB t¹i F vµ c¾t DA t¹i I 1.Chứng minh: Tứ giác CKID nội tiếp đợc Chøng minh: IK // AB 3.Chứng minh: Tứ giác CDFE nội tiếp đợc Chøng minh: AP2 = PE PD = PF PC 5.Chứng minh : AP là tiếp tuyến đờng tròn ngoại tiếp tam gi¸c AED 6.Gọi R1 , R2 là các bán kính đờng tròn ngoại tiếp các tam gi¸c AED vµ BED.Chøng minh: R1 + R2 = √ 4R2 − PA M K I A H B O A K I D E F O C B C D O E F B P A K I Lª V¨n LÜnh (14) Chuyên đề tứ giác nội tiếp Bài tập 60: Cho hình vuông ABCD cố định , có độ dài c¹nh lµ a E lµ ®iÓm ®i chuyÓn trªn ®o¹n CD (E kh¸c D), đờng thẳng AE cắt đờng thẳng BC F, đờng thẳng vuông góc với AE A cắt đờng thẳng CD K 1.Chứng minh ABF = ADK từ đó suy AFK vuông c©n 2.Gọi I là trung điểm FK, Chứng minh I là tâm đờng trßn ®i qua A , C, F , K 3.TÝnh sè ®o gãc AIF, suy ®iÓm A, B, F, I cïng n»m trên đờng tròn Bµi tËp 61: Cho điểm A bên ngoài đường tròn (O ; R) Từ A vẽ tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O) Gọi H là trung điểm DE a) Chứng minh năm điểm : A, B, H, O, C cùng nằm trên đường tròn b) Chứng minh HA là tia phân giác BHC A K C E D I F B E H I O D A c) DE cắt BC I Chứng minh : AB AI.AH Bài tập 62: Cho tam giác nhọn ABC nội tiếp đờng tròn tâm O Đờng phân giác góc A , B cắt đờng tròn tâm O D và E , gọi giao điểm hai đờng phân giác là I , đờng thẳng DE cắt CA, CB lần lợt M , N 1.Chøng minh tam gi¸c AIE vµ tam gi¸c BID lµ tam gi¸c c©n 2.Chøng minh tø gi¸c AEMI lµ tø gi¸c néi tiÕp vµ MI // BC 3.Tø gi¸c CMIN lµ h×nh g× ? B C A E I M O B C N D Bµi tËp 63: Cho tam giaùc ABC coù ba goùc nhoïn (AB < AC) Đường tròn đường kính BC cắt AB, AC theo thứ tự taïi E vaø F Bieát BF caét CE taïi H vaø AH caét BC taïi D a) Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC b) Chứng minh AE.AB = AF.AC c) Gọi O là tâm đường tròn ngọai tiếp tam giác ABC và OK K là trung điểm BC Tính tỉ số BC tứ giác BHOC noäi tieáp d) Cho HF = 3cm , HB = 4cm , CE = 8cm vaø HC > HE Tinh HC ( §Ò thi tuyÓn sinh vµo líp 10 TP Hå ChÝ Minh 06 - 07 ) Bài tập 64: Cho (O) đờng kính AB = 2R, C là trung điểm cña OA vµ d©y MN vu«ng gãc víi OA t¹i C Gäi K lµ ®iÓm tuú ý trªn cung nhá BM, H lµ giao ®iÓm cña AK vµ MM 1.CMR: BCHK lµ tø gi¸c néi tiÕp TÝnh AH.AK theo R 3.Xác định vị trí điểm K để (KM+KN+KB) đạt giá trị lớn và tính giá trị lớn đó A E O B H C D K M F K H A C O B N Lª V¨n LÜnh (15) Chuyên đề tứ giác nội tiếp Bài tập 65: Cho đờng tròn tâm O và cát tuyến CAB ( C ngoài đờng tròn ) Từ điểm chính cung lớn AB kẻ đờng kính MN cắt AB I , CM cắt đờng tròn E , EN cắt đờng thẳng AB F 1.Chøng minh tø gi¸c MEFI lµ tø gi¸c néi tiÕp 2.Chøng minh gãc CAE b»ng gãc MEB 3.Chøng minh : CE CM = CF CI = CA CB M E O I B F C A N Bµi tËp 66: Cho ABC cã gãc nhän AC > BC néi tiÕp (O) VÏ c¸c tiÕp tuyÕn víi (O) t¹i A vµ B, c¸c tiÕp tuyÕn nµy c¾t t¹i M Gäi H lµ h×nh chiÕu vu«ng gãc cña O trªn MC CMR a/ MAOH lµ tø gi¸c néi tiÕp b/ Tia HM lµ ph©n gi¸c cña gãc AHB c/ Qua C kẻ đờng thẳng song song với AB cắt MA, MB lÇn lît t¹i E, F Nèi EH c¾t AC t¹i P, HF c¾t BC t¹i Q Chøng minh r»ng QP // EF A M O H B Bµi tËp 67: Cho tam gi¸c ABC vu«ng ë A vµ mét ®iÓm D nằm A và B Đờng tròn đờng kính BD cắt BC E Các đờng thẳng CD , AE lần lợt cắt đờng tròn các điểm thø hai F , G Chøng minh : a) Tam giác ABC đồng dạng với tam giác EBD b) Tứ giác ADEC và AFBC nội tiếp đợc đờng trßn c) AC song song víi FG d) Các đờng thẳng AC , DE và BF đồng quy C A F D G Bài tập 68: Cho đờng tròn tâm O Từ điểm P ngoài đờng tròn kẻ hai tiếp tuyến phân biệt PA, PC (A, C là tiếp điểm) với đờng tròn (O) a Chứng minh PAOC là tứ giác nội tiếp đờng tròn b Tia AO cắt đờng tròn (O) B; đờng thẳng qua P song song víi AB c¾t BC t¹i D Tø gi¸c AODP lµ h×nh g×? c Gäi I lµ giao ®iÓm cña OC vµ PD; J lµ giao ®iÓm cña PC vµ DO; K lµ trung ®iÓm cña AD Chøng tá r»ng c¸c ®iÓm I, J, K th¼ng hµng C E B A O K P J B D C I Bµi 69: Cho nửa đường tròn đường kính AB Kẻ tiếp tuyến Bx với nửa đường tròn Gọi C là điểm trên nửa đường tròn cho cung AC cung CB Trên cung CB lấy điểm D khác C và B Các tia AC, AD cắt Bx E và F a,Chứng minh ABE vuông cân b, Chứng minh ABF ~ BDF c, Chứng minh tứ giác CEFD nội tiếp d, Chứng minh AC.AE = AD.AF Lª V¨n LÜnh E C F D A O B (16) Chuyên đề tứ giác nội tiếp Bài tập 70: Cho tứ giác ABCD có hai đỉnh B và C trên nửa đờng tròn đờng kính AD, tâm O Hai đờng chéo AC vµ BD c¾t t¹i E Gäi H lµ h×nh chiÕu vu«ng gãc cña E xuèng AD vµ I lµ trung ®iÓm cña DE Chøng minh r»ng: a Các tứ giác ABEH, DCEH nội tiếp đợc; b.E là tâm đờng tròn nội tiếp tam giác BCH; c) Năm điểm B, C, I, O, H nằm trên đờng tròn B I A O Bµi tËp 71: Cho tam gi¸c c©n ABC (AB = AC; ÐB 45 ), đờng tròn (O) tiếp xúc với AB và AC lần lợt B và C Trªn cung nhá BC lÊy mét ®iÓm M (M kh«ng trïng víi B và C) hạ các đờng vuông góc MI, MH, MK xuống c¸c c¹nh t¬ng øng BC, CA, AB a Chỉ cách dựng đờng tròn (O) b Chøng minh tø gi¸c BIMK néi tiÕp c Gäi P lµ giao ®iÓm cña MB vµ IK; Q lµ giao ®iÓm cña MC vµ IH Chøng minh PQ MI C E D H A K Q P B H M C I O Bài tập 72: Cho ABC có ba góc nhọn nội tiếp đờng tròn tâm O, bán kính R Hạ các đờng cao AD, BE tam gi¸c C¸c tia AD, BE lÇn lît c¾t (O) t¹i c¸c ®iÓm thø hai lµ M, N Chøng minh r»ng: 1.Bốn điểm A,E,D,B nằm trên đờng tròn Tìm tâm I đờng tròn đó MN// DE 3.Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB Chứng minh độ dài bán kính đờng tròn ngoại tiếp CDE không đổi A N O E D C B M Bài tập 73: Cho điểm A ngoài đờng tròn tâm O Kẻ hai tiếp tuyến AB , AC với đờng tròn (B , C là tiếp điểm ) M lµ ®iÓm bÊt kú trªn cung nhá BC ( M ¹ B ; M ¹ C ) Gäi D , E , F t¬ng øng lµ h×nh chiÕu vu«ng gãc cña M trªn các đờng thẳng AB , AC , BC ; H là giao điểm MB và DF ; K lµ giao ®iÓm cña MC vµ EF 1) Chøng minh : a) MECF lµ tø gi¸c néi tiÕp b) MF vu«ng gãc víi HK 2) Tìm vị trí M trên cung nhỏ BC để tích MD ME lín nhÊt B D H O F M K A E C Bµi tËp 74: Cho ABC vuông cân A AD là trung tuyến thuộc cạnh BC Lấy M bất kì thuộc đoạn AD (M không trùng A, D) Gọi I, K là hình chiếu vuông góc M trên AB, AC H là hình chiếu vuông góc I trên đoạn DK a/Tứ giác AIMK là hình gì? b/ A, I, M, H, K thuộc đường tròn Tìm tâm đường tròn đó c/ B, M, H thẳng hàng Lª V¨n LÜnh A I K H M B C D (17) Chuyên đề tứ giác nội tiếp Bài tập 75: Cho tam giác ABC (có ba góc nhọn) Hai đờng cao AD và BF gặp H a/ Chứng minh tứ giác DHFC nội tiếp đợc đờng tròn Xác định tâm đờng tròn ngoại tiếp tứ giác b/ Gọi CK là đờng cao còn lại tam giác ABC; KD cắt đờng tròn ngoại tiếp tứ giác DHCF E Chứng minh r»ng gãcEFH = gãc KBH c/ Gi¶ sö CH = AB TÝnh sè ®o cña gãc ACB A F K H E B Bµi tËp 76: Cho tø gi¸c ABCD (AB // CD) néi tiÕp đờng tròn (O) Tiếp tuyến A và tiếp tuyến D đờng tròn (O) cắt E Gọi I là giao điểm AC và BD Chøng minh: ÐCAB ÐAOD a b Tø gi¸c AEDO néi tiÕp c EI // AB Bµi tËp 77: Cho đường tròn tâm O đường kính AC Trên AC lấy điểm B , vẽ đường tròn tâm O’ đường kính BC Gọi M là trung điểm AB Từ M kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O D và E Nối DC cắt đường tròn tâm O’ I Chứng minh: a/ AD // BI b/ BE // AD; c/I, B, E thẳng hàng d/ MD = MI e/ DM2 = AM.MC f/ Tứ giác DMBI nội tiếp Bµi tËp 78: Cho tam gi¸c ABC vu«ng t¹i A Trªn AC lÊy mét ®iÓm D, dùng CE vu«ng gãc víi BD a Chứng minh tứ giác ABCE nội tiếp đờng tròn b Chøng minh AD.CD = ED.BD c Tõ D kÎ DK vu«ng gãc víi BC Chøng minh r»ng AB, DK, EC đồng quy điểm và éDKE éABE C D D C E I O A B D I A M B C O' E A E D B Bài tập 79: Cho hai đờng tròn (O1) và (O2) cắt A và B, tiếp tuyến chung với hai đờng tròn (O1) và (O2) phÝa nöa mÆt ph¼ng bê O1O2 chøa ®iÓm B, cã tiÕp ®iÓm thø tù lµ E vµ F Qua A kÎ c¸t tuyÕn song song víi EF c¾t đờng tròn (O1), (O2) thứ tự C, D Đờng thẳng CE và đờng thẳng DF cắt I a Chøng minh IA vu«ng gãc víi CD b Chóng minh tø gi¸c IEBF lµ tø gi¸c néi tiÕp c Chứng minh đờng thẳng AB qua trung điểm EF O C K I E C F A D O1 O2 B Lª V¨n LÜnh (18) Chuyên đề tứ giác nội tiếp Bµi tËp 80: Cho đường tròn tâm O và cát tuyến CAB (C ngoài đường tròn) Từ điểm chính cung lớn AB kẻ đường kính MN cắt AB I, CM cắt đường tròn E, EN cắt đường thẳng AB F 1.Chứng minh tứ giác MEFI là tứ giác nội tiếp Chứng minh góc CAE góc MEB 3.Chứng minh: CE.CM = CF.CI = CA.CB M E O B F I A C N Bµi tËp 81: Cho tam gi¸c ABC vu«ng ë A vµ cã AB > AC, đờng cao AH Trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đờng tròn đờng kính BH cắt AB E, vẽ nửa đờng tròn đờng kính HC cắt AC F a Chøng minh tø gi¸c AEHF lµ h×nh ch÷ nhËt b Chøng minh AE.AB = AF.AC c Chøng minh BEFC lµ tø gi¸c néi tiÕp A F E B C H Bài tập 82: Cho đờng tròn (O) đờng kính BC Điểm A thuộc đoạn OB (A không trùng với O và B), vẽ đờng tròn (O') đờng kính AC Đờng tròn qua trung điểm M đoạn thẳng AB và vuông góc với AB cắt đờng tròn (O) D và E Gọi F là giao điểm thứ hai CD với đờng tròn (O'), K là giao điểm thứ hai CE với đờng tròn (O') Chøng minh: a Tø gi¸c ADBE lµ h×nh thoi b AF // BD c Ba ®iÓm E, A, F th¼ng hµng d Bốn điểm M, F, C và E cùng thuộc đờng tròn e Ba đờng thẳng CM, DK, EF đồng quy Bài tập 83: Từ điểm P nằm ngoài đờng tròn (O), kẻ hai tiếp tuyến PM và PN với đờng tròn (O) (M, N là tiếp điểm) Đờng thẳng qua điểm P cắt đờng tròn (O) hai ®iÓm E vµ F §êng th¼ng qua O song song víi PM c¾t PN t¹i Q Gäi H lµ trung ®iÓm cña ®o¹n EF Chøng minh r»ng: a Tứ giác PMON nội tiếp đờng tròn b Các điểm P, N, O, H cùng nằm trên đờng tròn c Tam gi¸c PQO c©n d PM2 = PE.PF e ÐPHM ÐPHN D F M B A C O K E M F H E O P Q N D Bài 84: Cho đờng tròn tâm O đờng kính AB Trên đờng trßn lÊy mét ®iÓm C ( C kh«ng trïng víi A,B vµ CA > CB ) Các tiếp tuyến đờng tròn (O) A , C cắt ë ®iÓm D, kÎ CH vu«ng gãc víi AB ( H thuéc AB ), DO c¾t AC t¹i E 1, Chøng minh tø gi¸c OECH néi tiÕp 2, Đờng thẳng CD cắt đờng thẳng AB F Chứng minh : Lª V¨n LÜnh C K E A M O H B F (19) BCF CFB 900 Chuyên đề tứ giác nội tiếp 3, BD c¾t CH t¹i M Chøng minh EM // AB ( §Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i D¬ng 08 - 09 ) Gîi ý gi¶i 0 a.DÔ thÊy OD lµ trung trùc cña AC => DO AC => CEO 90 L¹i cã CHO 90 ( theo gi¶ thiết )=> E; H thuộc đờng tròn đờng kính OC hay tg OECH nội tiếp b.Ta cã : COB 2 BCF ( gãc ë t©m vµ gãc t¹o bëi tia tiÕp tuyÕn vµ d©y cïng ch¾n BC cña (O) ) OC CF ( tÝnh chÊt tiÕp tuyÕn )XÐt tam gi¸c vu«ng OCF cã : OCF 90 0 => COF CFB 90 hay : BCF CFB 90 c.KÎ tiÕp tuyÕn t¹i B cña (O) c¾t DF t¹i K Theo gi¶ thiÕt : AD // CH // BK ( cïng vu«ng gãc víi AB ) MH BH (1) áp dụng hệ định lí Ta let cho các tam giác ADB ; DBK có : AD AB CM BK CM CK CK BH (2) (3) DC DK AD DK ( TÝnh chÊt