1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận án Tiến sĩ Vật liệu và linh kiện nanô: Nghiên cứu chế tạo cảm biến từ trường có kích thước micro-nano dạng cầu Wheatstone dựa trên hiệu ứng từ-điện trở dị hướng

161 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Luận án tập trung vào việc tối ưu thiết kế cấu hình nhằm nâng cao độ nhạy của cảm biến. Cụ thể, luận án không thay đổi tính chất nội tại của vật liệu mà thay đổi các thông số vật lý bên ngoài như thay đổi tính dị hướng hình dạng, thay đổi từ trường cưỡng bức (từ trường ghim)... nhằm tăng cường tính dị hướng từ đơn trục và do đó sẽ tăng cường hiệu ứng AMR và tăng cường hiệu quả hoạt động của cảm biến. Mời các bạn tham khảo!

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ _ LÊ KHẮC QUYNH NGHIÊN CỨU CHẾ TẠO CẢM BIẾN TỪ TRƯỜNG CĨ KÍCH THƯỚC MICRO-NANO DẠNG CẦU WHEATSTONE DỰA TRÊN HIỆU ỨNG TỪ-ĐIỆN TRỞ DỊ HƯỚNG LUẬN ÁN TIẾN SĨ VẬT LIỆU VÀ LINH KIỆN NANÔ Hà Nội – 2020 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ LÊ KHẮC QUYNH ĐẠI HỌC HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGHIÊN CỨU CHẾ TẠO CẢM BIẾN TỪ TRƯỜNG CÓ KÍCH THƯỚC MICRO-NANO DẠNG CẦU WHEATSTONE DỰA TRÊN HIỆU ỨNG TỪ-ĐIỆN TRỞ DỊ HƯỚNG Chuyên ngành: Vật liệu linh kiện nanô Mã số: 944012801.QTD LUẬN ÁN TIẾN SĨ VẬT LIỆU VÀ LINH KIỆN NANÔ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS Đỗ Thị Hương Giang TS Trần Mậu Danh Hà Nội – 2020 LỜI CẢM ƠN Trước tiên, em xin bày tỏ lòng biết ơn chân thành sâu sắc tới PGS.TS Đỗ Thị Hương Giang, TS Trần Mậu Danh, người thầy, người cô hướng dẫn tận tình, đầy hiệu quả, trau dồi cho em kiến thức đại cương chuyên sâu lĩnh vực nghiên cứu, thường xuyên dành cho em bảo, giúp đỡ vật chất tinh thần suốt trình nghiên cứu thực đề tài Sự nhiệt huyết động viên kịp thời thầy cô động lực quan trọng giúp em hồn thành luận án, có lúc tưởng chừng em bỏ Em xin bày tỏ lòng biết ơn tới GS TS NGND Nguyễn Hữu Đức, TS Bùi Đình Tú, người thầy theo dõi, khuyến khích việc nghiên cứu em đóng góp nhiều ý kiến chuyên môn sâu sắc cho em suốt q trình nghiên cứu hồn thiện luận án Em xin chân thành cảm ơn thầy, cô khoa Vật lý kỹ thuật công nghệ nanno; thầy, Phịng Thí nghiệm Trọng điểm Cơng nghệ Micro-Nano, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội có nhiều giúp đỡ NCS chuyên môn sở vật chất Em xin cảm ơn anh chị nghiên cứu sinh, học viên cao học khoa tham gia thảo luận, góp ý nhiều vấn đề chi tiết trình nghiên cứu đề tài Trong trình triển khai nghiên cứu, NCS nhận giúp đỡ to lớn quan nhà nước, phòng, viện nghiên cứu khoa học Tác giả xin bày tỏ lòng cảm ơn chân thành tới: Phịng Đào tạo Trường Đại học Cơng nghệ, Đại học Quốc gia Hà Nội; Khoa Vật lý, Phòng Đào tạo, Phịng Tổ chức Hành chính, Trường ĐHSP Hà Nội Tác giả xin bày tỏ lòng biết ơn chân thành tới anh em, bạn bè gần xa người thân gia đình động viên, tạo điều kiện để luận án hoàn thành Luận án thực với tài trợ kinh phí từ Đề tài Khoa học công nghệ cấp Đại học Quốc gia Hà Nội mã số QG.16.26, QG.16.89 Tác giả luận án Lê Khắc Quynh LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu cá nhân Các số liệu, kết nêu luận án trung thực Các nội dung liên quan đến công bố chung sử dụng luận án cho phép đồng tác giả Tác giả luận án Lê Khắc Quynh Mục lục DANH MỤC CÁC BẢNG BIỂU i DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT ix MỞ ĐẦU TỔNG QUAN VẬT LIỆU SẮT TỪ MỀM VÀ CẢM BIẾN TỪ TRƯỜNG 1.1 1.2 1.3 1.4 Tổng quan vật liệu sắt từ 1.1.1 Vật liệu sắt từ 1.1.2 Vật liệu sắt từ mềm NiFe 10 1.1.3 Vật liệu có hiệu ứng từ-điện trở dị hướng 12 Các cảm biến từ trường dựa vật liệu sắt từ mềm 13 1.2.1 Cảm biến từ trường dựa hiệu ứng cảm ứng điện-từ 13 1.2.2 Cảm biến từ trường dựa hiệu ứng từ-điện trở khổng lồ 14 1.2.3 Cảm biến từ trường dựa hiệu ứng từ-điện trở xuyên hầm 15 1.2.4 Cảm biến từ trường dựa hiệu ứng Hall phẳng 16 1.2.5 Cảm biến dựa hiệu ứng từ-điện trở dị hướng 18 1.2.6 Hiện tượng nhiễu cảm biến 23 1.2.7 So sánh loại cảm biến từ trường cấu trúc micro-nano 24 Mạch cầu Wheatstone thiết kế cảm biến đo từ trường 27 1.3.1 Mạch cầu điện trở Wheatstone 27 1.3.2 Ưu điểm mạch cầu Wheatstone 28 1.3.3 Mạch cầu Wheatstone thiết kế cảm biến từ trường 29 1.3.4 Mạch cầu Wheatstone thiết kế cảm biến AMR luận án 30 Đối tượng, mục tiêu nội dung nghiên cứu 32 1.4.1 Đối tượng nghiên cứu 32 1.4.2 Mục tiêu nghiên cứu 33 1.4.3 Nội dung nghiên cứu 33 1.5 Kết luận Chương 34 CÁC PHƯƠNG PHÁP THỰC NGHIỆM 35 2.1 2.2 2.3 Chế tạo màng mỏng cảm biến 35 2.1.1 Thiết kế chế tạo mặt nạ cảm biến 36 2.1.2 Quang