Nếu học sinh làm bài theo cách khác hướng dẫn chấm mà đúng thì chấm và cho điểm tối đa của bài đó.. Đối với bài hình học câu 4, nếu học sinh vẽ sai hình hoặc không vẽ hình thì không được[r]
(1)ĐỀ KIỂM TRA CHẤT LƯỢNG GIỮA HỌC KỲ I Năm học 2012- 2013 MÔN: TOÁN Thời gian làm bài: 90 phút I Trắc nghiệm (2 điểm) Hãy chọn đáp án đúng cho câu sau Câu 1: Căn bậc hai số học 16 là : A và – B Câu 2: Giá trị biểu thức A Câu 3: Tính ( 19) C 256 7 D 256 và – 256 : B C D ta kết là : A -19 B 361 C -361 D 19 Câu 4: Tam giác ABC vuông A, có AC = cm; BC = 12 cm Số đo góc ACB bằng: A 300 B 450 C 600 D 750 II Tự luận (8 điểm) Câu ( điểm): Rút gọn các biểu thức: a) 144 49 25 b) 48 75 3 Trục thức mẫu: Câu (1,5 điểm) 2x xác định 9x x 12 Tìm điều kiện x để Giải phương trình: Câu 3(1,5 điểm) 3 x x x x với x và x 1 Cho biểu thức: Rút gọn Q Tìm x để Q = -1 Câu (2,5 điểm) Cho tam giác ABC có AB = 15 cm, AC =20 cm, BC = 25 cm a Chứng minh tam giác ABC vuông A Tính độ dài đường cao AH b Đường phân giác góc A cắt BC D Từ D kẻ DE và DF vuông góc với AB và AC Tứ giác AEDF là hình gì? Vì sao? 2 2 c Chứng minh rằng: EF BC EC BF Câu (0,5 điểm) Cho các số dương x, y, z thỏa mãn điều kiện xy + yz +zx = Tính giá trị biểu thức: Q x x y 1 z y 1 z 1 x z 1 x 1 y A x 1 x2 2 y2 2 z2 (2) HƯỚNG DẪN CHẤM THI GIỮA HỌC KÌ I MÔN THI: TOÁN LỚP NĂM HỌC 2012 – 2013 Lưu ý chấm bài: Dưới đây là sơ lược các bước giải và thang điểm Bài giải học sinh cần chặt chẽ, hợp logic toán học Nếu học sinh làm bài theo cách khác hướng dẫn chấm mà đúng thì chấm và cho điểm tối đa bài đó Đối với bài hình học (câu 4), học sinh vẽ sai hình không vẽ hình thì không tính điểm I.Trắc nghiệm: Mỗi câu trả lời đúng 0,5 điểm Câu Đáp án B A D C II Tự luận: Câu Câu 1 (1,5 điểm) (0,5 điểm) Hướng dẫn giải a) 144 49 25 12 12 10 Điểm (2 điểm) 52 0,25 0,5 b) 48 75 2 16.3 (2 5) 25.3 2 0,25 2( 5) ( 5)( 5) 0,25 2( 5) 3 0,25 Câu (1,5 điểm) x xác định x 0 x x (0,75điểm Vậy với x thì x xác định ) (0,75điểm ) 0,5 x x 12 9.( x 1) x 12 x x 12 0,5 0,25 0,25 0,25 0,25 (1,5 điểm) x 1 12 x 3 x 1 9 x 8 Vậy phương trình có nghiệm x 8 Câu Ta có: x 1 x x 1 x x x 3 x 3 x Q x x x 1 x x 1 x 1 x x 1 (1 điểm) x x x x x 1 Q Vậy x 1 x x3 1 x 1 3 x với x 0; x 1 x 3( x 1) 3 1 x 1 x 1 x 0,25 0,5 0,25 (3) 3 x 3 1 x x 2 x 4 Q (0,5điểm) 0,25 Vậy với x 4 thì Q 0,25 Câu (2,5 điểm) 2 2 Ta có: AB AC 15 20 625 0,25 BC 252 625 (1 điểm) 2 Suy ra: AB AC BC ABC vuông A 0,25 Áp dụng hệ thức lượng tam giác vuông: AH.BC = AB.AC AB.AC 15.20 AH 12 BC 25 Ta có: BAC 90 (CMT) (1 điểm) 0,5 (1) 0,25 (2) 0,25 HF AC (gt) AFH 900 (3) AD là đường phân giác góc BAC 0,25 Mặt : HE AB (gt) AEH 90 Từ (1), (2) và (3) => Tứ giác AEDF là hình vuông ( đpcm ) 0,25 Áp dụng định lí Pytago vào các tam giác vuông: AEF, ABC ta được: (0,5 điểm) EF2 BC2 AE AF2 AB2 AC2 (1) Áp dụng định lí Pytago vào các tam giác vuông: AEC, ABF ta được: EC2 BF2 AE AC2 AB2 AF2 0,25 (2) 2 2 Từ (1) và (2) suy EF BC EC BF 0,25 Câu (0,5 điểm) Ta có: x x xy yz zx x y x z Tương tự: Do đó: y y x y z , z z x z y A x y z y x z z y x 0,25 0,25 (4) x y z y x z z y x 2 xy yz zx 2 Tổng điểm 10 (5)