tiÕp tuyÕn c¾t )L¹i cã : DK AB MH CM AD => MH = CM Tõ (1) ; (2) ; (3) suy : AD XÐt tam gi¸c ACB cã :E lµ trung ®iÓm AC ( theo 1, )M lµ trung ®iÓm CH ( theo trªn ) => EM là đờng trung bình tam giác => EM // AB Bµi 85: Cho tam gi¸c ABC vu«ng t¹i A LÊy ®iÓm D trªn cạnh AC (sao cho AC > 2DC) làm tâm vẽ đờng tròn tiếp xóc víi BC t¹i E Tõ B kÎ tiÕp tuyÕn thø hai BF, c¾t AD t¹i I vµ c¾t AE t¹i K Trung tuyÕn AM cña tam gi¸c ABC c¾t BF t¹i N a) Chứng minh A, B, E, D, F cùng nằm trên đờng tròn IF BF b) Chøng minh IK BK c) Cho AEC 130 , tÝnh ANB ( §Ò thi tuyÓn sinh vµo líp 10 tØnh VÜnh Phóc 08 - 09 ) Gîi ý gi¶i b.Trên đờng tròn ( ) , hai dây cung DE và DF nên DE DF FAD EAD IF AF (1) Suy AI là phân giác tam giác FAK đó IK AK AF BF (2) - V× AB AI nªn AB lµ ph©n gi¸c ngoµi cña tam gi¸c FAK nªn AK BK c.Ta cã NFA AFB ADB AEB (cïng néi tiÕp ch¾n cung AB cña ( ) ) DBC cã ADB lµ gãc ngoµi nªn ADB DBC DCB DBC = DAF (theo lËp luËn phÇn b)) M lµ trung ®iÓm c¹nh BC nªn MAC c©n t¹i M hay DCB DAN NFA ADB DAF DAN NAF , hay NAF c©n t¹i N 0 AFN AEB 1800 1300 500 , từ đó ANB NFA NAF 50 50 100 Lª V¨n LÜnh (20) Chuyên đề tứ giác nội tiếp Bµi 86: Từ điểm M ngoài đường tròn (O) vẽ cát tuyến K MCD không qua tâm O và hai tiếp tuyến MA, MB đến đường tròn (O), đây A, B là các tiếp điểm và C nằm M, D A D a) Chứng minh MA2 = MC.MD I b) Gọi I là trung điểm CD Chứng minh điểm C M, A, O, I , B cùng nằm trên đường tròn O c) Gọi H là giao điểm AB và MO Chứng minh tứ M H giác CHOD nội tiếp đường tròn Suy AB là phân giác góc CHD d) Gọi K là giao điểm các tiếp tuyến C và D B đường tròn (O) Chứng minh A, B, K thẳng hàng ( §Ò thi tuyÓn sinh vµo líp 10 TP Hå ChÝ Minh 08 - 09 ) c) Ta có MA = MB (tính chất hai tiếp tuyến cắt nhau) và OA = OB = R(O) Do đó MO là trung trực M AB MO AB.Trong MAO vuông A có AHKlà đường cao MA2 = MH.MO Mà MA2 = C MH MC MC.MD (do a)) MC.MD = MH.MO MD MO E(1) I Xét MHC và MDO có:ÐM chung, kết hợp với (1) ta suy MHC và MDO đồng dạng (c.g.c) Ð MHC = Ð MDO Tứ giác OHCD nội tiếp B N A H O Ta có: + OCD cân O Ð OCD = Ð MDO + Ð OCD = Ð OHD (do OHCD nội tiếp) Do đó Ð MDO = Ð OHD mà Ð MDO = Ð MHC (cmt) Ð MHC = Ð OHD D là phân giác Ð CHD hay AB là 900 – Ð MHC = 900 – Ð OHD Ð CHA = Ð DHA HA phân giác Ð CHD d) Tứ giác OCKD nội tiếp(vì Ð OCK = Ð ODK = 900) Ð OKC = Ð ODC = Ð MDO mà Ð MDO = Ð MHC (cmt) Ð OKC = Ð MHC OKCH nội tiếp Ð KHO = Ð KCO = 900 KH MO H mà AB MO H HK trùng AB K, A, B thẳng hàng Bài 87: Cho tam giác ABC vuông A.Kẻ đờng cao AH A và đờng phân giác BE ( H ẻ BC, E ẻ AC) Kẻ AD vuông gãc víi BE ( D Î BE) E a, CM tứ giác ADHB nội tiếp Xác định tâm O đtr D I b, CM tø gi¸c ODCB lµ h×nh thang O c, Gäi I lµ giao ®iÓm cña OD vµ AH Chøng minh 1 C 2 2 4.AI AB AC B H d, Cho gãc ABC = 600, AB = a TÝnh theo a diÖn tÝch h×nh ph¼ng giíi h¹n bëi AC, BC vµ cung nhá AH cña (O) ( §Ò thi tuyÓn sinh vµo líp 10 tØnh Kh¸nh Hoµ 08 – 09) Bµi 88: Cho đường tròn tâm O Lấy điểm A ngoài M đường tròn (O), đường thẳng AO cắt đường tròn (O) điểm B, C (AB < AC) Qua A vẽ đường thẳng không B O A C qua O cắt đường tròn (O) hai điểm phân biệt D, E (AD < AE) Đường thẳng vuông góc với AB A cắt đường thẳng CE F D 1) Chứng minh tứ giác ABEF nội tiếp E 2) Gọi M là giao điểm thứ hai đường thẳng FB với đường tròn (O) Chứng minh DM AC 3) Chứng minh CE.CF + AD.AE = AC2 ( §Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i D¬ng ( 08 – 09) F Bµi 89: Cho đường tròn (O) đường kính AB 6cm Gọi H là điểm nằm A và B cho AH = 1cm Qua H vẽ đường thẳng vuông góc với AB, đường thẳng này cắt đường tròn (O) C và D Hai đường thẳng BC và DA cắt M Từ M hạ đường vuông góc MN với M K E Lª V¨n LÜnh C I N A H O B (21) D Chuyên đề tứ giác nội tiếp đường thẳng AB (N thuộc đường thẳng AB) a) Chứng minh MNAC là tứ giác nội tiếp · b) Tính độ dài đoạn thẳng CH và tính tg ABC c) Chứng minh NC là tiếp tuyến đường tròn (O) d) Tiếp tuyến A đường tròn (O) cắt NC E Chứng minh đường thẳng EB qua trung điểm đoạn thẳng CH ( §Ò thi tuyÓn sinh vµo líp 10 tØnh Qu¶ng Nam 08 – 09) · · · · · · · c) Lí luận được: ACN=AMN ; ADC=ABC = BCO ; ADC=AMN · · · Suy ACN=BCO Lí luận NCO=90 Kết luận NC là tiếp tuyến đtròn (O) d) Gọi I là giao điểm BE và CH và K là giao điểm tiếp tuyến AE và BM Lí luận OE//BM Từ đó lí luận suy E là trung điểm AK IC IH BI EK EA (cùng BE ) Mà EK = EA Lý luận Do đó IC = IH Kết luận: Đường thẳng BE qua trung điểm đoạn thẳng CH A Bµi 90: Cho tam giác ABC cân A, nội tiếp đường tròn (O) Kẻ đường kính AD Gọi M là trung điểm AC, I là trung điểm OD 1/ Chứng minh OM // DC 2/ Chứng minh tam giác ICM cân 3/ BM cắt AD N Chứng minh ( §Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i D¬ng 07 – 08) M O N I B C D Bµi 91: Cho tam giác ADC vuông D có đường cao DH, đường tròn tâm O đường kính AH cắt cạnh AD điểm M ( M A); đường tròn tâm O’ đường kính CH cắt cạnh DC điểm N ( N C) Chứng minh rằng: Tứ giác DMHN là hình chữ nhật Tứ giác AMNC nội tiếp đường tròn MN là tiếp tuyến chung đường tròn đường kính AH và đường tròn đường kính OO’ ( §Ò thi tuyÓn sinh vµo líp 10 tØnh Thanh Ho¸ 07 – 08) D N M A O H C O' Bµi 92: Cho hai đường tròn , có bán kính và cắt A và B Vẽ cát tuyến qua B không vuông góc với AB, nó cắt hai đường tròn E và F (E ;F ) 1/ Chứng minh AE = AF 2/ Vẽ cát tuyến CBD vuông góc với AB (C ;D ) Gọi P là giao điểm CE và DF Chứng minh rằng: a/ Các tứ giác AEPF và ACPD nội tiếp đường tròn b/ Gọi I là trung điểm EF chứng minh ba điểm A, I, P thẳng hàng 3/ Khi EF quay quanh B thì I và P di chuyển trên đường nào? (§Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i Phßng 07-08) Lª V¨n LÜnh (22) Chuyên đề tứ giác nội tiếp Bµi 94:Cho đường tròn (O; R) và dây AC cố định không qua tâm B là điểm bất kì trên đường tròn (O: R) (B không trùng với A và C) Kể đường kính BB’ Gọi H là trực tâm tam giác ABC 1/ Chứng minh AH//B’C 2/ Chứng minh HB’ qua trung điểm AC 3/ Khi điểm B chạy trên đường tròn (O; R) (B không trùng với A và C) Chứng minh điểm H luôn nằm trên đường tròn cố định (§Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i D¬ng 07-08 ) B H O C A B' Bµi 95: Cho nửa đường tròn tâm O có đường kính AB = 2R Kẻ hai tia tiếp tuyến Ax và By nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) Gọi M là điểm tùy ý thuộc nửa đường tròn (khác A và B) Tiếp tuyến M nửa đường tròn cắt Ax D và cắt By E a/ Chứng minh là tam giác vuông b/ Chứng minh rằng: c/ Xác định vị trí điểm M trên nửa đường tròn (O) cho diện tích tứ giác ADEB nhỏ (§Ò thi tuyÓn sinh vµo líp 10 tØnh Thõa Thiªn HuÕ 07- 08) Bµi 96: Cho tam giác ABC có góc nhọn, và AH là đường cao Gọi M là trung điểm cạnh AC, các đường thẳng MH và AB cắt điểm N Chứng minh: a) Tam giác MHC cân b) Tứ giác NBMC nội tiếp đường tròn c) (§Ò thi tuyÓn sinh vµo líp 10 tØnh Thanh Ho¸ 06 -07) Bµi 97:Cho tam giác ABC vuông cân đỉnh A, AD là trung tuyến thuộc cạnh BC Lấy điểm M bất kì trên đoạn AD (M khác A, M khác D) Gọi I, K là hình chiếu vuông góc điểm M trên AB, AC; H là hình chiếu vuông góc I trên đường thẳng DK 1/ Tứ giác AIMK là hình gì? 2/ Chứng minh điểm A, I, M, H, K cùng nằm trên đường tròn Xác định tâm đường tròn đó 3/ Chứng minh các điêm B, M, H thẳng hàng (§Ò thi tuyÓn sinh vµo líp 10 tØnh H¶i Phßng 06-07) Lª V¨n LÜnh y E x M D A B O A M B C H N A I K H M B C D (23) Chuyên đề tứ giác nội tiếp Bài 98: Cho đường tròn tâm (O) ,đường kính AC Vẽ dây BD vuông góc với AC K ( K nằm A và O).Lấy điểm E trên cung nhỏ CD ( E không trùng C và D), AE cắt BD H a.Chứng minh tam giác CBD cân và tứ giác CEHK nội tiếp b.Chứng minh AD2 = AH AE c.Cho BD = 24 cm , BC =20cm Tính chu vi hình tròn (O) d.Cho góc BCD α Trên mặt phẳng bờ BC không chứa điểm A , vẽ tam giác MBC cân M Tính góc MBC theo α để M thuộc đường tròn (O) ( Tuyển sinh vào lớp 10 Quảng Nam năm 2009 – 2010 ) B' M B A O K C H D M' E D' Gợi ý d)Tính góc MBC theo α để M thuộc đường tròn (O) Giải: ΔMBC cân M có MB = MC suy M cách hai đầu đoạn thẳng BC M Î d là đường trung trực BC ,(OB=OC nên O Î d ),vì MÎ (O) nên giả sử d cắt (O) M (M thuộc cung nhỏ BC ) và M’(thuộc cung lớn BC ) * Trong trường hợp M thuộc cung nhỏ BC ; M và D nằm khác phía BC hay AC a ·BDC DBC · · (1800 DCB ) : 900 ΔBCD cân C nên Tứ giác MBDC nội tiếp thì ·BDC ·BMC 1800 ·BMC 1800 ·BDC 1800 (900 a ) 1800 900 a 900 a 2 * Trong trường hợp M’ thuộc cung lớn BC ΔMBC cân M có MM’ là đường trung trực nên MM’ là phân giác góc BMC ·BMM ' ·BMC (900 a ) : 450 a ¼ ' (900 a ) BM sđ (góc nội tiếp và cung bị » · chắn) sđ BD 2BCD 2a (góc nội tiếp và cung bị chắn) 2a 900 a 2a a 900 3a 1800 00 a 600 »BD BM ¼ ' 2 + Xét suy tồn hai điểm là M thuộc cung nhỏ BC (đã tính trên )và M’ thuộc cung lớn BC ·BDC ·BM 'C 900 a (cùng chắn cung BC nhỏ) Tứ giác BDM’C nội tiếp thì a a 0 0 »BD BM ¼ ' 2a 90 2a 90 3a 180 a 60 + Xét thì M’≡ D không thỏa mãn điều kiện đề bài nên không có M’ ( có điểm M tmđk đề bài) » ¼ + Xét BD BM ' 2a 900 a 2a a 900 3a 1800 600 a 900 (khi BD · » qua tâm O và BD AC BCD a 90 ) M’ thuộc cung BD không thỏa mãn điều kiện đề bài nên không có M’ (chỉ có điểm M tmđk đề) Lª V¨n LÜnh (24) Chuyên đề tứ giác nội tiếp Bài 99: Cho đường tròn(O; R) từ điểm M ngoài A đường tròn (O; R) vẽ hai tiếp tuyến A, B lấy C bất kì E trên cung nhỏ AB Gọi D, E, F là hình chiếu I N O vuoâng goùc cuûa C teân AB, AM, BM D C a/ cm AECD Nội tiếp đường tròn K ^A D E=C B b/ cm: C ^ F B c/ cm : Goïi I laø trung ñieåm cuûa AC vaø ED, K laø giao ñieåm cuûa CB , DF Cm IK// AB d/ Xaùc ñònh vò trí c treân cung nhoû AB deå (AC2 + CB2 ) nhỏ tính giá trị nhỏ đó OM =2R ( Tuyển sinh vào 10 tỉnh Khánh Hoà năm 2009 – 2010 ) Gợi ý 4d)Xác định vị trí điểm C trên cung nhỏ AB để CA2 + CB2 đạt GTNN Gợi ý : Xây dựng công thức đường trung tuyến tam giác Gọi N là trung điểm AB Ta có: AC2 + CB2 = 2CD2 + AD2 + DB2 =2(CN2 – ND2) + (AN+ND)2 + (AN – ND)2 = 2CN2 – 2ND2 + AN2 + 2AN.ND + ND2 + AN2 – 2AN.ND + ND2 = 2CN2 + 2AN2 = 2CN2 + AB2/2 AB /2 ko đổi nên CA2 + CB2 đạt GTNN CN đạt GTNN ó C là giao điểm ON và cung nhỏ AB => C là điểm chính cung nhỏ AB Khi OM = 2R thì OC = R hay C là trung điểm OM => CB = CA = MO/2 = R Do đó: Min (CA2 + CB2 ) = 2R2 Bài 100: Cho tam giaùc vuoâng ABC noäi tieáp đường tròn tâm O đường kính AB Kéo dài AC (về phía C) đoạn CD cho CD = AC Chứng minh tam giác ABD cân Đường thẳng vuông góc với AC A cắt đường tròn (O) E Kéo dài AE (về phía E) đoạn EF cho EF = AE Chứng minh raèng ba ñieåm D, B, F cuøng naèm treân moät đường thẳng Chứng minh đường tròn qua ba điểm A, D, F