khắc chế tạo cảm biến 43 2.1.3 Phún xạ màng mỏng 47 2.1.4 Hàn dây cho thiết bị cảm biến 50 Đo đạc khảo sát đặc trưng cảm biến 52 2.2.1 Khảo sát cấu trúc vi cấu trúc 52 2.2.2 Khảo sát tính chất từ vật liệu màng mỏng 55 2.2.3 Khảo sát tính chất từ-điện trở 58 Kết luận Chương 61 NGHIÊN CỨU CẤU TRÚC VÀ TÍNH CHẤT CỦA MÀNG NiFe 62 3.1 3.2 3.3 3.4 Nghiên cứu cấu trúc vi cấu trúc màng NiFe 62 3.1.1 Phân tích thành phần phương pháp EDX 62 3.1.2 Khảo sát chiều dày màng mỏng hiển vi điện tử FE-SEM 63 3.1.3 Nghiên cứu cấu trúc tinh thể phương pháp đo nhiễu xạ tia X 64 Nghiên cứu tính chất từ màng mỏng NiFe 65 3.2.1 Sự phụ thuộc vào từ trường ghim (Hpinned) 65 3.2.2 Sự phụ thuộc vào hình dạng 66 3.2.3 Sự phụ thuộc vào tỉ số kích thước dài/rộng (L/W) 68 3.2.4 Sự phụ thuộc vào chiều dày 68 Tính chất từ-điện trở màng mỏng NiFe 70 3.3.1 Sự phụ thuộc vào từ trường ghim (Hpinned) 70 3.3.2 Sự phụ thuộc vào tỉ số kích thước dài/rộng (L/W) 73 3.3.3 Sự phụ thuộc vào chiều dày 73 Kết luận Chương 75 NGHIÊN CỨU THIẾT KẾ, CHẾ TẠO CẢM BIẾN TỪ TRƯỜNG DẠNG CẦU WHEATSTONE DỰA TRÊN HIỆU ỨNG TỪ-ĐIỆN TRỞ DỊ HƯỚNG .76 4.1 4.2 4.3 Tính tốn, mơ tối ưu cấu hình thiết kế cảm biến 76 4.1.1 Tối ưu thiết kế tỉ số dị hướng hình dạng điện trở 76 4.1.2 Tối ưu cách ghép đa điện trở nhánh cầu 78 Chế tạo cảm biến với cấu trúc tối ưu 85 4.2.1 Cảm biến kích thước milimet (nhóm 1) 85 4.2.2 Cảm biến kích thước micro-milimet (nhóm 2) 86 4.2.3 Cảm biến kích thước micromet (nhóm 3) 88 Khảo sát tín hiệu điện áp độ nhạy cảm biến cầu Wheatstone 90 4.3.1 Khảo sát ảnh hưởng tỉ số dị hướng hình dạng lên tín hiệu điện áp độ nhạy cảm biến 90 4.3.2 Khảo sát ảnh hưởng cách mắc điện trở nối tiếp, nối tiếp-song song lên tín hiệu điện áp độ nhạy cảm biến 95 4.3.3 Khảo sát ảnh hưởng đồng thời tỉ số dị hướng hình dạng cách mắc điện trở lên tín hiệu điện áp độ nhạy cảm biến 99 4.4 Kết luận Chương 102 PHÁT TRIỂN KHẢ NĂNG ỨNG DỤNG CỦA CẢM BIẾN DẠNG CẦU WHEATSTONE DỰA TRÊN HIỆU ỨNG TỪ-ĐIỆN TRỞ DỊ HƯỚNG 104 5.1 5.2 5.3 Cảm biến đo hướng từ trường Trái đất 104 5.1.1 Lựa chọn cảm biến 104 5.1.2 Thực nghiệm kết 105 Cảm biến sinh học 108 5.2.1 Cảm biến phát hạt từ tính nano 108 5.2.2 Cảm biến phát phần tử sinh học 113 Kết luận Chương 119 KẾT LUẬN VÀ KIẾN NGHỊ 121 DANH MỤC CÁC CƠNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 122 TÀI LIỆU THAM KHẢO 124 DANH MỤC CÁC BẢNG BIỂU Bảng 1.1 Bảng trích xuất số thông số vật lý với màng mỏng nano NiFe với phần trăm Ni khác công thức NixFe1- x so sánh với vật liệu khác [3, 72, 73, 120, 127] 11 Bảng 1.2 Bảng so sánh độ nhạy tỉ số S/N [8, 27, 30] số loại cảm biến đo từ trường cấu trúc màng mỏng nano dựa vật liệu sắt từ 24 Bảng 1.3 Dải làm việc loại cảm biến từ [17, 120] 26 Bảng 2.1 Tên mặt nạ ứng với tên cảm biến diễn giải cách ghép tương ứng nghiên cứu luận án 36 Bảng 2.2 Một số thông số kỹ thuật máy khắc laser fiber 39 Bảng 2.3 Các bước làm đế Si/SiO2 49 Bảng 2.4 Các thông số dùng phún xạ lớp màng Ta, NiFe, Cu, SiO2 49 Bảng 2.5 Các thông số mối hàn dây nhôm lựa chọn hàn điện cực cảm biến nghiên cứu luận án 51 Bảng 3.1 Các giá trị: Ms, Hc, Hk, K rút từ liệu đường cong từ hóa mẫu màng nano NiFe với chiều dày khác 70 Bảng 3.2 Các giá trị tỉ số AMR màng với kích thước khác 74 Bảng 4.1 Giá trị R, I, ΔV SH tương ứng với cảm biến nhóm có thơng số khác 94 Bảng 4.2 Giá trị lực kháng từ, điện trở nội, độ lệch điện áp, độ nhạy cảm biến theo đơn vị (mV/Oe) độ nhạy cảm biến theo đơn vị (mV/V/Oe) cảm biến nhóm đo 0,1 mA [96] 99 Bảng 4.3 Các giá trị chiều dày, điện trở, độ lệch điện áp, độ nhạy tương ứng với cấu trúc cảm biến nhóm 3, loại S3-18-sp so sánh với loại S3-6-s, phép đo dòng cấp mA 101 i DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Mơ tả đường cong từ hóa, mơ tả chế từ hóa (a,b) từ trễ (a) vật liệu sắt từ theo từ trường [2] Hình 1.2 Mô hướng véctơ 𝑀 véctơ 𝐻𝑑 mẫu bị từ hố Hình 1.3 Trường khử từ bên mẫu hình chữ nhật từ hố theo phương mặt phẳng (a) vng góc với mặt phẳng (b) Hình 1.4 Đường cong từ trễ theo mơ hình Stonner – Wohlfarth trục khó từ hóa (a) trục dễ từ hóa (b) [99] Hình 1.5 Hình minh họa trật tự từ màng mỏng NiFe với trật tự từ vùng không gian lõi bề mặt Hình 1.6 Các thơng số vật lý phụ thuộc vào tỉ phần Ni(x) gồm: số dị hướng, lực kháng từ (a) [120], tỉ số phần trăm độ thay đổi điện trở suất AMR % (b) [73] màng mỏng NiFe 11 Hình 1.7 Hình minh họa hai cấu hình từ độ (hình trên) sơ đồ mạch điện tương đương (hình dưới) khơng có từ trường ngồi tác dụng (a) có từ trường ngồi tác dụng lên linh kiện GMR (b) 14 Hình 1.8 Minh