1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Sáng kiến kinh nghiệm) một số biện pháp nhằm rèn kỹ năng giải toán chia hết cho học sinh lớp 6

21 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 401,13 KB

Nội dung

“Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” A.MỞ ĐẦU I/ LÍ DO CHỌN ĐỀ TÀI Là học sinh tiếp cận với mơn tốn tất yếu phải hình thành kỹ giải toán kiến thức định Có kỹ giải tốn nghĩa khẳng định vận dụng lý thuyết vào tập cách có tư duy, sáng tạo Đối với chương trình tốn viết SGK lượng kiến thức không nhiều tập áp dụng kiến thức phong phú đa dạng có dạng tốn chia hết Thực tế cho thấy,dạng toán chia hết bắt gặp xuyên suốt chương trình tốn THCS Chính giáo viên cần rèn cho em kỹ giải dạng tốn kiến thức cịn tảng dạng tốn chia hết chƣơng trình tốn Trong q trình giảng dạy tơi nhận thấy học sinh cịn yếu dạng tốn chí khơng biết giải biết giải lập luận chưa chặt chẽ Nếu lớp em không làm quen với lập luận chặt chẽ lên lớp em cảm thấy kiến thức áp đặt,từ khơng tạo tị mị, hứng thú mơn học Vì cần có giải pháp lâu dài rèn em biết giải toán từ phép biến đổi Có tốn học thực lơi em vào dòng say mê chiếm lĩnh tri thức, tốn lại mơn chủ đạo Chính lẻ tơi nghiên cứu đề tài “ Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” II/ ĐỐI TƢỢNG NGHIÊN CỨU “ Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” III/ PHẠM VI NGHIÊN CỨU: Không gian: Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp cụ thể dành cho đối tượng lớp 6A2, 6A4 Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Thời gian: chia làm giai đoạn Giai đoạn 1: Nghiên cứu làm kết qua khảo sát chất lượng đầu năm Giai đoạn 2: Đưa biện pháp rèn kỹ giải toán chia hết qua kết khảo sát học kì Giai đoạn 3: Áp dụng đề tài sau học chuẩn bị thi học kì IV/ PHƢƠNG PHÁP NGHIÊN CỨU: - Đọc tài liệu SGK, tài liệu mạng - Đàm thoại trực tiếp - Nghiên cứu tổng kết kinh nghiệm giáo dục - Nghiên cứu sản phẩm hoạt động sư phạm B.NỘI DUNG I/ CƠ SỞ LÝ LUẬN Chúng ta dạy học theo đổi dạy học theo chuẩn kiến thức kỹ , gọi chuẩn – cần phải nắm vững Rèn kỹ giải toán chia hết chuẩn mà học sinh cần phải nắm Hệ thống tập thể dạng tốn chia hết có vai trị quan trọng giúp cho học sinh phát triển khả tư duy, khả vân dụng kiến thức cách linh hoạt vào giải tốn, trình bày lời giải xác logic Đó kỹ cần thiết học sinh cịn ngơi ghế nhà trường Có phù hợp với cải tiến dạy học phát huy hết tính tích cực, tƣ sáng tạo học sinh trƣờng học II/ CƠ SỞ THỰC TIỂN Trong q trình giảng dạy tơi thấy đa phần học sinh chưa có kỹ giải tốn “chia hết” em chưa biết tốn cần áp dụng phương pháp để giải cho kết nhất, nhanh đơn giản Vì Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” để nâng cao kỹ giải tốn “chia hết” em phải nắm dạng toán, phương pháp gỉải, kiến thức cụ thể hoá bài, chương Có thể nói dạng tốn “chia hết” ln dạng tốn khó học sinh khơng