tiếp xúc với đường tròn (O) ( Tuyển sinh vào 10 tỉnh Bình Định năm 2009 – 2010) Gợi ý b)Chứng minh ba điểm D, B, F cùng nằm trên đường thẳng Vì CAE = 900, nên CE là đường kính (O), hay C, O, E thẳng hàng Ta có CO là đường trung bình tam giác ABD Suy BD // CO hay BD // CE (1) Tương tự CE là đường trung bình cuûa tam giaùc ADF Suy DF // CE (2) Từ (1) và (2) suy D, B, F cùng nằm trên đường thẳng c)Chứng minh đường tròn qua ba điểm A, D, F tiếp xúc với đường tròn (O) Ta chứng minh BA = BD = BF Do đó đường tròn qua ba điểm A,D,F nhận B làm tâm và AB làm bán kính Vì OB = AB - OA > Nên đường tròn qua ba điểm A, D, F tiếp xúc với đường tròn (O) A Lª V¨n LÜnh (25) Chuyên đề tứ giác nội tiếp Bài 101: Cho ®iÓm M n»m ngoµi ®ưêng trßn (O;R) Tõ M A kẻ hai tiếp tuyến MA , MB đến đường tròn (O;R) ( A; B D lµ hai tiÕp ®iÓm) C a.Chøng minh MAOB lµ tø gi¸c néi tiÕp E b.TÝnh diÖn tÝch tam gi¸c AMB nÕu cho OM = 5cm vµ R = O M cm c KÎ tia Mx n»m gãc AMO c¾t ®ưêng trßn (O;R) t¹i hai ®iÓm C vµ D ( C n»m gi÷a M vµ D ) Gäi E lµ giao B ®iÓm cña AB vµ OM Chøng minh r»ng EA lµ tia ph©n gi¸c cña gãc CED ( Tuyển sinh vào 10 tỉnh Quảng Ninh năm 2009 – 2010) Gợi ý c) XÐt AMO vu«ng t¹i A cã MO AB ¸p dông hÖ thøc lưîng vµo tam gi¸c vu«ng AMO ta cã: MA2 = ME MO (1) mµ : ADC MAC = S® AC ( gãc néi tiÕp vµ gãc t¹o bëi tiÕp tuyÕn vµ d©y MA MD cung cïng ch¾n cung) MAC DAM (g.g) => MC MA => MA2 = MC MD (2) MD ME Tõ (1) vµ (2) => MC MD = ME MO => MO MC MD ME MDO MCE MDO ( c.g.c) ( M chung; MO MC ) => MEC ( gãc tøng) ( 3) OA OM OA OM OD OM t/ tù: OAE OMA (g.g) => OE = OA => OE = OA = OE OD ( OD = OA = R) OD OM Ta cã: DOE MOD ( c.g.c) ( O chung ; OE OD ) => OED ODM ( gãc t øng) (4) AED OED Tõ (3) (4) => OED MEC mµ : AEC MEC =900; =900 => AEC AED => EA lµ ph©n gi¸c cña DEC Bµi 102: Cho tam gi¸c PQR vu«ng c©n t¹i P Trong gãc F PQR kÎ tia Qx bÊt kú c¾t PR t¹i D (D kh«ng trïng víi P vµ D không trùng với R) Qua R kẻ đờng thẳng vuông góc với Qx t¹i E Gäi F lµ giao ®iÓm cña PQ vµ RE P a.Chứng minh tứ giác QPER nội tiếp đuợc đờng trßn b.Chøng minh tia EP lµ tia ph©n gi¸c cña gãc DEF x E c.TÝnh sè ®o gãc QFD D d.Gäi M lµ trung ®iÓm cña ®o¹n th¼ng QE Chøng minh điểm M luôn nằm trên cung tròn cố định tia Qx M thay đổi vị trí nằm hai tia QP và QR Q R ( TyÓn sinh vµo 10 tØnh Qu¶ng B×nh n¨m 2009 – 2010) Gîi ý c.V× RP QF vµ QE RF nªn D lµ trùc t©m cña tam gi¸c QRF suy FD QR ⇒ ∠ QFD = ∠ PQR (gãc cã c¹nh t¬ng øng vu«ng gãc) mµ ∠ PQR = 450 (tam gi¸c PQR vu«ng c©n ë P) ⇒ ∠ QFD = 450 d.Gọi I là trung điểm QR và N là trung điểm PQ (I,N cố định) Ta có: MI là đờng trung bình tam giác QRE ⇒ MI//ER mà ER QE ⇒ MI QE ⇒ D ∠ QMI = 90 ⇒ M thuộc đờng tròn đờng kính QI A Khi Qx QR th× M I, Qx QP th× M N O Vậy: tia Qx thay đổi vị trí nằm hai tia QP và QR thì M lu«n n»mH trªn cung NI đờng E I tròn đờng kính QI cố định O P Bài 103: Tam giác ABC nội tiếp đờng tròn tâm O Trên K Q cung AC kh«ng chøa ®iÓm B lÊy ®iÓm D bÊt kú ( D ≠ A, D O C ≠ C) P lµ ®iÓm chÝnh gi÷a cña cung AB ( kh«ng chøa C) B Đờng thẳng PC cắt các đờng thẳng AB, AD lần lợt K và F E Đờng thẳng PD cắt các đờng thẳng AB, BC lần lợt I vµ F.Chøng minh : a) Góc CED góc CFD Từ đó suy CDEF là tứ giác Lª V¨n LÜnh (26) Chuyên đề tứ giác nội tiếp néi tiÕp b) EF // AB c) PA là tiếp tuyến đờng tròn ngoại tiếp tam giác ADI d) Khi D thay đổi thì tổng bán kính đờng tròn ngoại tiếp các tam giác AID, BID không đổi Gîi ý 1 - s®AP); - s® BP) CED = (s®CD CFD = (s® CD 2 Mµ PA = PB ( gt) => CED = CFD => CDEF lµ tø gi¸c néi tiÕp => DFE = ECD = (s® AP + s® AD) s® PD ECD = = AID 1 PAI ADI AO I AO1 H O H IAO PAI IAO1 AO 1 90 => gãc EFD = gãc AID => EF//AB KÎ O1 H AI =>PA là tiếp tuyến đờng tròn ngoại tiếp tam giác AD Cm tt : PB là tiếp tuyến đờng tròn ngoại tiếp BDI.Kẻ đờng kính PQ (O) => Tâm O1 (ADI) thuéc AQ T©m O2 cña (BDI) thuéc QB Chøng minh: O1 AI = O1 IA; O IB = O BI ; gãc QAB = gãc QBA => O1I//O2Q ; O2I//O1Q => O1IO2Q là hình bình hành => O1I + O2I = QA không đổi Bài 104: Cho đờng tròn (O;R), đờng kính AB cố định và E CD là đờng kính thay đổi không trùng với AB Tiếp tuyến đờng tròn (O;R) B cắt các đờng thẳng AC và AD lÇn lît t¹i E vµ F 1) Chøng minh r»ng BE.BF = 4R2 C 2) Chứng minh tứ giác CEFD nội tiếp đợc đờng tròn 3) Gọi I là tâm đờng tròn ngoại tiếp tứ giác CEFD Chứng minh tâm I luôn nằm trên đờng thẳng cố định ( Nghệ An năm 2009 – 2010 ) A B O D F Bài 105: Cho A là điểm trên đờng tròn tâm O, bán kính R Gọi B là điểm đối xứng với O qua A Kẻ đờng thẳng d qua B cắt đờng tròn (O) C và D (d không qua O, BC < BD) Các tiếp tuyến đờng tròn (O) C vµ D c¾t t¹i E Gäi M lµ giao ®iÓm cña OE vµ CD KÎ EH vu«ng gãc víi OB (H thuéc OB) Chøng minh r»ng: a) Bốn điểm B, H,M, E cùng thuộc đờng tròn b) OM.OE = R2 c) H lµ trung ®iÓm cña OA ( Hưng Yên năm 2009 – 2010 ) E D M C B A H O Bµi 106: Cho hình vuông ABCD, điểm M thuộc cạnh BC (M khác B, C) Qua B kẻ đường thẳng vuông góc với DM, đường thẳng này cắt các đường thẳng DM và DC theo thứ tự H và K Chứng minh: Các tứ giác ABHD, BHCD nội tiếp đường tròn; Tính CHK ; Lª V¨n LÜnh (27) Chuyên đề tứ giác nội tiếp Chứng minh KH.KB = KC.KD; Đường thẳng AM cắt đường thẳng DC N 1 2 AM AN Chứng minh AD ( Thái Bình năm 2009 – 2010 ) Bài 107: Cho (O), dây BC cố định và điểm A thay đổi trªn cung BC lín cho AC > AB vµ AC > BC Gäi D lµ ®iÓm chÝnh gi÷a cung BC nhỏ Các tiếp tuyến đờng tròn (O) D và C cắt E Gọi P, Q lần lợt là giao điểm các cặp đờng thẳng A O AB víi CD ; AD vµ CE a Chøng minh DE // BC b Tø gi¸c PACQ néi tiÕp c Gäi giao ®iÓm cña c¸c d©y AD vµ BC lµ F Chøng B C F E D P 1 minh: CE CQ CF Q c) +.Tø gi¸c APQC néi tiÕp => CPQ CAQ ( gnt cïng ch¾n cung CQ) + CAQ CDE ( gnt cïng ch¾n cung CD cña (O)) => CPQ CDE DE CE DE QE PQ CQ CF CQ => DE //PQ => Mµ DE // BC => DE DE CE QE CQ 1 PQ CF QC CQ Ta cã 1 => PQ FC DE (1) L¹i cã : CPQ CDE (cmt) mµ CDE ECD => CPQ PCQ => Tam gi¸c QPC lµ tam gi¸c c©n t¹i Q => PQ = QC (2) L¹i cã : ED = EC (3) 1 Tõ (1) (2) (3) => CQ FC CE Bµi 108: Cho tam giác ABC vuông A Một đường tròn (O) qua B và C cắt các cạnh AB, AC tam giác ABC D và E ( BC không là đường kính đường tròn tâm O) Đường cao AH tam giác ABC cắt DE K Chứng minh góc ADE góc ACB Chứng minh K là trung điểm DE Trường hợp K là trung điểm AH Chứng minh đường thẳng DE là tiếp tuyến chung ngoài đường tròn đường kính BH và đường tròn đường kính CH ( Hải Phòng năm 2009 – 2010 ) Bài 109: Cho tam giác MNP cân M có cạnh đáy nhỏ h¬n c¹nh bªn néi tiÓp (O;R) TiÕp tuyÕn t¹i M, N c¾t tia MP,MN t¹i E, D Chøng minh r»ng : NE2=EP.EM Chøng minh: Tø gi¸c DEPN néi tiÕp Qua P kẻ đờng thẳng vuông góc với MN cắt đờng Lª V¨n LÜnh (28) Chuyên đề tứ giác nội tiếp 2 trßn t¹i K C.m.r : MN NK 4R ( Hải Dương năm 2009 – 2010 ) ) Bài 110: Cho đờng tròn (O; R) Và điểmA nằm ngoài (O; R) Đờng tròn đờng kính AO cắt đờng tròn (O; R) Tại M và N §êng th¼ng d qua A c¾t (O; R) t¹i B vµ C ( d kh«ng ®i qua O; ®iÓm B n»m gi÷a A vµ C) Gäi H lµ trung ®iÓm cña BC 1) Chøng minh: AM lµ tiÕp tuyÕn cña (O; R) vµ H thuộc đờng tròn đờng kính AO 2) §êng th¼ng qua B vu«ng gãc víi OM c¾t MN ë D Chøng minh r»ng: a) Gãc AHN = gãc BDN b) Đờng thẳng DH song song với đờng thẳng MC c) HB + HD > CD ( Nam Định năm 2009 – 2010 ) Bài 111: Cho (O) đờng kính AB = 2R, C là trung điểm cña OA vµ d©y MN vu«ng gãc víi OA t¹i C Gäi K lµ ®iÓm tuú ý trªn cung nhá BM, H lµ giao ®iÓm cña AK vµ MM a,CMR: BCHK lµ tø gi¸c néi tiÕp b.TÝnh AH.AK theo R c.Xác định vị trí điểm K để (KM+KN+KB) đạt giá trị lớn và tính giá trị lớn đó ( Hà Nội 2006 – 2007 ) m e c d b h a o n M K H A C B O N Bài 112: Cho đường tròn (O; R) tiếp xúc với đường thẳng d A Trên d lấy điểm H không trùng với điểm A và AH < R Qua H kẻ đường thẳng vuông góc với d, đường thẳng này cắt đường tròn tai hai điểm E và B ( E nằm B và H ) 1/ Chứng minh và 2/ Lấy điểm C trên d cho H là trung điểm đoạn thẳng AC, đường thẳng CE cắt AB K Chứng minh AHEK là tứ giác nội tiếp 3/ Xác định vị trí điểm H để ( Hà Nội 2007 – 2008 ) Bài 113: Cho ®ưêng trßn (O; R) vµ A lµ mét ®iÓm n»m bªn ngoµi ®ưêng trßn KÎ c¸c tiÕp tuyÕn AB, AC víi ®ưêng trßn (B, C lµ c¸c tiÕp ®iÓm) 1.Chøng minh ABOC lµ tø gi¸c néi tiÕp 2.Gäi E lµ giao ®iÓm cña BC vµ OA Chøng minh BE vu«ng gãc víi OA vµ OE.OA=R2 3.Trªn cung nhá BC cña ®ưêng trßn (O; R) lÊy ®iÓm K bÊt k× (K kh¸c B vµ C) TiÕp tuyÕn t¹i K cña ®ưêng trßn (O; R) c¾t AB, AC theo thø tù t¹i c¸c ®iÓm P vµ Q Chøng minh tam giác APQ có chu vi không đổi K chuyển động trên cung nhỏ BC 4.§ưêng th¼ng qua O, vu«ng gãc víi OA c¾t c¸c ®ưêng th¼ng AB, AC theo thø tù t¹i c¸c ®iÓm M, N Chøng minh PM+QN ≥ MN ( Hà Nôi 2009 – 2010 ) Lª V¨n LÜnh B O K E d H A M B C P A O Q N C (29) Chuyên đề tứ giác nội tiếp Bài 114: Cho tam giác ABC có ba góc nhọn (AB < AC) Đường tròn đường kính BC cắt AB, AC theo thứ tự E và F Biết BF cắt CE H và AH cắt BC D a) Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC b) Chứng minh AE.AB = AF.AC c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm BC Tính tỉ số OK BC A F E H D B C K tứ giác BHOC nội tiếp d) Cho HF = cm, HB = cm, CE = cm và HC > HE Tính HC ( Thành Phố Hồ Chí Minh 2007 – 2008 ) Bài 115: Cho tam gi¸c ABC (AB<AC) cã ba gãc nhän néi tiÕp ®ưêng trßn (O) cã t©m O, b¸n kÝnh R Gäi H lµ giao ®iÓm cña ba ®ưêng cao AD, BE, CF cña tam gi¸c ABC Gäi S lµ diÖn tÝch tam gi¸c ABC a) Chóng minh r»ng AEHF vµ AEDB lµ c¸c tø gi¸c néi tiÕp ®ưêng trßn b) VÏ ®ưêng kÝnh AK cña ®ưêng trßn (O) Chøng minh tam giác ABD và tam giác AKC đồng dạng với Suy AB.BC.CA 4R AB.AC = 2R.AD vµ S = c) Gäi M lµ trung ®iÓm cña BC Chøng minh EFDM lµ tø gi¸c néi tiÕp ®ưêng trßn d) Chøng minh r»ng OC vu«ng gãc víi DE vµ (DE + EF + FD).R = S ( Thành Phố Hồ Chí Minh 2009 – 2010 ) A O F B E H D C M K Bài 116: Cho đường tròn (O) tròn đường kính AB = 2R Lª V¨n LÜnh (30) Chuyên đề tứ giác nội tiếp F và điểm C thuộc đường tròn đó (C khác A, B) Lấy điểm D thuộc dây BC (D khác B, C) Tia AD cắt cung nhỏ BC điểm E, tia AC cắt tia BE điểm F I E C 1) Chứng minh FCDE là tứ giác nội tiếp D 2) Chứng minh DA.DE = DB.DC 3) Chứng minh góc CFD = góc OCB Gọi I là tâm đường tròn ngoại tiếp tứ giác FCDE, chứng minh IC là tiếp tuyến đường tròn (O) A B O 4) Cho biết DF = R, chứng minh tg AFB = ( Hà Nội năm 2010 – 2011 ) Bài 117: Cho đường tròn tâm O đường kính AB=2R Gọi M là điểm thuộc đường tròn (O) khác A và B Các tiếp tuyến (O) A và M cắt E Vẽ MP vuông góc với AB (P thuộc AB), vẽ MQ vuông góc với AE (Q thuộc AE) 1,Chứng minh AEMO là tứ giác