1. Trang chủ
  2. » Luận Văn - Báo Cáo

Etude des catalyseurs de croissance de nanotubes de carbone monoparois synthetises par cvd

202 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 202
Dung lượng 29,42 MB

Nội dung

INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE N° attribué par la bibliothèque | | | | | | | | | | | THESE pour obtenir le grade de DOCTEUR DE L’INP Grenoble Spécialité : « Science et Génie des Materiaux » préparée au laboratoire Laboratoire des Composants Hybrides dans le cadre de l’Ecole Doctorale « Matériaux et Génie des Procédés » présentée et soutenue publiquement par Van Thang LE le 26 Septembre 2008 ETUDE DES CATALYSEURS DE CROISSANCE DE NANOTUBES DE CARBONE MONOPAROIS SYNTHETISES PAR CVD DIRECTEUR DE THESE ENCADRANTS : Robert BAPTIST : Frédéric GAILLARD Emmanuelle ROUVIERE JURY M Mau Chien DANG M Didier PRIBAT M Robert BAPTIST M Quoc Tuan TRAN M Frédéric GAILLARD Mme Emmanuelle ROUVIERE Président, Rapporteur Rapporteur Directeur de thèse Examinateur Invité Invitée i ii Acknowledgements Neither these past three years in CEA/LITEN/DTNM/LCH, nor me, nor this thesis would be the same without the help and company of many people First, I wish to express my sincere appreciation to my research advisor, Professor Robert BAPTIST, for his scientific guidance and support during the course of this research work His assistance and suggestions were crucial in the realization of this work I am especially grateful to my supervisors, Dr Frederic GAILLARD and Ms Emmanuelle ROUVIERE, for always being supportive, understanding, ready to help and their suggestions Among many others, I have enjoyed your company in a social setting just as much as your scientific input in the lab Thank you for teaching me, listening to me, and letting me argue with you I couldn’t ask for better guidance I was very fortunate to get help from a lot of people in the lab, thanks for all your helps Special thanks to Pascal FAUCHERAND and Severine PONCET, who helped me for all of the technical work I also thank to my friends, Lionel FOUDRINIER, Céline MOUCHET, Nicolas KARST… for their support and friendship, and many others that I could not mention here Thanks to Mr Cyril CAYRON, Mr Alexandre MONTANI, Mr Eric de VITO and Ms Claude CHABROL for letting me used the SEM, XRD and XPS instruments, thanks to Mr Denis ROUCHON, who is the manager of the Raman engine Dr Jean-Pierre SIMONATO and Ms Aurelie THUAIRE gave me a great opportunity to work in their lab during the third year I am grateful to Vietnam National University, Ho Chi Minh City, CEA Grenoble and EGIDE for supplying a scholarship Living with people from different countries has definitely expanded my world view Thank you all for the smiles, the warmth, and making the dormitory feel like a big family And finally, most importantly, I want to thank my family and my Vietnamese friends for always quietly watching out for me, patiently loving me, and sparing advice, when I needed it most I wouldn’t be who I am if it wasn’t for you iii iv Abstract Carbon nanotubes have numerous potential applications in areas such as biotechnology, electronics, photonics and materials They can be described as graphene sheets rolled up to form a tube and exist in two forms: Single Wall Carbon Nanotube (SWCNT) and Multi Wall Carbon Nanotube (MWCNT) Three main synthesis techniques exist for CNTs, namely arcdischarge, laser ablation and chemical vapor deposition (CVD) One of that, the CVD is a promising method to grow carbon nanotubes in which typically hydrocarbon gases are dissociated on catalyst at medium temperature (600-1200°C) This thesis is focussed on the chemical vapour deposition method to produce single wall carbon nanotubes The purposes of this research are to understand exactly the role of the various chemical components presented in catalyst for the producing of SWNTs, to control process conditions, to develop synthesis techniques for SWNTs on patterned catalyst that allow the integration for electronic devices and to transfer process to industrial CVD instrument Experimental investigations are presented which allow getting a comprehensive picture of the powder catalyst growth of carbon nanotubes film The role of each element in catalyst and the optimal amount of them are illustrated Based on the electron microscopy, Raman spectroscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and microbalance results, a new component, (FexAly)(Al2-yFe1-x)O4, is detected The (FexAly)(Al2-yFe1-x)O4 provides a key role to create active nanoparticles for carbon nanotubes growth Subsequent studies of the properties of the produced carbon nanotubes grown by CVD reveal significant features of the product Based on those experimental results, a mechanism for the growth of carbon nanotubes on the powder catalyst is suggested Furthermore, a purification method of as-grown SWCNT has been developed that provides for the removal of catalyst nanoparticles and impurity carbon We note that our purified product contain ~95% wt carbon products Complementary, by varying global growth parameters such as synthesis temperature, flow ratio of carbonaceous/hydrogen gas and growth time, this study attempts to control the process condition for the synthesis high yield of SWNTs Furthermore, we present the results of the transfer of the synthesis process of SWNTs from the EASYTUBE system (small tubular CVD reactor) to industrial CENTURA tool (compatible wafer 200 mm) and the patterned growth of SWNTs for electrical devices v