họa cấu trúc vật liệu có hiệu ứng TMR (a) cảm biến TMR tương ứng (b) [15] 16 Hình 1.9 Minh họa hiệu ứng Hall phẳng cấu trúc màng mỏng 17 Hình 1.10 Minh họa cảm biến Hall phẳng dạng chữ thập [97] 18 Hình 1.11 Hình minh họa để giải thích hiệu ứng AMR (a,b) điện trở suất mẫu vật liệu dịng điện có phương dọc theo từ độ (ρp) vng góc với từ độ (ρorth) (c) [50] 19 Hình 1.12 Mô tả điện trở suất màng mỏng sắt từ đáp ứng từ trường ngồi 20 Hình 1.13 Minh họa thông số xác định hiệu ứng AMR (a) thay đổi điện trở theo góc θ (b) [102] 20 Hình 1.14 Mơ hình cảm biến AMR dạng vòng xuyến (a) ảnh thực tế (b) [75] 22 Hình 1.15 Mơ tả WB ảnh hưởng từ trường hiệu ứng AMR [96] 28 ii [11] A O Adeyeye and R L White (2004), Magnetoresistance behavior of single castellated Ni80Fe20 nanowires, Journal of Applied Physics 95, pp 2025-2228 [12] Ton Tich Ai (2005), Geomagnetism and Magnetic Prospecting, Vietnam National University Publishers [13] T M L Alves , Bezerra C G, Viegas A D C, Nicolodi S, Corrêa M A and Bohn F (2015), Quantifying magnetic anisotropy dispersion: Theoretical and experimental study of the magnetic properties of anisotropic FeCuNbSiB ferromagnetic films, Journal of Applied Physics 117, pp 083901 [14] M N Baibich, J M Broto, A Fert, F Nguyen Van Dau, F Petroff, P Etienne, G Creuzet, A Friederich, J Chazelas (1988), Giant magnetoresistance of (001)Fe/Cr magnetic superlattices, Physical Review Letters 61(21), pp 2472 – 2475 [15] D R Baselt, G U Lee, M Natesan, S W Metzger, P E Sheehan, R J Colton (1998), A biosensor based on magnetoresistance technology, Biosensor and bioelectrics 13, pp 731 – 739 [16] Pierre-A Besse, Giovanni Boero, Michel Demierre, Vincent Pott, Radivoje Popovic (2002), Detection of a single magnetic microbead using a miniaturized silicon Hall Sensor, Applied Physics Letters 80 (22), pp 4199 – 4201 [17] Bo Cao, Kan Wang, Hao Xu, Qi Qin, Jinchuan Yang, Wei Zheng, Qinghui Jin, Daxiang Cui (2020), Development of magnetic sensor technologies for pointof-care testing: fundamentals, methodologies and applications, Sensors and Actuators: A Physical (accepted) (https://doi.org/10.1016/j.sna.2020.112130) [18] Chao Zheng, Ke Zhu, Susana Cardoso de Freitas, Jen-Yuan Chang, Joseph E Davies, Peter Eames, Paulo P Freitas, Olga Kazakova, CheolGi Kim, ChiWah Leung, Sy-Hwang Liou, Alexey Ognev, S N Piramanayagam, Pavel Ripka, Alexander Samardak, Kwang-Ho Shin, Shi-Yuan Tong,Mean-Jue Tung, Shan X.Wang, Songsheng Xue, Xiaolu Yin, and Philip W T Pong (2019), Magnetoresistive Sensor Development Roadmap (Non-Recording Applications), IEEE Transtions on magnetics, Vol 55, No 4, pp 0800130 125 [19] C D Damsgaard, Susana C Freitas, Paulo P Freitas, and Mikkel F Hansen (2008), Exchange-biased planar Hall effect sensor optimized for biosensor applications, 103, 07A302, pp.1-3 [20] Nguyen Van Dau, A Schuhl, J R Childress, M Sussiau (1996), Magnetic sensors for nanotesla detection using planar Hall effect, Sensors and Actuators A: Physical 53(1), pp 256-260 [21] J Devkota, G Kokkinis, T Berris, M Jamalieh, S Cardoso, F Cardoso, H Srikanth, M H Phan and I Giouroudi (2015), A novel approach for detection and quantification of magnetic nanomarkers using a spin valve GMRintegrated microfluidic sensor, RSC Advances 5, pp 51169 [22] J Devkota, C Wang, A Ruiz, S Mohapatra, P Mukherjee, H Srikanth, and M H Phan (2013), Detection of low-concentration superparamagnetic nanoparticles using an integrated radio frequency magnetic biosensor, Journal of Applied Physics 113, pp 104701 [23] Diqing Su, KaiWu, Renata Saha, Chaoyi Peng and Jian-Ping Wang (2019), Advances in Magnetoresistive Biosensors, Micromachines Vol.11, pp.34 [24] Dmitry Murzin, Desmond J Mapps, Kateryna Levada, Victor Belyaev, Alexander Omelyanchik, Larissa Panina and Valeria Rodionova (2019), Ultrasensitive Magnetic Field Sensors for Biomedical Applications, Sensors, 20, pp.1569 [25] N.H Duc, B.D Tu, N.T Ngoc, V.D Lap, D.T.H Giang (2013), Metglas/PZTMagnetoelectric 2-D Geomagnetic Device for Computing Precise Angular Position, IEEE Trans Magn 49, pp 4839 [26] L.W Ejsing, Mikkel F Hansen, Aric K Menon, Hugo A Ferreir, Daniel, L Graham, Paulo P Freitas (2005), Magnetic microbead detection using the planar Hall effect, Journal of Magnetism and Magnetic Materials 293, pp 677684 [27] L.W Ejsing (2006), Planar Hall sensor for influenza immunoassay, Ph.D Thesis, S021568, MIC-Department of Micro and Nanotechnolgy Technical University of Denmark 126 [28] S Ekelof (2001), The