nội tiếp đường tròn và APMQ là hình chữ nhật 2,Gọi I là trung điểm PQ Chứng minh O, I, E thẳng hàng 3,Gọi K là giao điểm EB và MP Chứng minh hai tam giác EAO và MPB đồng dạng Suy K là trung điểm MP 4,Đặt AP = x Tính MP theo R và x Tìm vị trí M trên (O) để hình chữ nhật APMQ có diện tích lớn (Hồ Chí Minh năm 2010 – 2011 ) Bài upload.123doc.net: Cho hai đường tròn (C) tâm O, bán kính R và đường tròn (C') tâm O', bán kính R' (R > R') cắt hai điểm A và B Vẽ tiếp tuyến chung MN hai đường tròn (M Î (C), N Î (C')) Đường thẳng AB cắt MN I (B nằm A và I) 1,Chứng minh góc BMN = góc MAB 2, Chứng minh IN2 = IA.IB 3, Đường thẳng MA cắt đường thẳng NB Q; đường thẳng NA cắt đường thẳng MB P Chứng minh MN song song với QP ( Đà nẵng năm 2010 - 2011 ) Bài 119: Cho hình vuông ABCD cạnh a, lấy điểm M trên cạnh BC (M khác B và C) Qua B kẻ đường thẳng vuông góc với đường thẳng DM H, kéo dài BH cắt đường thẳng DC K 1, Chứng minh : BHCD là tứ giác nội tiếp 2, Chứng minh : KM DB 3, Chứng minh KC.KD = KH.KB 4, Ký hiệu SABM, SDCM là diện tích tam giác ABM, DCM Chứng minh tổng (SABM + SDCM) không đổi 2 Xác định vị trí điểm M trên cạnh BC để ( S ABM S DCM E M Q K I x A O M B P I N A Q P C' C B A B H M D K C ) đạt giá trị nhỏ Tính giá trị nhỏ đó theo a ( Khánh Hoà năm 2010 - 2011 ) Lª V¨n LÜnh (31) Chuyên đề tứ giác nội tiếp Bài 120: Cho tam giác ABC vuông A có AB < AC, đường cao AH Đường tròn đường kính AH cắt AB P, cắt AC Q 1,Chứng minh góc PHQ 900 2,Chứng minh tứ giác BPQC nội tiếp 3,Gọi E, F là trung điểm BH, HC Tứ giác EPQF là hình gì ? 4,Tính diện tích tứ giác EPQF trường hợp tam giác vuông ABC có cạnh huyền BC a và góc ACB 300.( Hải Phòng năm 2010 - 2011 ) Bài 121: Cho nửa đường tròn tâm O đường kính AB Điểm H cố định thuộc đoạn thẳng AO (H khác A và O) Đường thẳng qua điểm H và vuông góc với AO cắt nửa đường tròn (O) C Trên cung BC lấy điểm D (D khác B và C) Tiếp tuyến nửa đường tròn (O) D cắt đường thẳng HC E Gọi I là giao điểm AD và HC 1,Chứng minh tứ giác HBDI nội tiếp đường tròn 2,Chứng minh tam giác DEI là tam giác cân 3, Gọi F là tâm đường tròn ngoại tiếp tam giác ICD Chứng minh góc ABF có số đo không đổi D thay đổi trên cung BC (D khác B và C) ( Nghệ An năm 2010 - 2011 ) Bài 122: Cho đường tròn (O) bán kính R, đường thẳng d không qua O và cắt đường tròn hai điểm A và B Từ điểm C trên d (C nằm ngoài đường tròn), kẻ hai tiếp tuyến CM, CN với đường tròn (M, N thuộc (O) ) Gọi H là trung điểm AB, đường thẳng OH cắt tia CN K 1,Chứng minh các tứ giác CHOM, COHN nội tiếp 2,Chứng minh KN.KC = KH.KO 3,Đoạn thẳng CO cắt đường tròn (O) I, chứng minh I cách CM, CN và MN 4,Một đường thẳng qua O và song song với MN cắt các tia CM, CN E và F Xác định vị trí C trên d cho diện tích tam giác CEF là nhỏ ( Hải Phòng năm 2010 - 2011 ) Bài 123: Cho đường tròn (O; R) và điểm M nằm ngoài cho OM=2R Đường thẳng d qua M tiếp xúc với (O; R) A Gọi N là giao điểm đoạn thẳng MO với đường tròn(O; R) 1,Tính độ dài đoạn thẳng AN theo R Tính số đo góc NAM 2, Kẻ hai đường kính AB và CD khác (O;R) Các đường thẳng BC và BD cắt đường thẳng d P và Q a, Chứng minh tứ giác PQDC nội tiếp b, Chứng minh 3BQ AQ R A Q P B E C F H E C D I A H B O E M B H A O I C N K F Q A D O N M P B C ( Nam Định năm 2010 - 2011 ) Lª V¨n LÜnh (32) Chuyên đề tứ giác nội tiếp Bài 124: Cho tam giác ABC vuông A, Kẻ đường cao AH và phân giác BE góc ABC (H thuộc BC, E thuộc AC), Kẻ AD vuông góc với BE (D thuộc BE) 1,Chứng minh tứ giác ADHB là tứ giác nội tiếp, xác định tâm O đường tròn ngoại tiếp tứ giác ADHB (gọi là đường tròn (O)) · · = HBD 2,Chứng minh EAD và OD song song với HB · 3, Cho biết số đo góc ABC = 60 và AB = a (a > cho trước) Tính theo a diện tích phần tam giác ABC nằm ngoài đường tron (O) ( Quảng Trị năm 2010 - 2011 ) Bài 125: Cho hình vuông ABCD, điểm M thuộc cạnh BC (M ¹B và M ¹ C) Qua B kẻ đường thẳng vuông góc với tia DM cắt các đường thẳng DM, DC theo thứ tự E và F 1,Chứng minh các tứ giác: ABED và BDCE nội tiếp đường tròn 2,Tính góc CEF 3,Đường thẳng AM cắt đường thẳng DC N Chứng 1 2 minh đẳng thức: AD = AM + AN ( Hà Tĩnh năm 2010 - 2011 ) Bài 126: Cho tam giác ABC ( AC>AB; BAC 90 ), I, K theo thứ tự là các trung điểm AB, AC Các đường tròn đường kính AB, AC cắt điểm thứ hai D; tia BA cắt đường tròn ( K) điểm thứ hai E; tia CA cắt đường tròn tâm (I) điểm thứ F a.Chứng minh B, C, D thẳng hàng b.Chứng minh tứ giác BFEC nội tiếp c.Chứng minh AD, BF, CE đồng quy d.Gọi H là giao điểm thứ hai tia DF với đường tròn ngoại tiếp tam giác AEF Hãy so sánh độ dài DH và DE ( Hưng Yên năm 2010 - 2011 ) Bài 127: Cho (O) đường kính AB Vẽ bán kính OC vuông góc với AB.Gọi K là điểm nằm B và C.Tia AK cắt đường tròn (O) M 1,Tính các góc ACB , AMC 2,Vẽ CI vuông góc AM (Î AM ) Chứng minh AOIC là tứ giác nội tiếp 3,Chứng minh hệ thức : AI.AK = AO AB 4,Nếu K là trung điểm CB.Tính tgMAB ( Quảng Nam năm 2010 - 2011 ) Bài 128: Cho tam giác ABC có góc nhọn nội tiếp đường tròn tâm O Kẻ các đường cao BB` và CC` (B` Î cạnh AC, C` Î cạnh AB) Đường thẳng B`C` cắt đường tròn tâm O hai điểm M và N ( theo thứ tự N, C`, B`, M) a) Chứng minh tứ giác BC`B`C là tứ giác nội tiếp b) Chứng minh AM = AN c) AM2 = AC`.AB ( Bình Định năm 2010 - 2011 ) Lª