Keywords: Catalyst, Promoter, Active Particle, Carbon Nanotube, Chemical Vapor Deposition, Nanoparticles, Device vi RESUME Depuis plusieurs années, les nanotubes de carbone (CNT pour Carbon Nanotubes en anglais) ont fait l’objet de nombreuses études et publications sur la base de leurs extraordinaires propriétés mécanique, physique, chimique et électronique Des applications nombreuses, mettant en œuvre des nanotubes de carbone, ont vu le jour telles que : écrans plats, composants nanoélectroniques, capteurs chimiques et pointes de mesure dans les microscopes force atomique Plusieurs méthodes existent pour la fabrication des nanotubes de carbone comme l’arc électrique, l’ablation laser ou le dépôt chimique en phase vapeur (CVD pour Chemical Vapor Deposition en anglais dans le texte) Aujourd’hui, la technique CVD présente le meilleur potentiel pour la croissance des nanotubes en comparaison aux autres techniques Généralement, la méthode CVD nécessite l’utilisation d’un catalyseur, constitué d’un (ou plusieurs) métal (-aux) de transition, supporté (s) par un substrat La CVD assistée par un catalyseur est une des méthodes les plus simples pour produire de grande quantité de nanotubes de carbone L’élaboration, la structure, les propriétés et les applications des nanotubes de carbone sont encore largement étudiées Cependant, le choix des méthodes de synthèse et la compréhension des mécanismes de croissance des nanotubes ne sont pas complètement aboutis alors qu’ils sont les clés de la réussite d’un contrôle des propriétés des nanotubes produits ainsi que de leur rendement de production Il reste notamment explorer le rôle de chacun des constituants du catalyseur pendant la phase de nucléation et l’évolution de ce catalyseur pendant la croissance des nanotubes de carbone Ces travaux de thèse portent sur la mise en œuvre de méthode CVD pour l’élaboration de nanotubes de carbone mono paroi (SWCNT pour Single Wall Carbon Nanotubes en anglais dans le texte) Le but de cette recherche est d’une part, de comprendre le rôle de chacun des constituants du catalyseur permettant la croissance des SWCNT Le mécanisme de croissance des SWCNT sera déduit de ces explications D’autre part, une étude paramétrique du procédé de croissance des SWCNT portant sur l’évolution des conditions exploratoires telles que la température de synthèse, le rapport des gaz réactifs (Hydrocarbure/Hydrogène) et la durée du procédé, a permis de déterminer les conditions optimisées de CVD assistée par catalyseur , pour l’élaboration de SWCNT Les propriétés des SWCNT ont également été explorées en vue de leur utilisation potentielle dans des composants électroniques vii Après un premier chapitre d’introduction générale, le second chapitre fait l’objet d’une étude bibliographique portant principalement sur les différents modes de synthèse des nanotubes de carbone et de préparation des catalyseurs pour la technique CVD assistée par catalyseur Le troisième chapitre présente l’étude de la formulation chimique du catalyseur exploité pour la croissance des SWCNT et le rôle de chacun de ces constituants Les propriétés physico-chimiques des SWCNT produits et le mécanisme de croissance de SWCNT sont exposées dans le quatrième chapitre C’est également dans cette partie qu’une méthode de purification des SWCNT produits est enfin proposée en vue de l’exploitation de ces SWCNT dans des applications électroniques Le cinquième chapitre porte d’une part, sur le transfert de procédé d’un réacteur de laboratoire (EASYTUBE) dans un réacteur industriel compatible avec des tailles de wafers de 200mm (CENTURA) et d’autre part, sur l’étude de la localisation du catalyseur et donc, des nanotubes, pour la fabrication de composants électroniques Ce manuscrit est conclu par une conclusion générale et les perspectives donner ces travaux de thèse I- Etude du catalyseur de croissance de nanotubes de carbone monoparois Afin d’étudier le rôle de chacun des constituants du système catalytique, des expériences systématiques ont été reproduites dans le réacteur CVD de synthèse de SWCNT Ces investigations expérimentales ont permis de comprendre le rôle des constituants du catalyseur de croissance des SWCNT Les images réalisées en microscopie électronique balayage (MEB) reportées dans la figure montrent le type de produit obtenu après l’étape de croissance de CNT pour des compositions extrêmes Une grande quantité de nanotubes est visible sur l’image a- de la fig.1 dans le cas où le catalyseur dit « standard » est composé des trois éléments, fer, molybdène et alumine Il est observé une relativement faible quantité de CNT sur l’image c- en l’absence de molybdène dans le catalyseur Enfin, aucun CNT n’est observé sur les images b- et d- en l’absence respectivement d’alumine et de fer L’absence de CNT dans le cas b est attribuée la coalescence des particules métalliques contenues dans le catalyseur la température de procédé (900°C) et dans le cas d-, l’absence de l’élément fer viii (a) (b) (c) (d) Fig.1: Images MEB des surfaces d’échantillons après le procédé de croissance de CNT par CVD (a) Catalyseur “Standard” (Al2O3, Fe2O3, MoO3), (b) Catalyst exempt d’ Al2O3, (c) Catalyst exempt de Molybdène et (d) Catalyst sans fer La croissance de SWCNT est confirmée par spectrométrie Raman réalisée sur les deux échantillons d’intérêt (fig 2), notés TFe (voir fig.1-c) et T1 (voir fig.1-a) présentant trois caractéristiques types dans le spectre : - des pics dans le mode RBM (Radial Breathing Mode) dans la gamme 130-300cm-1, - un