học sinh cảm thấy sợ học dạng toán Là giáo viên dạy tốn tơi mong em chinh phục khơng chút ngần ngại gặp dạng tốn Nhằm giúp em phát triển tư suy luận óc phán đốn, kỹ trình bày linh hoạt Hệ thống tập tơi đưa từ dễ đến khó, bên cạnh cịn có tập nâng cao dành cho học sinh giỏi lồng vào tiết luyện tập Lượng tập tương đối nhiều nên em tự học, tự chiếm lĩnh tri thức thông qua hệ thống tập áp dụng này, điều giúp em hứng thú học tập nhiều Hiện tại, học sinh lớp 6A2, 6A4 dạy năm ngở ngàn dạng toán chia hết, em cảm thấy lạ ngại làm dạng tốn nghĩ khó Vì thế, thiết yếu phải rèn kỹ giải toán chia hết lớp để làm hành trang kiến thức vững cho em gặp lại dạng toán lớp III/ NỘI DUNG VẤN ĐỀ 1.Vấn đề đặt ra: Hệ thống hóa lý thuyết chia hết tập vận dụng tƣơng ứng, từ dạng đến tương đối khó Trong trình giải nhiều dạng tập hình thành khắc sâu cho em kỹ giải dạng toán chia hết.Giáo viên nêu dấu hiệu chia hết phương pháp chứng minh chia hết SGK ,ngoài bổ sung thêm số phương pháp cần thiết để vận dụng vào nhiều dạng tập khác Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Giải vấn đề 2.1 LÝ THUẾT: a) Tính chất chia hết tổng, hiệu, mơt tích -Nếu am bm a + b  m , a – b - Nếu am a  m (n - Nếu am bn n m , a b  m N ) a b  m n đặc biệt a b n a b n b) SKG tốn giới thiệu dấu hiệu chia hết cho 2, 3, 5, giáo viên cần bổ sung thêm dấu hiệu chia hết cho 4, 6, 8, 25 125 Mục đích đưa thêm dấu hiệu để vận dụng vào tập học sinh không bị lúng túng lên lớp (7, 8, 9) Chia hết cho 4(hoặc 25) 8(hoặc 125) 10 11 Dấu hiệu Số có chữ số tận chữ số chẵn Số có tổng chữ số chia hết cho Số chia hết cho 4(hoặc 25) hai chữ số tận lập thành số chia hết cho 4(hoặc 25) Số có chữ số tận Là số đồng thời chia hết cho Số chia hết cho 8(hoặc 125) ba chữ số tận lập thành số chia hết cho 8(hoặc 125) Số có tổng chữ số chia hết cho Số có chữ số tận Số chia hết cho 11 hiệu tổng chữ số đứng vị trí lẻ tổng chữ số đứng vị trí chẵn(kể từ trái sang phải) chia hết cho 11 c) Nguyên tắc Đirichlê: Ngay từ lớp giáo viên giới thiệu sơ lược nguyên tắc Đirichlê có nội dung phát biểu dạng toán: “Nếu nhốt n thỏ vào m lồng (m> n) có lồng nhốt khơng hai thỏ” d) Phƣơng pháp chứng minh quy nạp: Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Muốn khẳng định An với n= 1,2,3,… ta chứng minh sau: - khẳng định A1 - Giả sử Ak với k>=1 ta suy khẳng định Ak+1 - Kết luận An với n=1,2,3… Thực ra, dạy tập áp dụng phương pháp giáo viên không cần phải nói cầu kỳ, trừu tượng khó hiểu, mà cần xét trường hợp cho học sinh dễ hiểu không thiết phải dùng từ ta áp dụng phương pháp chứng minh quy nạp e) Phƣơng pháp chứng minh phản chứng: Muốn chứng minh khẳng định P có bước: - Giả sử P sai - Nhờ tính chất biết từ giả sử sai suy điều vơ lí - Vậy điều giả sử sai , chứng tỏ P f) Để chứng minh a chia hết cho b ta biểu diễn b = m.n Nếu (m,n) = tìm cách chứng minh a chia