V¨n LÜnh A E D B C H H F E A I K B C D C K M I A B O A N C' M B' O B C (33) Chuyên đề tứ giác nội tiếp Bài 129: Cho tam giác ABC vuông A Gọi M là trung điểm AC Đường tròn đường kính CM cắt BC điểm thứ hai là N BM kéo dài gặp đường tròn D 1) Chứng minh điểm B, A, D, C nằm trên đtròn 2) Chứng minh MN.BC = AB.MC 3) Chứng minh tiếp tuyến M đtròn đường kính MC qua tâm đtròn ngoại tiếp tứ giác BADC A D M B C N ( Lào Cai năm 2010 - 2011 ) Bài 130: Cho nửa đường tròn tâm O, đường kính AB Kẻ tiếp tuyến Ax với nửa đường tròn By thay đổi cắt nửa đường tròn O điểm C Tia phân giác góc ABy cắt nửa đường tròn O D, cắt Ax E, cắt AC F Tia AD và BC cắt H Chứng minh tứ giác DHCF nội tiếp Chứng minh tứ giác AEHF là hình thoi Tìm vị trí điểm C để diện tích tam giác AHB lớn ( Bắc Giang năm 2010 - 2011 ) Bài 131: Cho đường tròn (O,R) và đường thẳng không qua O cắt đường tròn hai điểm A và B Từ điểm M trên ( Δ ) ( M nằm ngoài đường tròn tâm O và A nằm B và M ), vẽ hai tiếp tuyến MC, MD đường tròn (O) (C, D Î (O) ) Gọi I là trung điểm AB, tia IO cắt MD K a) Chứng minh năm điểm M, C, I, O, D cùng thuộc đường tròn b) Chứng minh : KD KM = KO KI c) Một đường thẳng qua O và song song với CD cắt các tia MC và MD E và F xác định vị trí M trên ( Δ ) cho diện tích Δ MEF đạt giá trị nhỏ ( Phú Yên năm 2010 - 2011 ) Bài 132: Cho tam giác ABC vuông A, tia Cx nằm O có tâm O hai tia CA và CB Vẽ đường tròn thuộc AB, tiếp xúc với CB M, tiếp xúc với Cx N Gọi E là giao điểm AM và CO Chứng minh rằng: 1) Tứ giác ONAC nội tiếp đường tròn 2) EA.EM=EC.EO 3) Tia AO là phân giác góc MAN ( An Giang năm 2010 - 2011 ) Lª V¨n LÜnh H C D E F B O A E C B I A M O D F K N A O E B C M (34) Chuyên đề tứ giác nội tiếp Bài 133: Cho đường tròn tâm O, đường kính AB = 2R Trên tiếp tuyến Ax đường tròn, lấy điểm M cho AM = 2R Vẽ tiếp tuyến MC đến đường tròn (C là tiếp điểm) 1,Chứng minh: BC // MO Giả sử đường thẳng MO cắt AC I Tính đoạn MC và AI theo R Giả sử đường thẳng MB cắt đường tròn N (khác B) Chứng minh tứ giác MNIA nội tiếp đường tròn ( Đồng Nai năm 2010 - 2011 ) Bài 134: Cho tam giác PQR có ba góc nhọn nội tiếp đường tròn tâm O,các đường cao QM,RN tam giác cắt t ại H 1.Ch ứng minh t ứ gi ác QRMN là tứ giác nội tiếp đường tròn Kéo dài PO cắt đường tròn O K.Chứng minh tứ giác QHRK là hình bình hành Cho cạnh QR cố định, P thay đổi trên cung lớn QR cho tam giác PQR luôn nhọn.Xác định vị trí điểm P để diện tích tam giác QRH lớn ( Thanh Hoá năm 2010 - 2011 ) M N C I A B O P M N H O R Q K Bài 135: Một hình vuông ABCD nội tiếp đường tròn Tâm O bán kính R Một điểm M di động trên cung ABC , M không trùng với A,B và C, MD cắt AC H 1, Chứng minh tứ giác MBOH nội tiếp đường tròn và DH.DM = 2R2 2, Chứng minh tam giác MDC đồng dạng với tam giác MAH 3,Hai tam giác MDC và MAH M vị trí đặc biệt M’ Xác định điểm M’ Khi đó M’D cắt AC H’ Đường thẳng qua M’ và vuông góc với AC cắt AC I Chứng minh I là trung điểm H’C ( Bình Dương năm 2010 - 2011 ) Bài 136: Cho đường tròn tâm O, bán kính R = và A là điểm nằm ngoài đường tròn cho OA = Kẻ các tiếp tuyến AB, AC với đường tròn tâm O (B, C là các tiếp điểm) a) Chứng minh OA BC b) Đường thẳng CO cắt đường tròn (O) D Chứng minh BD // AO c) Tính chu vi tam giác ABC ( Vĩnh Long năm 2010 - 2011 ) B A O M H I D C B D A O C Lª V¨n LÜnh (35) Chuyên đề tứ giác nội tiếp Bài 137: Cho tam giác ABC có góc nhọn nội tiếp đường tròn tâm O Các đường cao AD và CE tam giác ABC cắt H Vẽ đường kính BM đường tròn tâm O 1,Chứng minh tứ giác EHDB là tứ giác nội tiếp 2,Chứng minh tứ giác AHCM là hình bình hành 3,Cho số đo góc ABC 600 Chứng minh BH = BO ( Ninh Bình năm 2010 - 2011 ) A E H M O B A Bài 138: Cho tam giác ABC có đường cao AH (H thuộc BC) Trên cạnh BC lấy điểm M ( M không trùng với B , C, H) Gọi P và Q là hình chiếu vuông góc M trên hai cạnh AB và AC a) Chứng minh điểm A, P, H, M, Q cùng nằm trên đường tròn tâm O b) Chứng minh tam giác OHQ Từ đó hãy suy OH vuông góc với PQ c) Chứng minh MP + MQ = AH ( Lạng Sơn năm 2010 - 2011 ) O Q P B Bài 139: Cho tam giác ABC vuông A ( AB>AC) Trên cạnh AC lấy điểm M (khác A và C) Đường tròn đường kính MC cắt BC E và cắt đường thẳng BM D ( E khác C ; D khác M) 1) Chứng minh tứ giác ABCD nội tiếp 2) Chứng minh ABD MED 3) Đường thẳng AD cắt đường tròn đường kính MC N ( N khác D) Đường thẳng MD cắt CN K, MN cắt CD H Chứng minh KH song song với NE ( Vũng Tàu năm 2010 - 2011 ) C D M C H K A D M H N B E C Bài 140: Cho tam giác ABC có góc nhọn Đường tròn tâm O đường kính BC cắt AB; AC D và E Gọi H là giao điểm BE và CD 1, Chứng minh tứ giác ADHE nội tiếp đường tròn 2, Gọi I là trung điểm AH Chứng minh IO vuông góc với DE 3, Chứng minh AD.AB=AE.AC ( Phú Thọ năm 2010 - 2011 ) A D I E H B Lª V¨n LÜnh C (36) Chuyên đề tứ giác nội tiếp Bài 141: Cho nửa đường tròn có tâm O và đường kính AB Gọi M là điểm chính cung AB, P là điểm thuộc cung MB (P không trùng với M và B); đường thẳng AP cắt đường thẳng OM C, đường thẳng OM cắt đường thẳng BP D 1, Chứng minh OBPC là tứ giác nội tiếp 2, Chứng minh hai tam giác BDO và CAO đồng dạng 3, Tiếp tuyến nửa đường tròn P cắt CD I Chứng minh I là trung điểm đoạn thẳng CD ( Đắc Lắc năm 2010 - 2011 ) D I M C A Lª V¨n LÜnh P O B (37)