pic dans le mode TM (Tangential Mode) dans la gamme 1560-1600cm-1 présentant le type de graphitisation (noté G) du produit analysé, et - un pic dans le mode D (Disorder) dans la gamme 1320-1380 cm-1, relatif la présence de carbone amorphe et défaut cristallin dans les nanotubes de carbone produits ix 1600 4000 TFeLF TMoLF T1LF 1400 3500 3000 Intensity (a.u.) Intensity (a.u.) 1200 TFeHF TMoHF T1HF 1000 800 600 2500 2000 1500 400 1000 200 500 0 100 150 200 250 300 350 1200 Frequency (cm-1) 1300 1400 1500 1600 Frequency (cm-1) Fig 2: Spectres Raman réalisés sur les CNT produits par CVD partir de différents catalyseurs pour de faible nombre d’ondes (gauche) et nombre d’onde élevé (droite) La superposition du spectre TMo, exempt de pics RBM et G, obtenu sur un échantillon après procédé de croissance partir d’un catalyseur constitué de molybdène et d’alumine, confirme l’unique présence de carbone amorphe la surface de l’échantillon traité L’analyse par spectrométrie de photoélectron X (XPS) du catalyseur « standard » constitué de Fe, Al2O3 et Mo après un cycle de température 900°C, révèle notamment (fig 3) : - la présence de fer, de molybdène et d’alumine - les états d’oxydation du fer et du molybdène, qui sont respectivement sous la forme de Fe2O3 et MoO3 Fig 3: Spectre XPS obtenu partir d’un échantillon de catalyseur « standard » ayant subi un cycle thermique 900°C sous hydrogène L’analyse par diffraction des rayons X (DRX) du catalyseur « standard » constitué de Fe, Al2O3 et Mo après un cycle de température 900°C, révèle la formation d’un nouveau x [16] S Iijima and T Ichihashi Single-shell carbon nanotubes of 1-nm diameter Nature 363 (1993), 603 [17] D S Bethune, C-H Kiang, R D Johnson, J R Salem, M S De Vries, G Gorman, R Savoy, J Vazquez R Beyers & C S Yannoni Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls Nature 363, (1993), 605-607 [18] A Thess, R Lee, P Nikolaev, H J Dai, P Petit, J Robert, C H Xu, Y H Lee, S G Kim, A G Rinzler, D T Colbert, G E Scuseria, D Tomanek, J E Fischer and R E Smalley, Crystalline Ropes of Metallic Carbon Nanotubes Science, 273 (1996), 483-487 [19] M J Yacaman, M M Yoshida, L Rendon, Catalytic growth of carbon microtubules with fullerene structure Appl Phys Lett 62 (1993), pages [20] R Saito, G Dresselhaus, M S Dresselhaus Physical Properties of carbon nanotubes Imperial College Press 1998 [21] Michael J O’Connell Carbon nanotubes properties and applications Taylor & Francis, 2006 [22] M M J Treacy T W Ebbesen & J M Gibson Exceptionally high Young's modulus observed for individual carbon nanotubes Nature 381 (1996), 678 - 680 [23] M F Yu, O Lourie, M J Dyer, K Moloni, T F Kelly, R S Ruoff Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load Science 287 (2000), 637 – 640 [24] M Arroyo and T Belytschko Nonlinear Mechanical Response and Rippling of Thick Multiwalled Carbon Nanotubes Phys Rev Lett 91(2003), 215505 [25] B I Yakobson and Ph Avouris Mechanical Properties of Carbon Nanotubes Springer Berlin / Heidelberg, 80 (2001), 287-327 [26] J W Mintmire, B I Dunlap, and C T White Are fullerene tubules metallic? Phys Rev Lett 68 (1992), 631-634 [27] N Hamada, S Sawada, A Oshiyama New one dimentional conductors: Graphitic microtubules Phys Rev Lett 68 (1992), 1579-1581 [28] Ph Avouris, R Martel, H Ikeda, M Hersam, H R Shea, A Rochefort Electrical properties of carbon nanotubes: spectroscopy, localization and electrical breakdown Science and application of nanotube KLUWER ACADEMIC PUBLISHERS 2002 150 [29] C T White, J W Mintmire Density of states reflects diameter in nanotubes Nature, 394 (1998), 29-30 [30] M S Dresselhaus, P C Eklund Phonons in carbon nanotubes Adv Phys 49 (2000), 705-814 [31] S J Tans, M H Devoret, H Dai, A Thess, R E Smalley, L J Geerligs & C Dekker Individual single-wall carbon nanotubes as quantum wires Nature 386 (1997), 474 - 477 [32] M Bockrath, D H Cobden, P L McEuen, N G Chopra, A Zettl, A Thess, R E Smalley Single-Electron Transport in Ropes of Carbon Nanotubes Science 275 (1997), 1922 – 1925 [33] S Frank, Ph Poncharal, Z L Wang, W A de Heer Carbon Nanotube Quantum Resistors Science 280 (1998), 1744 – 1746 [34] J Hone, M Whitney, A Zettle Thermal conductivity of single-walled carbon nanotubes Phys Rev B 59 (1999), 2514-2516 [35] R S Ruoff, D C Lorents Mechanical and thermal properties of carbon nanotubes Carbon, 33 (1995), 925-930 [36] J Hone Carbon nanotubes: thermal properties Dekker Encyclopedia of Nanoscience and Nanotechnology, 2004, 603-610 [37] J C Lasjaunias Thermal properties of carbon nanotubes C R Phys (2003), 10471054 [38] J Hone, M C Llaguno, M J Biercuk, A T Johnson, B Batlogg, Z Benes, J E Fischer Thermal properties of carbon nanotubes and nanotube-base materials App Phys A 74 (2002), 339-343 [39] J Hone, B Batlogg, Z Benes, A T Johnson, J E Fischer Quantized Phonon Spectrum of Single-wall carbon nanotubes Science, 289 (2000), 1730-1733 [40] S Berber, Y K Kwon, D Tomanek Unusually high thermal conductivity of carbon nanotubes Phys Rev Lett 84 (2000), 4613-4616 [41] P Kim, L Shi, A Majumdar, and P L McEuen Thermal Transport Measurements of Individual Multiwalled Nanotubes Phys Rev Lett 87 (2001), 215502 [42] M V Antisari, R M and R Krsmanovic Synthesis of multiwall carbon nanotubes by electric arc discharge in liquid environments Carbon 41 (2003) 2393–2401 151 [43] C.D Scott, S Arepalli, P Nikolaev, R.E Smalley Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process Appl Phys A 72 (2001), 573–580 [44] F Kokai, K Takahashi, K Shimizu, M Yudasaka, and