Genesis of the Wheatstone Bridge, Engineering Science and Education Journal (History of technology), volume 10, no 1, pp 37–40 [29] R Ferreira, E Paz, P.P Freitas, J Ribeiro, J Germano and L Sousa (2012), 2-Axis Magnetometers Based on Full Wheatstone Bridges Incorporating Magnetic Tunnel Junctions Connected in Series, IEEE Trans Magn 48, pp 4017 [30] P P Freitas, H A Ferreira, D L Graham, L A Clarke, M D Amaral, V Martins, L Fonseca, and J S Cabral (2004), Magnetoelectronics, chapter 7: Magnetoresistive DNA chips, pages 331-373, Elsevier Academic Press, Oxford [31] Z R Gambino, Muthuvel Manivel Raja, Sanjay Sampath, and Robert Greenlaw (2004), plasma-sprayed thick-film anisotropic magnetoresistive (AMR) sensors, IEEE sensors journal, 4, pp 764-767 [32] D T H Giang, P A Duc, N T Ngoc, N T Hien, N H Duc (2012), Enhancement of the Magnetic Flux in Metglas/PZT – Magnetoelectric Integrated 2D Geomagnetic Device, Journal of Magnetics 17(4), pp 308 – 315 [33] D T H Giang, P A Duc, N T Ngoc, N T Hien, N H Duc (2012), Spatial angular positioning device with three – dimensional magnetoelectric sensors, Review of scientific instruments 83, pp 095006 [34] D T H Giang, P A Duc, N T Ngoc, N H Duc (2012), Geomagnetic sensors based on Metglas/PZT laminates, Sensors and Actuators A, A179, pp 78 – 82 [35] D T H Giang, N X Toan, P A Duc, N H Duc (2010), Enhancement of magnetoelectric effect in Metglas/piezoelectric laminate composites, IWAMSN 2010 [36] D T Huong Giang, D X Dang, N X Toan, N V Tuan, A T Phung, and N H Duc (2017), Distance magnetic nanoparticle detection using a magnetoelectric sensor for clinical interventions, Rev Sci Instrum 88, pp 015004 127 [37] H Gruger, R Gottfried-Gottfried (2001), Performance and applications of a two axes fluxgate magnetic field sensor fabricated by a CMOS process, Sensors and Actuators A, vol 91, pp 61-64 [38] M J Haji-Sheikh (2005), Anisotropic Magnetoresistive Model for Saturated Sensor Elements, IEEE Sensor Journal, (6), pp 1258-1263 [39] M J Haji-Sheikh and Y Yoo (2007), An accurate model of a highly ordered 81/19 permalloy AMR Wheatstone bridge sensor against a 48 pole pair ringmagnet, IJISTA 3, pp 95–105 [40] Imran Hashim (1994), Microstructural and Magnetic properties of Polycrystalline and Epitaxial permalloy Multilayered Thin Films, In Partial Fulfillmet of the Requirements for the Degree of Docctor of Philosophy, California Institute of Technilogy pasadena, California [41] A D Henriksen, B T Dalslet, D H Skieller, K H Lee, F Okkels, and M F Hansena (2010), Planar Hall effect bridge magnetic field sensors, Journal of Applied Physics Letters 97, pp 013507-1 – 013507-3 [42] A D Henriksen, Rizzi, Giovanni, Hansen, Mikkel Fougt (2015), Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors, Journal of Applied Physics, 118(10), pp 103901 [43] A D Henriksen, Giovanni Rizzi, and Mikkel Fougt Hansen (2016), Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection, Jounal of applied physics, 119, pp 093910 [44] LT Hien, LK Quynh, VT Huyen, BD Tu, NT Hien, DM Phuong, PH Nhung, DTH Giang, NH Duc (2016), DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor, Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, pp.045006 [45] Ho D.T.N, Le T.P.T, Wolbers M, Cao Q.T, Nguyen V.M.H, Tran V.T.N, Le T.P.T, Nguyen H.P, Tran T.H.C, Dinh X.S, To S.D, Hoang T.T.H, Hoang T, Campbell J.S, Nguyen V.V.C, Nguyen T.C, Nguyen V.D, Ngo T.H, Spratt B.G, Tran T.H, Farrar J, Schultsz C (2011), Risk Factors of Streptococcus suis Infection in Vietnam A Case-Control Study, PLoS ONE (3), pp 17604 128 [46] Tran Vinh Hoang, Lam Dai Tran, Thinh Ngoc Nguyen (2010), Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Materials Science and Engineering C 30, pp 304-310 [47] Zhang Hui, Teng Jiao, Yu Guanghua (2007), Dependence of non-uniform demagnetizing field on width of NiFe thin film AMR elements, Acta Metallurgica Sinica -Chinese Edition, 43(6), pp 599-602 [48] Tran Quang Hung, Jong-Ryul Jeong, Dong-Young Kim, Nguyen Huu Duc and CheolGi Kim (2009), Hybrid planar Hamm-magnettoresistance sensor based on tilted cross-junction, J Appl Phys 42, pp 055007 [49] S Ingvarsson, Gang Xiao, S.S.P Parkin, and W.J Gallagher (2002), Thickness dependent magnetic properties of Ni81Fe19, Co90Fe10 and Ni65Fe15Co20 thin films, Journal of Magnetism and Magnetic Materials, 251, pp 202–206 [50] JaniceNickel (1995), Magnetoresistance Overview, Hewlett-Packard Laboratories, Technical Publications Department, USA [51] J