hết cho m, a chia hết cho n a chia hết cho m.n hay a chia hết cho b Nếu (m,n) khác ta biểu diễn a = a1.a2 chứng minh a1 chia hết cho m, a2 chia hết cho n ngược lại a1.a2 chia hết cho m.n hay a chia hết cho b 2.2CÁC DẠNG TOÁN: Trong phần tơi đưa dạng tốn từ đến mở rộng hơn, Có rèn hình thàng kỹ giải tốn chia hết cho em cách có tảng a) Dạng 1: Dạng toán điền vào * để đƣợc số chia hết cho số Bài toán 1: Điền vào * để số 35* a) chia hết cho b) chia hết cho Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” c) chia hết cho Đây dạng toán gặp dạng tốn đương nhiên giáo viên phải cho học sinh tái lại dấu hiệu chia hết cho 2, cho số chia hết cho a) 35 *2  b) 35 *2 * c) 35 *2 * { ; ; ; ; 8} 0; * Bài toán 2: Điền vào * để a) * 53 b) * 29 Tương tự tốn học sinh vận dụng trực tiếp dấu hiệu chia hết cho cho để làm a) * 53 * b) * 29 *3 1; ; 29 * *9 * 0; b) Dạng 2: Tìm chữ số chƣa biết số: Bài tốn 3: Tìm chữ số a, b cho a 3b chia hết cho đồng thời 2,3,5,9 Lập luận: Đầu tiên phải đề cập đến chia hết cho liên quan đến chữ số tận Sau đó, có chữ số tận cùng, ta xét tổng chữ số liên quan đến chia hết cho Ở ta không cần quan tâm đến chia hết cho 3, số chia hết cho đương nhiên chia hết cho a 3b  , b a  3, a 09 Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” a 9 a 9 a 0; a (Vì a chữ số hàng nghìn nên số khơng có nghĩa) Vậy a= 9; b= a 3b chia hết cho đồng thời 2,3,5,9 Bài tốn 4: Tìm chữ số a, b cho Lập luận 87 ab 9 15 a a b 87 ab 9 a – b = b 9 a b 3;1 Mà điều kiện a – b = nên ta loại a + b = Từ a –b = a + b = 12 ta tìm a = 8; b = Bài toán 5: cho số a) Tìm a để 76a 23 76a 239 b) Trong số vừa tìm đƣợc a có giá trị làm cho số a 1 khơng ? Hướng dẫn a) Tính tổng chữ số a 189 76a 23 a ta 0; b) với a = số 76023 có (7 + + 3) – (6 + ) =  11 Tương tự với a = ta có (7 + + 3) – ( + 2) = 11  11 Vậy a= a 1 Bài tốn 6: Tìm a, b cho b 1a chia hết Hướng dẫn Lập luận chia hết cho trước ta a = a = Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” + Thay a = vào b 1a ta b8512 Xét tiếp dấu hiệu chia hết cho cách tính tổng chữ số b 1a  b b 163 b 23 2; 5; Lập luận tương tự với a = ta b 1; ; Bài toán 7: Thay chữ số x, y chữ số thích hợp a) Số 275 x chia hết cho 5, cho 25, cho 125 b) Số xy chia hết cho 2, cho 4, cho Hướng dẫn b) xy  x, y ; 1; ; ; .; x ; 1; ; y 0; 2; 4; 6; x 0; 2; 4; 6; y 2; x 1; ; ; ; y 0; 4; chữ số tận số chẵn xy  xy 8 Hoặc Bài tốn 8:Tìm chữ số a b cho 19 ab chia hết cho Để tìm a b ta phải thấy hai dấu hiệu số chia hết cho Vì 19 ab chia hết b=0 b=5 19 ab chia hết suy b=0 Mặt khác , 19 a chia hết 19 a chia hết cho a chia hết cho suy a {0;2;4;6;8} Ta có 19 a chia hết cho a chia hết a=2 a=6 Vậy a=2 b=0 a=6 b=0 nên số cần tìm 1920 1960 Bái toán 9: Chữ số a để aaaaa 96 chia hết cho a 96  aaaaa 96  100a + 96  suy 100a  a số chẵn a 2, 4, 6, 8} (1) Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” aaaaa 96  (a + a + a + a + a + + )  mà 15  5a + 15  5a  mà (5, 3) = Suy a  a 3, ,9} (2) Từ (1) (2 ) suy a = KL: Vậy số phải tìm 6666696 Bài tốn 10: Tìm chữ số a để aaa  11 HD: tổng chữ số hàng lẻ + a Tổng chữ số hàng chữ 2a * Nếu 2a a+2 2a – (a + 2) = a -2 a mà (a - 2)  11 nên a - = * Nếu 2a a+2 9–2=7 a=2 (a + 2) - 2a = - a mà không chia a hết cho 11.Vậy a=2 Bài tốn 11:Tìm x để x1 9  chia hết cho nhƣng không chia hết cho Hướng dẫn x1 9  Vì 233 x x nên 24 x 23 32 Từ ta x = 24; x = 30 c) Dạng 3: Chứng minh chia hết biểu thức số Bài tốn 12: Tổng (hiệu) sau có chia hết cho không? a) 1251+5316 b) 5436-1234 c) 1.2.3.4.5.6 + 27 Hướng dẫn: dựa vào dấu hiệu chia hết cho để lập luận Bài toán 13: Cho M = 7.9.11.13 + 2.3.4.7 N = 16 354 + 675 41 Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Chứng tỏ rằng: M chia hết cho N chia hết cho Ta có: 7.9.11.13  3( 93 ) 2.3.4.7  (vì  3) 7.9.11.13 + 2.3.4.7  Vậy M chia hết cho Ta có giá trị tổng 16 354 + 67 541 có chữ sô tận nên chia hết cho Vậy N chia hết cho Bài toán 14: Cho A= 2.4.6.8.10 + 40 Chứng tỏ rằng: a) A chia hết cho b) A chia hết cho Hướng dẫn a) Dựa vào tính chất chia hết tổng ta lập luận 2.4.6.8.10  ( tích có chứa thừa số 8) 40 8 8 Vậy A chia hết cho b) Tương tự  ( 10 chia hết cho 5) 405 40 5 Bài toán 15: Chứng minh 99 98 97 96 2 Hướng dẫn: Theo đề ta suy chữ số tận (CSTC) lũy thừa 995 – 984 + 973 – 962 =…9 - …6 +…3 – …6 =… Biểu thức cho có giá trị chứa CSTC nên chia hết cho Vậy 99 98 97 96 2 Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang 10 “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” d) Dạng 4: Chứng minh tổng, tích số liên tự nhiên liên tiếp chia hết cho số Để làm dạng toán ta áp dụng phương pháp chứng minh quy nạp Tuy nhiên, dạy lớp ta không cần phải nói khó hiểu mà dạy cho em xét trường hợp bẳng mệnh đề: “ Nếu…thì …” Mặt khác lớp em làm dạng tập thuận tiện để em làm dạng toán chia hết lớp Nếu không, em cảm thấy kiến thức chia hết lạ, xa vời lên lớp 7,8,9 gặp tốn mà sử dụng kiến thức phải chứng minh lớp Bài toán 16: Chứng tỏ tích hai số tự nhiên liên tiếp chia hết cho Gv cần gợi mở rằng: ta chứng minh toán với cặp giá trị liên tiếp N, cần hai cặp giá trị đủ mà phải chứng minh dạng tổng quát Gọi hai số tự nhiên liên tiếp là: a, a+1 Nếu a  tốn giải Nếu a  a chia dư Ta có a= 2k + a + = 2k + + = 2k +  Vậy hai số tự nhiên liên tiếp có số chia hết cho 2.Cho nên tích hai số tự nhiên liên tiếp chia hết cho Bài tốn 17: Chứng minh tích ba số tự nhiên liên tiếp chia hết cho Gọi ba số tự nhiên liên tiếp a, a+1, a+2 Nếu a  tốn giải Nếu a = 3k+1(nghĩa a chia dư 1) lúc Ta có a+2= 3k+1+2 = 3k+3  Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang 11 “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Nếu a= 3k+2 (nghĩa a chia dư 2) lúc Ta có a+1= 3k+2+1 = 3k+3  Vậy ba số tự nhiên liên tiếp có số chia hết cho Cho nên tích ba số tự nhiên liên tiếp chia hết cho Bài toán 18: Chứng minh tổng ba số tự nhiên liên tiếp số chia hết cho nhƣng tổng bốn số tự nhiên liên tiếp khơng chia hết cho Gọi ba số tự nhiên liên tiếp n, n+1, n+2 Tống chúng là: n + n+1 + n+2 = 3n +3  Vậy tổng ba số tự nhiên liên tiếp số chia hết cho Tương tự tổng bốn số tự nhiên liên tiếp là: 4n +  4(vì  4) Vậy tổng bốn số tự nhiên liên tiếp khơng chia hết cho Bài tốn 19: Chứng minh tích hai số chẵn liên tiếp chia hết cho Gọi hai số chẵn liên tiếp 2n, 2n+2 (n N) Tích 2n.(2n+2) = 2.n.2.(n+1) = 4.n.(n+1) Ta có n.(n+1) tích hai số tự nhiên liên tiếp nên chia hết cho 2( theo toán 16) Vì 4.n.(n+1)  Vậy tích hai số chẵn liên tiếp chia hết cho Bài toán 20: Chứng minh tích ba số chẵn liên tiếp chia hết cho 48 Gọi ba số chẵn liên tiếp 2n, 2n +2, 2n +4 ((n N) Tích 2n.(2n+2).(2n+4) = 2.n.2(n+1).2(n+2) = 8.n.(n+1).(n+2) Ta có n.(n+1) tích hai số tự nhiên liên tiếp nên chia hết cho 2( theo toán 16) Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang 12 “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” Ta có n.(n+1).(n+2) tích ba số tự nhiên liên tiếp nên chia hết cho 3(theo toán 17) Mà (2,3) = nên n.(n+1).(n+2) chia hết cho Vì 8.n.(n+1).(n+2)  48 Vậy tích ba số chẵn liên tiếp chia hết cho 48 e) Dạng 5: Dạng toán vận dụng ngun lí Đirichlê Đối với dạng tốn vận dụng ngun lí Đirichlê giáo viên khơng sâu mà giới thiêu cho học sinh biết tập áp dụng dạng suy luận dễ hiểu Bài toán 21: Cho ba số lẻ chứng minh tồn hai số có tổng hiệu chia hết cho Một số lẻ chia cho số dư bốn số sau: 1;3;5;7 ta chia số dư ( thỏ) thành nhóm (2 lồng) Nhóm 1: dư dư Nhóm 2: dư dư Có số lẻ (3 thỏ) mà có hai nhóm số dư nên tồn hai số thuộc nhóm - Nếu số dư hiệu chúng chia hết cho - Nếu số dư khác tổng chúng chi hết cho Bài tập tương tự: Cho ba số nguyên tố lớn 3.Chứng minh tồn hai số có tổng hiệu chia hết cho 12 Hướng dẫn: Một số nguyên tố lớn chia cho 12 số dư số 1; 5; 7; 11 Chia làm hai nhóm: Nhóm 1: dư dư 11 Nhóm 2: dư dư Giải tiếp toán 18 Giáo viên thực hiện: Phạm Thị Ánh Ngọc Trang 13 “Một số biện pháp nhằm rèn kỹ giải toán chia hết cho học sinh lớp 6” f) Dạng 6: Tìm điều kiện để biểu thức chia hết cho số, chia hết cho biểu thức Bài toán 22: Chứng minh Nếu a  m, b  m, a+b+c  m c  m Ta sử dụng phương pháp chứng minh phản chứng Giả sử c Ta có  m am,bm nên a + b + c Điều trái với đề a Vậy điều giả sử sai.Suy  b m (tính chất sgk tốn tr 35) cm cm Đối với này, dạy giáo viên không thiết khắc sâu phần chứng minh Yêu cầu học sinh cần vận dụng kiến thức chứng minh vào tập cụ thể Bài tốn 23:Tìn n N để: a) n+4  n b) 3n +  n c) 27- 5n  n Giải: a) n 4n nn Vậy n b) 3n 1; ; 7n 3n n Vậy n 1; 27 5nn c) 5nn Vậy n Vậy n  n ( theo toán 22) 1; 3; ; 7 n 27  n 5n < 27 hay n

Ngày đăng: 15/06/2021, 19:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w