S Iijima Shadow graphic and emission imaging spectroscopic studies of the laser ablation of graphite in an Ar gas atmosphere Appl Phys A 69 (1999), S223–S227 [45] F Kokai, K Takahashi, M Yudasaka Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization Appl Phys A 69 (1999), S229–S234 [46] F Kokai, K Takahashi, M Yudasaka, and S Iijima Growth dynamics of single-wall carbon nanotubes synthesized by laser ablation Microprocesses and Nanotechnology Conference, 2000 International [47] M Endo, K Takeuchi, S Igarashi; K Korbori, M Shiraishi, H W Kroto Production and Structure of Pyrolytic Carbon Nanotubes (PCNTs) J.Phys.Chem.Solids 54 (1993), 18411848 [48] H Dai, A G Rinzler, P Nikolaev, A Thess, D T Colbert and R E Smalley Singlewall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide Chem Phys Let 260 (1996) 471-475 [49] A.-C Dupuis The catalyst in carbon nanotubes - A review Progress in Materials Science 50 (2005) 929–961 [50] M.A Ermakova, D.Y Ermakov, A.L Chuvilin and G.G Kuvshin Decomposition of methane over iron catalysts at the range of moderate temperatures: the influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments J Catal 201 (2001), 183–197 [51] C J Lee, D W Kim, T J Lee, Y C Choi, Y S Park, Y H Lee, W B Choi, N S Lee, G S Park and J M Kim Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition, Chemical Physics Letters 312 (1999), 461–468 [52] K Hernadi, A Fonseca, J B Nagy, D Bernaerts and A A Lucas Fe-catalyzed carbon nanotube formation Carbon 34 (1996), 1249-1257 [53] A Fonseca, K Hernadi, P Piedigrosso, J.-F Colomer, K Mukhopadhyay, R Doome, S Lazarescu, L.P Biro, P Lambin, P.A Thiry, D Bernaerts and J.B Nagy Synthesis of singleand multi-wall carbon nanotubes over supported catalysts Appl Phys A 67 (1998), 11–22 [54] A Peigney, Ch Laurnet, F Dobigeon and A Rousset Carbon nanotubes grown in situ by a novel catalytic method J Mater Res 12 (1997), 613–615 152 [55] B Kitiyanan, W E Alvarez, J H Harwell and D E Resasco Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts Chem Phys Let 317 (2000), 497-503 [56] J-F Colomer, C Stephan, S Lefrant, G Van Tendeloo, I Willems, Z Kónya, A Fonseca, Ch Laurent and J B.Nagy Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method Chemical Physics Letters 317(2000), 83–89 [57] Z.F Ren, Z.P Huang, J.W Xu, J.H Wang, P Bush, M.P Siegal and P.N Provencio Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass Science 282 (1998), 1105 [58] Y Chen, Z.L Wang, J.S Yin, D.J Johson and R.H Prince Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition Chem Phys Lett 272 (1997), 178 [59] Y Chen, S Patel, Y.G Ye, S.T Shaw and L.P Luo Field Emission from Aligned Highdensity Graphitic Nanofibers Appl Phys Lett 73 (1998), 2119 [60] B.O Boskovic, V Stolojan, R.U.A Khan, S Haq and S.R.P Silva Large-area synthesis of carbon nanofibers at room temperature Nature Mater 165-8 (2002), 12618804 [61] D Park, Y.H.Kim and J.K.Lee Synthesis of carbon nanotubes on metallic substrates by a sequential combination of PECVD and thermal CVD Carbon 41 (2003), 1025 [62] S.C Lyu, H.W Kim, S.J Kim, J.W Park and C.J Lee Synthesis and crystallinity of carbon nanotubes produced by a vapor-phase growth method Appl Phys A 79 (2004), 697– 700 [63] M Ge and K Sattler Bundles of carbon nanotubes generated by vapor-phase growth Appl Phys Let-t 64 1994, 710-711 [64] Ch P Deck and K Vecchio Growth mechanism of vapor phase CVD-grown multiwalled carbon nanotubes Carbon 43 (2005) 2608–2617 [65] B.C Satishkumar, A Govindaraj, R Sen, and C.N.R Rao, Single-walled nanotubes by the pyrolysis of acetylene –organometallic mixtures Chem Phys Lett 293 (1998), 47 [66] P Nikolaev, M.J Bronikowski, R.K Bradley, F Rohmund, D.T Colbert, K.A Smith, and R.E Smalley Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide Chem Phys Lett 313 (1999), 91 153 [67] P Chen, H B Zhang, G D Lin, Q Hong, and K R Tsai Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni–MgO catalyst Carbon 35 (1997), 1495 [68] D Venegoni, P Serp, R Feurer, Y Kihn, C Vahlas and P Kalck Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor Carbon 40 (2002) 1799–1807 [69] JP Pinheiro, MC Schouler, P Gadelle Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts I Growth versus catalyst state Carbon 41 (2003), 2949– 59 [70] V Ivanov, JB Nagy JB, P Lambin, A Lucas, XF Zhang, D Bernaerts The study of carbon nanotubules produced by catalytic method Chem Phys Lett 223 (1994), 329–35 [71] H Ago, T Komatsu, S Ohshima, Y Kuriki, and M Yumura Dispersion of metal anoparticles for aligned carbon nanotube arrays Appl Phys Lett 2000,77:79 [72] Y Li, J Liu, Y Wang, ZL Wang Preparation of monodispersed Fe–Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes Chem Mater 13 (2001), 1008–1014 [73] CL Cheung, A Kurtz, H Park, CM Lieber Diameter-controlled synthesis of carbon nanotubes J Phys Chem B 106 (2002), 2429–33 [74] AM Cassel, A Raymakers, J Kong, and H Dai Large scale CVD synthesis of singlewalled carbon nanotubes J Phys Chem B 103 (1999), 6484–92 [75] Y Kobayashi, H Nakashima, D Takagi, and Y Homma CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst Thin Solid Films 464–465 (2004) 286– 289 [76] N R Franklin, Y Li, R J Chen, A Javey and H Dai Patterned growth of singlewalled carbon nanotubes on full 4-inch wafers, Appl Phys Lett 79 (2001), 4571–3 [77] Y Murakami, Y Miyauchi, S Chiashi, and S Maruyama Direct Synthesis of HighQuality Single-Walled Carbon Nanotubes on Silicon and Quartz Substrates Chem Phys Letts 377 (2003), 49-54 [78] J H Hafner, M J