Jeon, J Jung, and K H Chow (2016), Current dependence of colossal anisotropic magnetoresistance in La0.3Pr0.4Ca0.3MnO3 microbridges, Journal of Applied Physics 120, pp 123902 [52] L Jogschies, Daniel Klaas, Rahel Kruppe, Johannes Rittinger, Piriya Taptimthong, Anja Wienecke, Lutz Rissing and Marc Christopher Wurz (2015), Recent Developments of Magnetoresistive Sensors for Industrial Applications, Sensors 15, pp 28665-28689 [53] M Johnson (2004), Magnetoelectronics, Amsterdam, Elsevier [54] J.B Johnson (1927), Thermal agitation of electricity in conductors, Nature 20, pp 119 [55] M Julliere (1975), Tunnelling between ferromagnetic films, Phys Lett A 54, pp 225-226 [56] J.E Lenz June (1990) A Review of Magnetic Sensors, Proc IEEE, 78, pp 973-989 129 [57] H Kim, V Reddy, K Woo Kim, I Jeong, X.H Hu, and C.G Kim (2014), Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor, J of Magnetics, 19, pp 10 [58] J G Kim, Kyung Hunn Han, Seok Ho Song, Anne Reilly (2003), Magnetic properties of sputtered soft magnetic Fe–Ni films with an uniaxial anisotropy, Thin Solid Films 440, pp 54-59 [59] M Kowalewski, W.H Butler, N Moghadam, G.M Stocks, T.C Schulthess, K.J Song, J.R Thompson, A.S Arrott, T Zhu, J Drewes, R R Katti, M T McClure, and O Escorcia (2000), The effect of Ta on the magnetic thickness of permalloy ( Ni81Fe19) films, J Appl Phys 87, pp 5732 [60] Tran Dai Lam, Nguyen Hai Binh, Nguyen Van Hieu, Tran Hoàng Vinh Nguyen Xuan Phuc (2011), Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes, Materials Science and Engineering C 31, pp 477-485 [61] Guanxiong Li, Vikram Joshi, Robert L White, Shan X Wang, Jennifer T Kemp, Chris Webb, Ronald W Davis, Shoueng Sun (2003), Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications, Journal of Applied Physics 93(10), pp 7557 – 7559 [62] Guanxiong Li, Shouheng Sun, Robert J Wilson, Robert L White, Nader Pourmand, Shan X Wang (2006), Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications, Sensors and Actuators A 126, pp 98-106 [63] Xisheng Li, Jia You, Xiongying Shu and Ruiqing Kang (2009), Electric Current measurement using AMR Sensor Array, Proceedings of the IEEE International Conference on Mechatronics and Automation, Changchun, China, pp 4085 [64] Yu-Chi Liang, Long Chang, Wenlan Qiu, Arati G Kolhatkar, Binh Vu, Katerina Kourentzi, T Randall Lee, Youli Zu, Richard Willson and Dmitri Litvinov (2017), Ultrasensitive Magnetic Nanoparticle Detector for Biosensor Applications, Sensors 17, pp 1296 130 [65] Gungun Lin, Denys Makarov and Oliver G Schmidt (2017), Magnetic sensing platform technologies for biomedical applications, Lab Chip, 17, pp 18841912 [66] G Lin, D Makarov, M Melzer, W Si, C Yanac, and O Schmidt (2014), A highly flexible and compact magnetoresistive analytic device, Lab Chip 14, pp 4050 [67] Z Q Lu (2001), Planar Hall effect in NiFeNiMn bilayers, J Appl Phys, 90, pp 1414-1418 [68] Van Su Luong, Anh Tuan Nguyen, Thi Luyen Nguyen, Anh Tue Nguyen and Quoc Khanh Hoang (2018), Enhanced Soft Magnetic Properties of [NiFe/Ta]n Laminated Films for Flux Amplification in Magnetic Sensors, IEEE Transactions on Magnetics, 54, pp 2000804 [69] Van Su Luong, Anh Tuan Nguyen, Quoc Khanh Hoang, Tuyet Nga Nguyen, Anh Tue Nguyen, Tuan Anh Nguyen, Van Cuong Giap (2018), Magnetoresistive Performances in Exchange-Biased Spin Valve and Their Roles in Low-Field Magnetic Sensing Applications, Journal of Science: Advanced Materials and Devices, (4), pp 399-405 [70] Susan Macmillan (2009), Earth’s magnetic field, British Geological Survey, Edinburgh, UK [71] V Marius, Marioara Avram (2015), Using permalloy based planar hall effect sensors to capture and detect superparamagnetic beads for lab on chip applications, Journal of Magnetism and Magnetic Materials, 381, pp 481-487 [72] T R McGuire, R D Hempstead, and S Krongelb (1976), Anisotropic magnetoresistance in ferromagnetic 3d ternary alloys, AIP Conf Proc, 29, pp 526 [73] T R Mcguire and R I Potter (1975), Anisotropic Magnetoresistancein Ferromagnetic 3d Alloys, Saction on Magnetics, Vol Mag 11(4), pp 10181038 [74] G T Meaden (1971), Conduction electron scattering and the resistance of the magnetic elements, Cont Phys 12, pp 313 - 337 131 [75] M M Miller, G A Prinz, S F Cheng, S Bounnak (2002), Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor, Applied Physics Letters 81(12), pp 2211-2213 [76] N Moghadam, G.M Stocks, M Kowalewski, W.H Butler (2001), Effects of Ta on the magnetic structure of permalloy, J