Bronikowski, B R Azamian, P Nikolaev, A G Rinzler, D T Colbert, K A Smith and R E Smalley Catalytic growth of single-wall carbon nanotubes from metal particles Chem Phys Lett 296 (1998) 195–202 [79] J Kong, A M Cassell and H Dai Chemical vapor deposition of methane for singlewalled carbon nanotubes Chem Phys Lett 292 (1998), 567–574 154 [80] M Su, B Zheng and J Liu A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity Chem Phys Lett 322 (2000), 321–327 [81] H.C Choi, W Kim, D Wang and H Dai Delivery of Catalytic Metal Species onto Surfaces with Dendrimer Carriers for the Synthesis of Carbon Nanotubes with Narrow Diameter Distribution J Phys Chem B 106 (2002), 12361–12366 [82] A R Harutyunyan, B K Pradhan, U J Kim, G Chen and P E Eklund CVD Synthesis of Single Wall Carbon Nanotubes under Soft Conditions Nano Lett (2002), 525–530 [83] G L Hornyak, L Grigorian, A C Dillon, A Parilla, K.M Jones and M.J Heben A Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall Carbon Nanotubes J Phys Chem B 106 (2002), 2821–2826 [84] M Su, Y Li, B Maynor, A Buldum, J.P Lu and J Liu Lattice-oriented growth of single-walled carbon nanotubes J Phys Chem B 104 (2000), 6505–6513 [85] H T Soh, C.F Quate, C.M Marcus, J Kong and H Dai Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes Appl Phys Lett 75 (1999), 627–636 [86] H Hongo, M Yudasaka, T Ichihashi, F Nihey and S Iijima Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates Chem Phys Lett 361 (2002), 349–354 [87] A M Cassell, N F Franklin, T W Tombler, E M Chan, J Han and H Dai Directed Growth of Free-Standing Single-Walled Carbon Nanotubes J Am Chem Soc 121 (1999), 7975–7981 [88] N R Franklin and H Dai An Enhanced CVD Approach to Extensive Nanotube Networks with Directionality Adv Mater 12 (2000), 890–893 [89] Q H Yang, S Bai, T Fournier, F Li, G Wang, H M Cheng and J B Bai Direct growth of macroscopic fibers composed of large diameter SWNTs by CVD Chem Phys Lett 370 (2003) 274–283 [90] A Fonseca, K Hernadi B.Nagy, D Bernaerts, and A.A Lucas Optimization of catalytic production and purification of buckytubes J Mol Catal A: Chemical 107 (1996) 159-168 [91] Ch Klinke, J-M Bonard, K Kern Comparative study of the catalytic growth of patterned carbon nanotube films Surf Science 492 (2001) 195 155 [92] E Flahaut, A Peigney, Ch Laurent and A Rousset Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes J Mater Chem., 10 (2000), 249±252 [93] E Flahaut, R Bacsa, A Peigney and Ch Laurent Gram-scale CCVD synthesis of double-walled carbon nanotubes Chem Commun., 2003, 1442–1443 [94] M Endo, H Muramatsu, T Hayashi, Y A Kim, M Terrones, and M S Dresselhaus Nanotechnology: 'Buckypaper' from coaxial nanotubes NATURE, 433 (2005) [95] S Maruyama, Y Murakami, Y Shibuta, Y Miyauchi, and S Chiashi Generation of Single-Walled Carbon Nanotubes from Alcohol and Generation Mechanism by Molecular Dynamics Simulations Journal of Nanoscience and Nanotechnology, (2003), 1-8 [96] Australian Journal of Physics, CSIRO Publishing, 50 (1997) [97] Degussa, Technical Bulletin N56 [98] Paul H Emmett Catalysis Volume 1: Fundamental principles New York: Reinhold, 1954 400 p [99] Gianluca Paglia Determine of the structure of γ-alumina using empirical and first principles calculations combined with supporting experiments Thesis 2004 [100] C Morterra and G Magnacca A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species Catalysis Today 27 (1996) 497-532 [101] Synthesis of carbon nanotubes with the Easy Tube System First Nano, Inc [102] P G Goodhew, J Humphreys, R Beanland Electron microscopy and Analysis Taylor & Francis, 2001 [103] W Rong, A E Pelling, A Ryan, J K Gimzewski, and S K Friedlander Complementary TEM and AFM Force Spectroscopy to Characterize the Nanomechanical Properties of Nanoparticle Chain Aggregates Nano Letters, 4(2004), 2287 [104] T Kuzumaki, S Kitakata, K Enomoto, T Yasuhara, N Ohtake, and Y Mitsuda Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes Carbon, 42(2004), 2329 [105] A.R Clarke and C.N Eberhardt Microscopy techniques for materials science, Woodhead Publishing, 2000 156 [106] M.S Dresselhaus, G Dresselhaus, R Saito, and A Jorio Raman spectroscopy of carbon nanotubes Physics Reports 409 (2005) 47–99 [107] R L McCreery, Raman Spectroscopy for Chemical Analysis, A John Wiley & Sons, Inc., Publication, 2000 [108] G Turrell and J Corset Raman spectroscopy: development and applications Academic Press, 1996 [109] J Heo and M Bockrath Local electronic structure of single-walled carbon nanotubes from electrostatic force microscopy Nano Letters, (2005), 853 [110] J R Connolly Introduction to X-ray Powder Diffraction, Spring 2007 [111] Ph Knauth, J Schoonman Nanostructured materials: Selected synthesis methods, properties and application Kluwer Academic Publishers, 2004 [112] J A Schwarza and C I Contescu Surface of nanoparticles and porous materials, Copyright by Marcel Dekker 1999 [113] E Baumgarten and U Kirchhausen-Dusing Sorption of metal ions on alumina J Colloid Interf Sci 194 (1997), 1–9 [114] G.M.S El Shafei, N.A Moussa and C Philip Association of molybdenum ionic species with alumina surface J Colloid Interf Sci 228 (2000), 105–113 [115] K Nagashima and F.D Blum Proton adsorption onto alumina: Extension of multisite complexation theory J Colloid Interf Sci 217 (1999), 28–36 [116] A.K Bajpai, M Rajpoot and D.D Mishra Studies on the adsorption of sulfapyridine at the solution––alumina interface J Colloid Interf Sci 187 (1997), 96–104 [117] K.M Hong, M S Kim and J G Chung Adsorption characteristics of Ni(II) on γ-type alumina particles and its determination of overall adsorption rate by a differential bed reactor Chemosphere, 54 (2004), 927-934 [118] C.P Huang, and E.A Rhoads Adsorption of Zn(II) onto hydrous aluminosilicates J Colloid Interface Sci 131 (1989), 289 [119] J.L Paulhiac and O Clause Surface coprecipitation of cobalt(II), nickel(II), or zinc(II) with aluminum(III) ions during impregnation of gamma.-alumina at neutral pH J Am Chem Soc.115 (1993), 11602-11603 157 [120] J B d'Espinose de la Caillerie, M Kermarec and O Clause Impregnation of gammaalumina with Ni(II) or Co(II) ions at Neutral pH: hydrotalcite-type coprecipitate formation and characterization J Am Chem Soc.117 (1995), 11471-11481 [121] G A Tsigdinos, H Y Chen and B J Streusand Molybdate solutions for catalyst Preparation Stability, adsorption properties and Characterization Ind Eng Chem Res Dev 20 (1981), 619-623 [122] Y.A Kim, H Muramatsu, T Hayashi, M Endo, M Terrones, M.S Dresselhaus Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper Chemical Vapor Deposition, 12 (2006), 327 [123] E Lamouroux, Ph Serp, Y Kihn, Ph Kalck Indentification of key parameters for the selective growth of single or double wall carbon nanotubes on the Fe/Mo/Al2O3 CVD catalyst Applied Catalysis A 323(2007) 162-173 [124] A Peigney, Ch Laurent and A Rousset Influence of the composition of a H2-CH4 gas mixture on the catalytic synthesis of carbon nanotubes – Fe/Fe3C-Al2O3 nanocomposite powders J Mater Chem (1999), 1167-1177 [125] A Peigney, Ch Laurent, O Dumortier and A Rousset Carbon nanotubes – FeAlumina nanocomposite Part I: influence of the Fe content on the synthesis of powders Journal of the Euro Ceramic Society 18 (1998) 1995-2004 [126] A Peigney, Ch Laurent, O Dumortier and A Rousset Carbon nanotubes – FeAlumina nanocomposite Part II: influence of the Fe content on the synthesis of powders Journal of the Euro Ceramic Society 18 (1998) 2005-2013 [127] A Jorio, M A Pimenta, A G Souza Filho, R Saito, G Dresselhaus and M S Dresselhaus Characterizing carbon nanotube samples with resonance Raman scattering New J Phys (2003) 139 [128] http://www.photon.t.u-tokyo.ac.jp/*maruyama/kataura/kataura.html [129] H Kataura, Y Kumazawa, Y Maniwa, I Umezu, S Suzuki, Y Ohtsuka and Y Achiba Optical properties of single-wall carbon nanotubes Synth Met 103 (1999), 2555 [130] G.S Duesberg, W.J Blau, H.J Byrne, J Muster, M Burghard, S Roth Experimental observation of individual single-wall nanotube species by Raman microscopy Chemical Physics Letters 310 (1999), 8–14 158 [131] J Cambedouzou, J.-L Sauvajol, A Rahmani, E Flahaut, A Peigney and C Laurent Raman spectroscopy of iodine-doped double-walled carbon nanotubes Phys Rev B 69 (2004), 235422 [132] L Ci, Z Zhou, X Yan, D Liu, H Yuan, L Song, Y Gao, J Wang, L Liu, W Zhou, G Wang and S Xie Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method J Appl Phys 94 (2003), 5715-5719 [133] T Hertel, A Hagen, V Talalaev, K Arnold, F Hennrich, M Kappes, S Rosenthal, J McBride, H Ulbricht and E Flahaut Spectroscopy of single- and double-wall carbon nanotubes in different environments Nano Lett (2005) 511-514 [134] S Ossawald, E Flahaut and Y Gogotsi In situ Raman spectroscopy study of oxidation of double- and single-wall carbon nanotubes Chem Mater 18 (2006) 1525-1533 [135] A Jorio, A G Souza Filho, G Dresselhaus, M S Dresselhaus, A K Swan, M S Unlu, B B Goldberg, M A Pimenta, J H Hafner, C M Lieber and R Saito G-band resonant Raman study of 62 isolated single-wall carbon nanotubes Phys Rev B 65 (2002), 155412 [136] M.S Dresselhaus, G Dresselhaus, A Jorio, A.G Souza filho, R Saito Raman spectroscopy on isolated single wall carbon nanotubes Carbon 40 (2002) 2043-2061 [137] R Saito, A Jorio, J H Hafner, C M Lieber, M Hunter, T McClure, G Dresselhaus and M S Dresselhaus Chirality-dependent G-band Raman intensity of carbon nanotubes Phys Rev B 64 (2001), 085312 [138] N Kamaraju, S Balaji, D V S Muthu, S Mohan and A K Sood Probing isolated bundles of single walled carbon nanotubes using bilayer interference enhanced Raman scattering Chem Phys Lett 423 (2006), 266-269 [139] A Jorio, G Dresselhaus, M S Dresselhaus, M Souza, M S Dantas, M A Pimenta, A M rap, C Liu and H M Cheng Polarized Raman study of single–wall semiconducting carbon nanotubes Phys Rev Lett 85 (2000), 2617-2620 [140] S Rols, A Righi, L Alvarez, E Angllaret, R Almairac, C Journet, P Bernier, J L Sauvajol, A M Benito, W K Maser, E Munoz, M T Martinez, G F de la Fuente, A Girard and J C Ameline Diameter distribution of single wall carbon nanotubes in nanobundles Eur Phys J B 18 (2000), 201-205 159 [141] S D M Brown, A Jorio, P Corio, M S Dresselhaus, G Dresselhaus, R Saito and K Kneipp Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes Phys Rev B 63 (2001), 155414 [142] A Kasuya, Y Sasaki, Y Saito, K Tohji and Nishima Evidence for size-dependent discrete dispersions in single-wall nanotubes Phys Rev Lett 78 (1997), 4434-4437 [143] H Telg, J Maultzsch, S Reich, F Hennrich and C Thomsen Raman excitation profiles for the (n2, n2) assignment in carbon nanotubes [144] P C Eklund, J M Holden and R A Jishi Vibrational modes of carbon nanotubes; spectroscopy and theory Carbon 33 (1995), 959-972 [145] Y Homma, Y Kobayashi, and T Ogino Role of Transition Metal Catalysts in SingleWalled Carbon Nanotube Growth in Chemical Vapor Deposition J Phys Chem B, 107 (2003), 12161 -12164 [146] O A Louchev, Th Laude, Y Sato, and H Kanda Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition J Chem Phys 118, (2003), 7622 [147] H Kanzow, C Lenski, and A Ding Single-wall carbon nanotube diameter distributions calculated from experimental parameters Phys Rev B 63, (2001), 125402 [148] J Gavillet, A Loiseau, C Journet, F Willaime, F Ducastelle, J.