Appl Phys 89, pp 6886-6888 [77] S S P.S Mohamed, Robert Zierold Josep M Montero Moreno Detlef Guilitz and Kornelius Nielsch (2012), Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, Mater Chem, 22, pp 8549-8557 [78] F Montaigne, Alain Schuhl, Frédéric Nguyen Van Dau, Armando Encinas (2000), Development of magnetoresistive sensors based on planar Hall effect for applications to microcompass, Sensors and Actuators A 81(1-3), pp 324 – 327 [79] J S Moodera, Lisa R Kinder, Terrilyn M Wong, R Meservey (1995), Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Phys Rev Lett 74, pp 3273–3276 [80] H G J Moseley (1913), The high frequency spectra of the elements, Phil Mag [81] V Mor, M Schultz, O Sinwani, A Grosz, E Paperno, L Klein (2012), Planar Hall effect sensors with shape-induced effective single domain behavior, Journal of Applied Physics 111, pp 07E519-07E519-3 [82] M Neagu, M Lozovan, M Dobromir, L Velicu, C Hison, S Stratulat (2008), permalloy thin films obtained by pulsed laser deposition: magnetic and galvanomagnetic behaviour, Journal of optoelectrnics and advanced materials, Vol 10, No 3, pp 632 – 634 [83] Nibarger J P, Lopusnik R, Celinski Z and Silva T J (2003), Variation of magnetization and the Lande´g factor with thickness in Ni–Fe films, Appl Phys Lett 83, pp 93–98 132 [84] S Oh, P.B Patil, Tran Quang Hung, Byunghwa Lim, Migaku Takahashi, Dong Young Kim, CheolGi Kim (2011), Hybrid AMR/PHR ring sensor, Solid State Communications 151, pp 1248–1251 [85] R C O'Handley (2000), Modern Magnetic Materials: Principles and Applications, John Wiley & Sons [86] F W Østerberg, Anders Dahl Henriksen, Giovanni Rizzi, and Mikkel Fougt Hansen (2013), Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure [J Appl Phys 113, 063903 (2013)], Journal of Applied Physics 114, pp 106101 [87] F W Østerberg, G Rizzi, A D Henriksen, and M F Hansen (2014), Planar Hall effect bridge geometries optimized for magnetic bead detection, J Appl Phys 115(18), pp 184505 [88] F W Østerberg, G Rizzi, T Zardán Gómez de la Torre, M Strưmberg, M Strømme, P Svedlindh, M F Hansen (2013), Measurements of Brownian relaxation of magnetic nanobeads using planar Hall effect bridge sensors, Biosensors and Bioelectronics 40, pp 147 –152 [89] M A Parker, T L Hylton, K R Coffey, J K Howard (1994), Microstructural origin of giant magnetoresistance in a new sensor structure based on NiFe/Ag discontinuous multilayer thin films, Journal of Applied Physics 75(10), pp 6382 – 6384 [90] Patterson A L (1939), The Scherrer Formula for tia X Particle Size Determination, Phys Rev, 56, pp 978 [91] M Pavel, Michal Vopalensk´y, Pavel Ripka´(2008), AMR current measurement device, Sensors and Actuators A 141, pp 649–653 [92] H X Peng, Faxiang Qin, Manh Huong Phan (2016), Ferromagnetic Microwire Composites (from Sensors to Microwave Applications), Springer International Publishing Switzerland [93] S Petralia, Nunzio Vicario, Giovanna Calabrese, Rosalba Parenti and Sabrina Conoci (2018), An Advanced, Silicon-Based Substrate for Sensitive Nucleic Acids Detection, Sensors 18, pp 3138 133 [94] F Qejvanaj (2016), Fabrication and Characterization of magnetometer for space applications, Doctoral Thesis in Physics School of Information and Communication Technology KTH Royal Institute of Technology Stockholm, Sweden [95] L.K Quynh, B.D Tu, D.X Dang, D.Q Viet, L.T Hien, D.T Huong Giang, N.H Duc (2016), Detection of magnetic nanoparticles using simple AMR sensors in Wheatstone bridge, Journal of Science: Advanced Materials and Devices 1, pp 98-102 [96] L.K Quynh, B D Tu, C.V Anh, N H Duc, A.T Phung, T.T Dung, and D T Huong Giang (2018), Design Optimization of an Anisotropic Magnetoresistance Sensor for Detection of Magnetic Nanoparticles, Journal of Electronic Material 48 (2), pp 997-1004 [97] Le Khac Quynh, Nguyen The Hien, Nguyen Hai Binh, Tran Tien Dung, Bui Dinh Tu, Nguyen Huu Duc and Do Thi Huong Giang (2019), Simple planar Hall effect based sensors for low-magnetic field detection, Advances in Natural Sciences: Nanoscience and Nanotechnology 10, pp 025002 [98] L.K Quynh, B.D Tu, N.T Thuy, D.Q Viet, N.H Duc, A.T Phung, and D.T Huong Giang (2019), Meander anisotropic magnetoresistance bridge geomagnetic sensors, Journal of Science: Advanced Materials and Devices (2), pp 327-332 [99] R.F.O Reneerkens (1995), Physics of magnetization reversal in exchange biase spin valve multilayers, master thesis, Eindhoven University of Technology (EUT), Netherlands [100] J C Rife, M M Miller, P E Sheehan, C R Tamanaha,M Tondra, L J Whitman (2003), Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, Sensors and Actuators A 107, pp 209– 218 [101] P Ripka (1992), Review of Fluxgate Sensors, Sensors and Actuators A, 33 (3), pp 129-141 [102] Ripka, Pavel (2000), Magnetic sensors and Magnetometers, Artech House Publishers 134 [103] P.Ripka, M.Vopalensk, A.Platil, M Doscher, K.