-Ch Charlier Rootgrowth mechanism for single-wall carbon nanotubes Phys Rev Lett 87 (2001), 275504 [149] A Loiseau, J Gavillet, F Ducastelle, J Thibault, O Stephan P Bernier, S Thair Nucleation and growth of SWNT: TEM studies of the role of the catalyst C.R Physique 4(2003) 975-991 [150] Y Zhang, Y Li, W Kim and H Dai Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles Appl Phys A 74 (2002), 325328 [151] N Zhao, C He, Z Jiang, J Li and Y Li Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapour deposition Mater Lett 60 (2006), 159-163 [152] X Chen, R Wang, J Xu and D Yu TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot filament chemical vapor deposition Micron 35 (2004) 455-460 160 [153] H Kanzow and A Ding Formation mechanism of single-wall carbon nanotubes on liquid-metal particles Phys Rev B 60 (1999), 11180-11186 [154] F Beuneu Nucleation and growth of single wall carbon nanotubes Solid State Com 136 (2005), 462-465 [155] Y J Yoon and H K Baik Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition Diamond and Related Materials 10 (2001), 1214-1217 [156] P J F Harris Solid state growth mechanisms for carbon nanotubes Carbon 45 (2007), 229-239 [157] V Vinciguerra, F Bounocore, G Panzera and L Occhipinti Growth mechanisms in chemical vapor deposited carbon nanotubes Nanotechnology 14 (2003), 655-660 [158] C F Cornwell and L T Wille Proposed growth mechanism of single-walled carbon nanotubes Chem, Phys Lett 278 (1997), 262-266 [159] A Peigney, P Coquay, E Flahaut, R E Vandenberghe, E D Grave and C Laurent A study of the formation of single- and double-walled carbon nanotubes by a CVD method J Phys Chem B 105 (2001), 9699-9710 [160] A V Krestinin, M B Kistov and A G Ryabenko On the mechanism of single wall carbon nanotube nucleation in the arc and laser process: why bimetallic catalysts have high efficiency 107-113 [161] J.M Moon, K H An, Y H Lee, Y S Park, D J Bae and G-S Park High-yield purification process of single-walled carbon nanotubes J Phys Chem B 105 (2001), 56775681 [162] S Bandow, A M Rao, K A Williams, A Thess, R E Smalley and P C Eklund Purification of single-wall carbon nanotubes by microfiltration J Phys Chem B 101 (1997), 8839-8842 [163] K B Shelimov, R O Esenaliev, A G Rinzler, C B Huffman and R E Smalley Purification of single-wall carbon nanotubes by untrasonically assisted filtration Chem Phys Letts 282 (1998), 429-434 [164] G S Duesberg, M Burghard, J Muster, G Philipp and S Roth Separation of carbon nanotubes by size exclusion chromatography Chem Commun 1998, 435-436 161 [165] I W Chiang, B E Brinson, R E Smalley, J L Margrave and R.H Hauge Purification and characterization of single wall carbon nanotubes J Phys Chem B 105 (2001), 1157-1161 [166] A.G Rinzler, J Liu, H Dai, P Nikolaev, C.B Huffman, F J Rodriguez-Macias, P.J Boul, A H Lu, D Heymann, D T Colbert, R S Lee, J E Fischer, A M Rao, P C Ekund, R E Smalley Large-scale purification of single-wall carbon nanotubes: process, product and characterization Appl Phys A 67 (1998), 29-37 [167] D Nepal, D S Kim, K E Geckeler A facile and rapid purification method for singlewalled carbon nanotubes Carbon 43 (2005), 660-662 [168] L Vaccarini, C Goze, R Aznar, V Micholet, C Journet and P Bernier Purification procedure of carbon nanotubes Synthetic Metals 103 (1999), 2492-2493 [169] Z Shi, Y Lian, F Liao, X Zhou, Z Gu, Y Zhang and S Iijima Purification of singlewall carbon nanotubes Solid State Communications 112 (1999), 35-37 [170] F Li, H M Cheng, Y.T Xing, P.H Tan, G Su Purification of single-walled carbon nanotubes synthesized by the catalytic decomposition of hydrocarbons Carbon 38 (2000) 2041-2045 [171] J Li and Y Zhang A simple purification for single-walled carbon nanotubes Physica E 28 (2005), 309-312 [172] A.C Dillon, T Gennett, K.M Jones, J.L.Alleman, P.A Parilla and M J Heben A simple and complete purification of single-walled carbon nanotube materials Adv Mater 11 (1999), 1354-1358 [173] K L Strong, D P Anderson, K Lafdi and J N Kuhn Purification process for singlewall carbon nanotubes Carbon 41 (2003) 1477-1488 [174] S Gajewski, H-E Maneck, U Knoll, D Neubert, I Dorfel, R Mach, B StrauB, J F Friedrich Purification of single walled carbon nanotubes by thermal gas phase oxidation Diamond and Related Materials 12 (2003) 816-820 [175] X Song and Y Fang A technique of purification process of single-walled carbon nanotubes with air Spectrochimica Acta Part A (2006), 1-4 [176] R Engel-Herbert, H Pforte and T Hesjedal CVD synthesis and purification of singlewalled carbon nanotubes using silica-supported metal catalyst Mat Lett (2006), 1-5 162 [177] S Okubo, T Sekine, S Suzuki, Y Achiba, K Tsukagoshi, Y Aoyagi and H Hiromichi Purification of single-wall carbon nanotubes synthesized from alcohol by catalytic chemical vapor deposition Jpn J Appl Phys 43 (2004)396-398 [178] Y Wang, L Gao, J Sun, Y Liu, S Zheng, H Kajiura, Y Li and K Noda An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes Chem Phys Lett 432 (2006), 205-208 [179] H Dai, J Kong, Ch Zhou, N Franklin, T Tombler, A Cassell, S Fan and M Chapline Controlled chemical routes to nanotube Architectures, Physics, and Devices J Phys Chem B 103 (1999), 11246-11255 [180] H B Peng, T G Ristroph, G M Schurmann, G M King and J Moon Patterned growth of single –walled carbon nanotubes arrays from a vapor-deposited Fe catalyst Appl Phys Lett 83 (2003), 4238-4240 [181] Y Homma, Y Kobayashi, T Ogino, and T Yamashita Growth of suspended carbon nanotubes networks on 100-nm-scale silicon pillars Appl Phys Lett 81 (2002), 2261-2263 [182] I Williems, Z Konya, J.F Colomer, G Van Tendeloo, N Nagaraju, A.Fonseca and J.B Nagy Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons Chem Phys Lett 317 (2000), 71 [183] D Takagi, Y Homma, H Hibino, S Suzuki and Y Kobayashi Single-walled carbon nanotube growth from highly activated metal nanoparticles Nano Lett (2006), 1642-2645 [184] W Zhou, Z Han, J Wang, Y Zhang, Zh Jin, X Sun, Y Zhang, Ch Yan and Y Li Copper catalyzing growth of single-walled carbon nanotubes on substrates Nano Lett (2006), 2987-2990 163 Résumé Ces travaux de thèse portent sur la mise en œuvre de méthode CVD pour l’élaboration de nanotubes de carbone mono paroi (SWCNT pour Single Wall Carbon Nanotubes en anglais dans le texte) Le but de cette recherche est d’une part, de comprendre le rôle de chacun des constituants du catalyseur permettant la croissance des SWCNT Le mécanisme de croissance des SWCNT sera déduit de ces explications D’autre part, une étude paramétrique du procédé de croissance des SWCNT portant sur l’évolution des conditions exploratoires telles que la température de synthèse, le rapport des gaz réactifs (Hydrocarbure/Hydrogène) et la durée du procédé, a permis de déterminer les conditions optimisées de CVD assistée par catalyseur , pour l’élaboration de SWCNT Les propriétés des SWCNT ont également été explorées en vue de leur utilisation potentielle dans des composants électroniques Après un premier chapitre d’introduction générale, le second chapitre fait l’objet d’une étude bibliographique portant principalement sur les différents modes de synthèse des nanotubes de carbone et de préparation des catalyseurs pour la technique CVD assistée par catalyseur Le troisième chapitre présente l’étude de la formulation chimique du catalyseur exploité pour la croissance des SWCNT et le rôle de chacun de ces constituants Les propriétés physico-chimiques des SWCNT produits et le mécanisme de croissance de SWCNT sont exposées dans le quatrième chapitre C’est également dans cette partie qu’une méthode de purification des SWCNT produits est enfin proposée en vue de l’exploitation de ces SWCNT dans des applications électroniques Le cinquième chapitre porte d’une part, sur le transfert de procédé d’un réacteur de laboratoire (EASYTUBE) dans un réacteur industriel compatible avec des tailles de wafers de 200mm (CENTURA) et d’autre part, sur l’étude de la localisation du catalyseur et donc, des nanotubes, pour la fabrication de composants électroniques Ce manuscrit est conclu par une conclusion générale et les perspectives donner ces travaux de thèse Mots-Clés : Catalyse, Promoteur, Activateur, Nanotube de carbone, Dépôt chimique partir d’une phase vapeur (CVD), nanoparticules Abstract This thesis is focussed on the chemical vapour deposition method to produce single wall carbon nanotubes The purposes of this research are to understand exactly the role of the various chemical components presented in catalyst for the producing of SWNTs, to control process conditions, to develop synthesis techniques for SWNTs on patterned catalyst that allow the integration for electronic devices and to transfer process to industrial CVD instrument Experimental investigations are presented which allow getting a comprehensive picture of the powder catalyst growth of carbon nanotubes film The role of each element in catalyst and the optimal amount of them are illustrated Based on the electron microscopy, Raman spectroscopy, X-Ray diffraction, X-Ray photoelectron spectroscopy and microbalance results, a new component, (FexAly)(Al2-yFe1-x)O4, is detected Subsequent studies of the properties of the produced carbon nanotubes grown by CVD reveal significant features of the product Based on those experimental results, a mechanism for the growth of carbon nanotubes on the powder catalyst is suggested Furthermore, a purification method of as-grown SWCNT has been developed that provides for the removal of catalyst nanoparticles and impurity carbon Complementary, by varying global growth parameters such as synthesis temperature, flow ratio of carbonaceous/hydrogen gas and growth time, this study attempts to control the process condition for the synthesis high yield of SWNTs Furthermore, we present the results of the transfer of the synthesis process of SWNTs from the EASYTUBE system (small tubular CVD reactor) to industrial CENTURA tool (compatible wafer 200 mm) and the patterned growth of SWNTs for electrical devices Keywords : Catalyst, Promoter, Active Particle, Carbon Nanotube, Chemical Vapor Deposition, Nanoparticles 164 ... méthodes de synthèse et la compréhension des mécanismes de croissance des nanotubes ne sont pas complètement aboutis alors qu’ils sont les clés de la réussite d’un contrôle des propriétés des nanotubes. .. du procédé de croissance des SWCNT d’un réacteur tubulaire de laboratoire un réacteur de type industriel, permettant de traiter des wafers de 200mm, une xviii étude des paramètres de croissance. .. différents modes de synthèse des nanotubes de carbone et de préparation des catalyseurs pour la technique CVD assistée par catalyseur Le troisième chapitre présente l’étude de la formulation

Ngày đăng: 18/06/2021, 10:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w