-M.H Lenssen, H.Hauser (2003), AMR magnetometer, Journal of Magnetism and Magnetic Materials 254–255, pp 639–641 [104] A Sandhu, A Okamoto, I Shibasaki, A Oral (2004), Nano and micro Halleffect sensors for room-temperature scanning hall probe microscopy, Microelectronic Engineering 73–74, pp 524–528 [105] P Saravanan, Jen-Hwa Hsu, Chin-Lai Tsai, Akhilesh Kumar Singh, and Perumal Alagarsamy (2015), Effect of Ta Underlayer on Thickness-Dependent Magnetic Properties of Ni–Fe Films, IEEE Transactions on Magnetics 51, pp 2006604 [106] Schuhl, F Nguyen Van Dau, and J R Childress (1995), Low-field magnetic sensors based on the planar Hall effect, Applied Physics Letters 66(20), pp 2751-2763 [107] D Sellmyer, Ralph Skomski (2006), Advanced Magnetic Nanostructures, Springer, pp 432 – 442 [108] E F Silva, M A Correa, R D Della Pace, C C Plá Cid, P R Kern, M Carara, C Chesman, O Alves Santos, R L Rodríguez-Suárez, A Azevedo, S M Rezende and F Bohn (2017), Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films, J Phys D: Appl Phys 50, pp 185001 [109] Brajalal Sinh,Tran Quang Hung, Torati Sri Ramulu, Sunjong Oh, Kunwoo Kim, Dong-Young Kim, Ferial Terki and CheolGi Kim (2013), Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure, J Appl Phys 113, pp 063903 [110] J Smit (1951), Magnetoresistance of ferromagnetic metals and alloys at low temperatures, Physica 17, pp 612-627 [111] Talha Jamshaid, Ernandes Taveira Tenório-Neto, Abdoullatif Baraket, Noureddine Lebaz, Abdelhamid Elaissari, Ana Sanchís, J.-Pablo Salvador, M.-Pilar Marco, Joan Bausells, Abdelhamid Errachid, and Nadia Zine (2020), Development of Novel Magneto-Biosensor for Sulfapyridine Detection, Biosensors, 10, pp.43 135 [112] Y Telepinsky, Omer Sinwani, Vladislav Mor, Moty Schultz, and Lior Klein (2016), Magnetic thermal stability of permalloy microstructures with shapeinduced bi-axial anisotropy, Journal of Applied Physics 119, pp 083902 [113] N T Thanh (2007), Planar hall resistance sensor for biochip application, Ph.D Thesis, Chungnam National University, Korea [114] B.G T´oth, L P´eter1, A´.Rev’esz, J P´ad´ar, and I Bakonyi (2010), Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys, Eur Phys J B 75, pp 167–177 [115] Bui Dinh Tu, Tran Quang Hung, Nguyen Trung Thanh, Tran Mau Danh, Nguyen Huu Duc and CheolGi Kim (2008), Planar Hall bead array counter microchip with NiFe/IrMn bilayers, Journal of Applied Physics 104, pp 074701 – 074704 [116] Bui Dinh Tu, Tran Mau Danh, Nguyen Huu Duc, Hai Binh Nguyen (2013), High-sensitivity planar Hall sensor based on simple GMRNiFe/Cu/NiFe structure for biochip application, Adv Nat Sci.: Nanosci Nanotechnol 4, pp 015017 – 015020 [117] Bui Dinh Tu, Tran Mau Danh, Nguyen Huu Duc, Hai Binh Nguyen (2012), Influence of CoFe and NiFe pinned layers on sensitivity of planar Hall biosensors based on van-spinstructures, Adv Nat Sci.: Nanosci Nanotechnol 3, pp 045019 – 045022 [118] Bui Dinh Tu, Le Viet Cuong, Tran Quang Hung, Do Thi Huong Giang, Tran Mau Danh, Nguyen Huu Duc, and CheolGi Kim (2009), Optimization of SpinValve Structure NiFe/Cu/NiFe/IrMn for Planar Hall Effect Based Biochips, IEEE Transactions on Magnetics 45, pp 2378 – 2382 [119] Bui Dinh Tu, Le Viet Cuong, Do Thi Huong Giang, Tran Mau Danh, Nguyen Huu Duc (2009), Optimization of planar hall effect sensor for magnetic bead detection using spin-valve NiFe/Cu/NiFe/IrMn structures, Journal of Physics: Conference Series 187, pp 012056 – 012061 [120] S Tumanski (2001), Thin film magnetoresistive sensor, Institute of Physics Publishing Bristol and Philadelphia 136 [121] A P F Turner (2013), Biosensors: sense and sensibility, Chem Soc Rev 42, pp 3184 [122] M Urse, A- E Moga, M Grigoras, H Chiriac (2005), Magnetic and electrical properties of [NiFe/SiO2] n multilayer thin films, Journal of Optoelectronics and Advanced Materials (2), pp 759 – 762 [123] Vijay K Varadan, LinFeng Chen, Jining Xie (2008), Nanomedicine: Design and Applications of Magnetic Nanomaterials, Nanosensors, John Viley & Sons [124] M Volmer, M Avram (2013), Microelectron Eng 108, pp 116 [125] M Vopálenský, Anton'ın Platil, Petr Kaspar (2005), Wattmeter with AMR sensor, Sensors and Actuators A 123-124, pp 303-307 [126] M Vopálenský and Antonin Platil (2013), Temperature Drift of Offset and Sensitivity in Full-Bridge Magnetoresistive Sensors, IEEE Transactions on magnetics, vol 49 (1), pp 136-139 [127] M Vopálenský (2014), Measuring with magnetoresistive sensors, Habilition thesis, Czech technical University in Prague [128] Xuyang Liu, K H Lam, Ke Zhu, Chao Zheng, Xu Li, Yimeng Du, Chunhua Liu, and Philip W T Pong (2019), Overview of Spintronic Sensors With Internet of Things for Smart Living, Vol.55, pp.0800222 [129] C Wang, Jiangtao Pu, Zhongqiang Hu, Wei Su, Mengmeng Guan, Bin Peng, Ziyao Zhou, Zhiguang Wang, Zhuangde Jiang, and Ming Liu (2018), Electric Field Tuning of Anisotropic Magnetoresistance in Ni-Co/PMN-PT Multiferroic Heterostructure, IEEE Transactions on Magnetics, 55, Article Sequence Number: 2501103 [130] W Wang, Yi Wang, Liang Tu, Yinglong Feng, Todd Klein & Jian-Ping Wang, (2014), Magnetoresistive performance and comparison of supermagnetic nanoparticles on giant magnetoresistive sensor-based detection system, Scientific reports, 4, pp 5716 [131] Wertheim H.F.L, Nguyen H.N, Taylor W, Trinh T.M.L, Ngo H.T, Nguyen T.Q, Nguyen B.N.T, Nguyen H.H, Nguyen H.M, Nguyen C.T, Dao T.T, 137 Nguyen T.V, Fox A, Farrar J, Schultsz C, Nguyen H.D, Nguyen K.V, Horby P (2009), Streptococcus suis, an important cause of adult bacterial meningitis in northern Vietnam, PLoS ONE 4(6), pp 5973 [132] S Widodo (2015), Design and Process Technology of Anisotropic Magneto Resistive Sensor Device on Silicon Substrate, International Conference on Mathematics, Science, and Education (ICMSE 2015), pp 69-73 [133] P Wiśniewski (2007), Giant anisotropic magnetoresistance and magnetothermopower in cubic 3:4 uranium, Applied Physics Letters 90, pp 192106 [134] N Yang, Tao Li, Ping Ping Zhang, Xiaoqiang Chen, Xuefeng Hu and Wei Zhang (2016), An Early Cancer Diagnosis Platform based on Micro-magnetic Sensor Array Demonstrates Ultra-high Sensitivity, Journal of Nanomedicine & Nanotechnology (1), pp 1000344 [135] J Yin, Xue Han, Yanping Cao and Conghua Lu (2014), Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation, Scientific reports, 4, pp 5710 [136] Z Yu, Zhang Dong, Wang Yu-Kun, Yin Yu-Li, Huang Zhao-Cong, Luo Chen, and Zhai Ya (2013), Demagnetizing factors in patterned CoNiFe films with rectangular elements, Chin Phys B Vol 22 95), pp 056801 [137] J Zhai, Shuxiang Dong, Zengping Xing, Jiefang Li, and D Viehland (2007), Geomagnetic sensor based on giant magnetoelectric effect, Applied Physics Letters 91, pp 123513 [138] S Yan, Zhiqiang Cao, Zongxia Guo, Zhenyi Zheng, Anni Cao, Yue Qi, Qunwen Leng and Weisheng Zhao (2018), Design and Fabrication of Full WheatstoneBridge-Based Angular GMR Sensors, Sensors, 18, pp 1832 [139] J B Youssef, Vukadinovic N, Billet D and Labrune M (2004), Thicknessdependent magnetic excitations in permalloy films with nonuniform magnetization, Phys Rev B 69, pp 174402 [140] R Zhang, R.F Willis (2001), Thickness-Dependent Curie Temperatures of Ultrathin Magnetic Films: Effect of the Range of Spin-Spin Interactions, Phys Rev Lett, 86, pp 2665 138 [141] http://www.efunda.com/designstandards/sensors/methods/wheatstone_bridge cfm [142] https://lemisensors.com/?page_id=116: Fluxgate Magnetometers [143] https://www.nve.com/Downloads/intro.pdf [144] https://docs-emea.rs online.com/webdocs/1602/0900766b8160287b.pdf/ AFF755B MagnetoResistive Field Sensor Data Sheet (accessed on 20 July 2017) [145] http://techwww.in.tulausthal.de/site/Dokumentation/Sensoren/Magnetfeld/18 2826-da-01-en-KMZ51_Magnetfeldsensor.pdf [146] http://microimage.co.kr/?r=eng&c=89/96/99/ accessible 139 Photo Mask Specification ... chọn luận án Tên đề tài luận án ? ?Nghiên cứu chế tạo cảm biến từ trường có kích thước micro-nano dạng cầu Wheatstone dựa hiệu ứng từ- điện trở dị hướng? ?? Nhiều nghiên cứu nước giới thực hệ vật liệu. .. từ trường dựa hiệu ứng cảm ứng điện -từ 13 1.2.2 Cảm biến từ trường dựa hiệu ứng từ- điện trở khổng lồ 14 1.2.3 Cảm biến từ trường dựa hiệu ứng từ- điện trở xuyên hầm 15 1.2.4 Cảm biến từ. .. nhạy cảm biến Trên sở tìm hiểu phân tích vật liệu có hiệu ứng từ- điện trở dị hướng, dựa theo điều kiện thực tế sở nghiên cứu, chọn lựa vật liệu Ni80Fe20 đối tượng vật liệu mà luận án nghiên cứu Luận

Ngày đăng: 13/06/2021, 16:52

Xem thêm:

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN