Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 47 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
47
Dung lượng
1,55 MB
Nội dung
Traàn Thaønh Minh - Phan Löu Bieân – Traàn Quang Nghóa GIAÛI TÍCH 11 www.saosangsong.com.vn Chương 4. Giớihạn www.saosangsong.com.vn 2 Chương 4 . GIỚIHẠN A. GIỚIHẠNCỦA DÃY SỐ §1. Dãy số có giớihạn 0 A. Tóm Tắt Giáo Khoa . 1. Dãy số (u n ) có giớihạn là 0 nếu mọi số hạng của dãy số đều có giá trị tuyệt đối nhỏ hơn một số dương nhỏ tùy ý cho trước kể từ một số hạng nào đó trở đi . 2. a) lim 1 0 n = b) lim 1 0 n = c) lim 3 1 0 n = d) Dãy số không đổi (u n ) v ớ i u n = 0 có gi ớ i h ạ n 0 e) N ế u |q| <1 thi lim q n = 0 Đònh lí : Cho hai dãy số (u n ) và (v n ) . N ế u |u n | ≤ v n , n∀ và limv n = 0 thì limu n = 0 B. Giải Toán Dạng toán : Tìm giớihạn 0 của dãy số Cách 1 : Sử dụng các tiêu chuẫn a, b, c, ,d ,e kết hợp với đònh lí . Cách 2 : Dùng định nghĩa Ví du ï 1 : Chứng minh các dãy số sau có gi ớ i h ạ n là 0 . a) u n = 3 1 n b) u n = 2 cosn n c) u n = 3 4 3 2 nn 2n + d) u n = n 2n 2n 26 23+ Giải a) Ta có : Vì n 3 ≥ n , n∀ nên 0 < u n = 3 11 , nn ≤ n∀ . Mà lim 1 0 n = , do đó theo đònh lí trên thì limu n = 0 b) Vì | cosn 2 | ≤ 1 , n ∀ nên | u n | ≤ 1 n , n ∀ Mà lim 1 n = 0 , do đó theo đònh lí trên lim u n = 0 c) Ta có : 3333 4 nnnn2n +≤+= , suy ra : 0 < u n ≤ 3 3 3 2 2n 1 n 2n = Mà lim 3 1 0 n = , do đó theo đònh lí trên lim u n = 0 d) p dụng bất đẳng thức Cô si : 2 2n + 3 2n ≥ 2. 2n 2n 2n 2.3 26= => 0 < u n ≤ n n 2n 26 1 6 26 ⎛⎞ = ⎜⎟ ⎝⎠ Mà lim () n 1 0 6 = , do đó theo đònh lí trên limu n = 0 Ví dụ 2 : Dùng đ ị nh ngh ĩ a , chứng minh 0 xx lim → 2 2(n 7) 0 n3 − = + Giải Với n > 7 , ta có : |u n | = 22 2(n 7) 2n 2 n3 n n − <= + Chương 4. Giớihạn www.saosangsong.com.vn 3 V ớ i số ε > 0 cho tr ướ c , để có |u n | < ε , ta phải chọn n sao cho : n > 7 và 2 n < ε Ù n > 7 và n > 2 ε . Như vậy nếu gọi n 0 là s ố nguyên > 7 và > 2 ε , th ế thì v ớ i mọi ε > 0 cho tr ướ c , ta có : | u n | < ε , ∀ n > n 0 . Theo đ ị nh ngh ĩ a limu n = 0 Chẳng hạn v ớ i ε = 0, 001 thì n 0 > 7 và n 0 > 2 200 0,001 = v ậ y lấy n 0 = 201 ( hay m ộ t s ố nguyên bất kì > 200), C. Bài Tập Rèn Luyện Chứng minh các dãy số sau có gi ớ i h ạ n là 0 . 4.1. a) u n = 1 nn b) u n = 11 nn2 − + c) u n = n 4 π ⎛⎞ ⎜⎟ ⎝⎠ d) u n = 2 n1 n3 + + 4.2 . u n = nn 2n n(n 2) (2n 2) + + 4.3. u n = n nn n 15 2(9 16)+ 4.4. u n = sinn.cosn 5n 5 + 4.5 . u n = 2 3 n3n6 n ++ 4.6. u n = nn n 23 2.5 + D. Hướng Dẫn – Đáp Số 4.1. a) Ta có : | u n | = 1 nn < 1 n . Mà lim 1 0 n = nên limu n = 0 b) |u n | = 11 2 21 nn2n(n2)2nn −= <= ++ . Mà lim 1 0 n = nên limu n = 0 c) Vì 0 < q = 1 4 π < nên limu n = 0 d) | u n | = 2 n1 n3 + + < 2 2n 2 nn = . V ớ i số ε > 0 cho tr ướ c , để có iu n | < ε , ta phải chọn n sao cho : 2 n <ε Ù n > 2 ε . Như vậy nếu gọi n 0 là s ố nguyên > 2 ε , th ế thì v ớ i mọi ε > 0 cho tr ướ c , ta có : | u n | < ε , ∀ n > n 0 . Theo đ ị nh ngh ĩ a limu n = 0 4.2 . | u n |= n nn 2n 2n 2n n 2n n 2n n(n 2) (n 2n) (n 1) 1 (2n 2) 2 (n 1) 2 (n 1) 2 + ++ ⎛⎞ =≤= ⎜⎟ +++ ⎝⎠ Mà lim n 1 0 2 ⎛⎞ = ⎜⎟ ⎝⎠ nên limu n = 0 . 4.3. | u n | = 2n 2n n nnn nn n n2n 2n n2n 2n n1 35 15 3 .5 1 1 2 2(9 16) 2(3 5 ) 2(3 5 ) 2 2 + + ⎛⎞ =≤=≤ ⎜⎟ +++ ⎝⎠ ( bđt Côsi) Mà lim n 1 0 2 ⎛⎞ = ⎜⎟ ⎝⎠ nên limu n = 0 . 4.4. | u n | = sinn.cosn 1 1 5n 5 5n 1 n ≤≤ ++ Chương 4. Giớihạn www.saosangsong.com.vn 4 Mà lim 1 0 n = nên limu n = 0 . 4.5 . 22222 333 n3n6n3n6n10n 10 nnnn ++ + + ≤≤= Ta có v ớ i n > 100 thì 10 < n , suy ra u n n1 n n ≤= v ớ i n > 10 Mà lim 1 0 n = , do đó : limu n = 0 4.6. Ta có : 2 n + 3 n ≤ 3 n + 3 n = 2.3 n , suy ra : | u n | ≤ n n n 2.3 3 2.5 5 ⎛⎞ = ⎜⎟ ⎝⎠ Mà lim n 3 0 5 ⎛⎞ = ⎜⎟ ⎝⎠ vì 0 < 2 1 3 < , do đó theo đònh lí trên limu n = 0 . §2. Dãy số có giớihạn A. Tóm Tắt Giáo Khoa . 1. Đị nh ngh ĩ a : Dãy số (u n ) có giớihạn là số thực L n ế u lim(u n – L) = 0 limu n = L ( hoặc u n → L) Ù lim(u n – L) = 0 2. Đònh lí 1 : Giả sử lim u n = L , khi đó : a) lim | u n | = | L | và lim 3 3 n uL= b) N ế u u n ≥ 0 v ớ i n∀ thì L ≥ 0 và lim n uL= Đònh lí 2 : Giả sử limu n = L , limv n = M và c là m ộ t hằng số . Khi đó : a) * lim(u n + v n ) = L + M * lim(u n – v n ) = L – M * lim(u n .v n ) = LM * lim(cu n ) = cL b) N ế u M ≠ 0 thì lim n n u L vM = Kết quả : • lim k c 0 n = ( c : hằng số ; k : s ố nguyên d ươ ng ) • lim m k c n = 0 ( c ; hằng số ; k , m : s ố nguyên d ươ ng 3, Cho (u n ) là cấp số nhân v ớ i |q| < 1 ( cấp số nhân lùi vô hạn) thì : S = u 1 + u 1 q + u 1 q 2 + . . . = limS n = 1 u 1q − B. Giải Toán Dạng 1 : Tìm giớihạn bằng định nghĩa . limu n = L Ù lim(u n – L) = 0 Ví dụ 1 : Tìm gi ớ i h ạ n các dãy số sau : a) lim 2 1 7 n ⎛⎞ − ⎜⎟ ⎝⎠ b) lim 2n sinn n + ⎛⎞ ⎜⎟ ⎝⎠ Giải : a) Ta có : n 2 1 lim(u 7) lim 0 n − −= = => n lim u 7 = - b) Ta có : u n = 2 + sin n n => n sin n lim(u 2) lim n −= Chương 4. Giớihạn www.saosangsong.com.vn 5 Mà sin n 1 nn 1 lim 0 n ⎧ ≤ ⎪ ⎪ ⎨ ⎪ = ⎪ ⎩ nên sin n lim 0 n = , suy ra limu n = 2 Dạng 2 : Tìm giớihạncủa P(n) Q(n) trong đó P(n), Q(n) là hai đa thức theo n Chia tử và mẫu cho đơn thức có bậc cao nhất rồi sử dụng : lim k m k cc lim 0 n n = và các đònh lí về gi ớ i h ạ n . Ví dụ 2 : Tìm gi ớ i h ạ n các dãy số sau : a) 2 2 2n n 1 3n 5n 7 −+ +− b) 2 3 (2n 1)(3 n) (4n 5) −− − c) 2 2n 13 (n 5) − + Giải a) Ta có : 2 222 n 2 222 2n n 1 nnn u 3n 5n 1 nnn −+ = +− ( chia tử và mẫu cho n 2 ) = 2 2 11 2 nn 51 3 nn −+ +− Vì lim(2 - 22 11 1 1 ) lim2 lim lim 2 0 0 2 nn n n += − + =−+= Và 22 57 5 7 lim(3 ) lim3 lim lim 3 0 0 3 nn n n +− = + − =+−= Nên limu n = 2 3 b) Tử và mẫu là các đa thức bậc 3 nên chia tử và mẩu cho n 3 , ta được : u n = 22 33 2n 1 3 n 1 3 .21 nn nn 4n 5) 5 4 nn −− ⎛⎞⎛⎞⎛⎞⎛⎞ −− ⎜⎟⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠⎝⎠⎝⎠ = − ⎛⎞ ⎛⎞ − ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ Vì lim 22 2 1133 2 lim2 lim 2 ;lim 1 lim lim1 (0 1) 1 nnnn ⎛⎞ ⎛⎞⎛ ⎞ −= − = −= − =−= ⎜⎟ ⎜⎟⎜ ⎟ ⎝⎠ ⎝⎠⎝ ⎠ Và lim 33 3 55 4lim4lim(40)64 nn ⎛⎞⎛ ⎞ −= − =−= ⎜⎟⎜ ⎟ ⎝⎠⎝ ⎠ Nên limu n = 2.1 1 64 32 = c) limu n = lim 2 2 213 nn 5 1 n − ⎛⎞ + ⎜⎟ ⎝⎠ ( chia tử và mẫu cho n 2 ) = 2 0 0 1 = Dạng 3 : Dạng sử dụng công thức : lim q n = 0 nếu | q| < 1 Ta thường chia tử và mẫu cho lũy thừa a n v ớ i a l ớ n nh ấ t . Nhớ các quy tắc : a n + m = a n . a m ; n nm m a a a − = ; (a n ) m = a nm ; n n n aa bb ⎛⎞ = ⎜⎟ ⎝⎠ Ví dụ 3 : Tìm gi ớ i h ạ n các dãy số sau : a) nn nn 5.2 6.3 3.2 2.3 − + b) 2n 1 n 2n 2 2n n 2n 1 3155 4.3 2.15 7.5 ++ − −+ ++ Chương 4. Giớihạn www.saosangsong.com.vn 6 Giải a) Ta có : limu n = n nn nn nn n nn 2 5.2 6.3 56 3 33 lim lim 3.2 2.3 2 3. 2 33 3 ⎛⎞ − − ⎜⎟ ⎝⎠ = ⎛⎞ + + ⎜⎟ ⎝⎠ ( Chia tử và mẫu cho 3 n ) = 5.0 6 3 3.0 2 − =− + ( vì lim n 2 0 3 ⎛⎞ = ⎜⎟ ⎝⎠ do 2 01 3 <<) b) Tr ướ c hết ta đưa về các lũy thừa dạng q n v ớ i | q| < 1 . Ta có : u n = nn n nn n 3.9 15 25.25 7 4.9 2.15 .25 5 −+ ++ Chia từ và mẫu cho 25 n : limu n = lim nn nn 915 3. 25 25 25 9157 4. 2. 25 25 5 ⎛⎞⎛⎞ −+ ⎜⎟⎜⎟ ⎝⎠⎝⎠ ⎛⎞ ⎛⎞ + + ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ = 0025125 7 7 00 5 −+ = ++ ( vì lim nn 915 lim 0 25 25 ⎛⎞ ⎛⎞ == ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ do 0 < 915 1 25 25 < < ) Ví dụ 4 : Tính các tổng vô hạn các số hạng c ủ a cấp số nhân sau : a) S = 1 - 11 24 +− b) S = sin 2 x + sin 4 x + sin 6 x + . . . (x ≠ k 2 π + π ) Giải : a) p dụng công thức : S = 1 u 1q − v ớ i |q| < 1 . Ta có vì | q | = 1 2 < 1 nên S = 12 1 3 1 2 = + b) Vì x ≠ k 2 π +π nên |q| = sin 2 x ≠ 1 tức |q| < 1 , do đó S = 22 2 1 22 u sin x sin x tan x 1q 1sinx cosx === −− * Dạng 4 : Tìm giớihạn bằng cách thiết lập công thức u n theo n Ví dụ 5 : Tìm limu n biết u n = 22 2 2 111 1 . 112 233 n n ++++ +++ + Giải Ta rút gọn u n bằng cách nhận xét số hạng t ổ ng quát 2 1111 kkk(k1)kk1 ==− ++ + ( 1 ≤ k ≤ n ) Suy ra : u n = 11 11 11 1 1 . 12 23 34 nn1 ⎛⎞⎛⎞⎛ ⎞ ⎛ ⎞ −+−+−++− ⎜⎟⎜⎟⎜ ⎟ ⎜ ⎟ + ⎝⎠⎝⎠⎝ ⎠ ⎝ ⎠ = 1 - 1 n1 + => limu n = lim 1 11 n1 ⎛⎞ −= ⎜⎟ + ⎝⎠ Ví dụ 6 : Cho dãy số u n đònh bởi : 1 n n1 n u1 1 uu ;n1 2 + = ⎧ ⎪ ⎨ ⎛⎞ =+ ≥ ⎪ ⎜⎟ ⎝⎠ ⎩ Chứng minh u n = 2 - 2 n 1 2 ⎛⎞ ⎜⎟ ⎝⎠ , n∀ . Suy ra limu n . Chương 4. Giớihạn www.saosangsong.com.vn 7 Giải Ta chứng minh u n = 2 - 2 n 1 2 ⎛⎞ ⎜⎟ ⎝⎠ (1) , n ∀ băng ph ư ong pháp quy nạp . • Ta có : u 1 = 2 – 2. 1 1 2 ⎛⎞ ⎜⎟ ⎝⎠ = 1 : v ậ y (1) đúng khi n = 1 • Giả sử u k = 2 – 2. k 1 2 ⎛⎞ ⎜⎟ ⎝⎠ , th ế thì theo giả thiết quy nạp : u k+1 = u k + k 1 2 ⎛⎞ ⎜⎟ ⎝⎠ Ư u k+1 = 2 – 2. k 1 2 ⎛⎞ ⎜⎟ ⎝⎠ + k 1 2 ⎛⎞ ⎜⎟ ⎝⎠ = 2 - kk1 11 22. 22 + ⎛⎞ ⎛⎞ =− ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ : (1) đúng khi n = k + 1 V ậ y (1) đúng v ớ i n∀ . Suy ra : limu n = 2 – 2lim n 1 2 ⎛⎞ ⎜⎟ ⎝⎠ = 2 – 0 = 2 Ghi chú : Ta có thê thiết lập trực tiếp công thức (1) bằng nhận xét u n – u n – 1 là một cấp số nhân công bội 1 2 C. Bài Tập Rèn Luyện 4.7. Chọn câu đúng : 3n sin(2n 4) lim 2n ++ a) 1 b) 2 c) 0 d) 3 2 4.8. Chọn câu đúng : lim 2n 1 3n − − = a) 2 3 b) – 1 3 c) 1 d) – 2 4.9. Chọn câu đúng : lim 2 2 3(2n 1) n 4(n 7)(3n 1) − +− = a) ½ b) 1 3 c) 0 d) 3 4 4.10. Chọn câu đúng : lim 2 32 nn3n1 n2n1 ++ − ++ = a) 4 b)3 c) 0 d) - 1 4.11. Chọn câu đúng : lim n1 2n1 n4 n1 35 225 +− +− − + = a) – 5 b) – 1/5 c) 3/16 d) đáp số khác 4.12 . Chọn câu đúng : Tổng vô hạn c ủ a cấp số nhân sau - 4 + 2 – 1+ . . .bằng : a) 16 b) 16 3 c) 6 d) đáp số khác 4.13. Tìm gi ớ i h ạ n các dãy số sau : a) sin(2n 1) lim 3 n + ⎛⎞ − ⎜⎟ ⎝⎠ b) 2 2n 3 cosn lim n1 ⎛⎞ +− ⎜⎟ ⎜⎟ + ⎝⎠ 4. 14. Tìm gi ớ i h ạ n các dãy số sau : a) 2 2 n2n 3n n 1 + ++ b) 32 42 2n n n3n6 + −+ c) 2 3 (2n 4)(3n 4)(3n 1) (2n 5) )(5n 2) +−+ +− d) 3 32 2 nnn n2n32n7 −+ −++− e) 3 2 nn7n1 (2n 1) − ++− + 4. 15. Tìm gi ớ i h ạ n các dãy số sau : Chương 4. Giớihạn www.saosangsong.com.vn 8 a) nn1 nn 4.3 7 2.5 7 + + + b) nn1 n1 n 23 5.2 4.3 + + + − c) 2n n 1 2n 1 n1 n 2 2.3 6 2 (2.3 3.2 ) +− − +− − 4. 16. Tính các tổng vô hạn c ủ a cấp số nhân sau : a) 1000 + 100 + 10 + . . . b) 1 + cos 2 x + cos 4 x + . . .(x ≠ k π ) c) 1 xx .−+− d) 4.17. Trong m ặ t ph ẳ ng Oxy , m ộ t ốc sên bò từ gốc O theo ph ươ ng Ox 1 m , rồi quẹo trái theo ph ươ ng Oy rồi lại quẹo trái theo ph ươ ng Ox và cứ thế , khoảng cách bò lần sau bằng nữ a khoảng cách tr ướ c đó . Hỏi bò mãi thì ốc sên sẽ đ ế n vò trí nào ? 4. 18. Biểu diễn các số thập phân tuần hòan sau đây d ướ i dạng phân số , ví dụ : 38 1,151515 33 = . là số thập phân tuần hòan có chu kì là 15 a) 0, 123123123. . . b) 1, 272727 . . . 4.19. Cho m ộ t góc xOy = 30 0 . Từ điểm A trên Ox v ớ i OA = 1 , đ ựng AA 1 vuông góc Oy . Tiếp theo dựng A 1 A 2 vuông góc Ox , rồi A 2 A 3 vuông góc Oy và cứ thế mãi mãi . Tình đ ộ dài đ ườ ng gấp khúc AA 1 A 2 . . . 4.20. Cho hình vuông ABCD có đ ộ dài là 1. Ta n ộ i ti ế p trong hình vuông này m ộ t hình vuông thứ hai , có đỉnh là trung điểm c ủ a các cạnh c ủ a nó. Và cứ thế . . . . Tính tổng chu vi c ủ a các hình vuông . * 4. 21. Tìm gi ớ i h ạ n các dãy số sau : a) 14 .(3n1) 16 .(5n1) ++ + + ++ + + b) n2n n2n 3(1 2 2 . 2) 2(1 3 3 . 3) ++ + + ++ + + c) 22 2 11 1 . 2131 n1 +++ −− − d) 11 1 1 . n1 2 2 3 n n1 ⎛⎞ +++ ⎜⎟ ++ ++ ⎝⎠ * 4. 22. Tìm gi ớ i h ạ n các dãy số sau : a) 11 1 . 21 12 32 23 (n 1)n nn 1 +++ ++ +++ b) 22 22 22 23 n . (2 1) (3 1) (n 1) +++ −− − * 4. 23. Cho dãy số : 1 n n1 . n u2 2u 1 u(n1) u + = ⎧ ⎪ − ⎨ = ≥ ⎪ ⎩ . Tìm công thức tính u n theo n . Suy ra limu n . D. Hướng Dẫn – Đáp Số 4.7. (d) nn 3sin(2n4) 3 lim(u ) lim 0 lim u 22n 2 + −= ==> = 4.8. (d) lim 1 2 2n 1 2 n lim 2 3 3n 1 1 n − − ===− −− − Chương 4. Giớihạn www.saosangsong.com.vn 9 4.9. (b) lim 2 22 22 2 1 3(2 ) 3(2n 1) n 3.2 1 n lim 71 4(n 7)(3n 1) 4.1.3 3 4(1 )(3 ) nn − − === +− +− 4.10.(c) lim 2 32 nn3n1 n2n1 ++ − ++ = 2 3 3 11 3 1 nn n n lim 21 1 nn ++ − ++ ( chia T và M cho 3 n) = 0 0 1 = 4.11. (a) lim n1 2n1 n4 n1 35 225 +− +− − + = n nn n nn 31 1 3 3.3 .25 25 5 5 lim lim 1 21 16.2 .25 16. 25 25 25 ⎛⎞ − − ⎜⎟ ⎝⎠ = ⎛⎞ + + ⎜⎟ ⎝⎠ = - 5 4.12. (b) Ta có : 8 - 4 + 2 – 1+ . . .= 816 1 3 1( ) 2 = −− 4.13. a) Ta có : lim (u n – 3) = sin(2n 1) lim n −+ Mà sin(2n 1) 1 nn 1 lim 0 n ⎧ −+ ≤ ⎪ ⎪ ⎨ ⎪ = ⎪ ⎩ nên lim(u n – 3) = 0 => limu n = 3 b) Ta có : 2 n 1cosn lim(u 2) lim n1 − −= + Mà 2 1cosn 2 n1 n 2 lim 0 n ⎧ − ≤ ⎪ ⎪ + ⎨ ⎪ = ⎪ ⎩ => nn lim(u 2) 0 lim u 2−==> = 4. 14. a) limu n = 1 3 (Chia tử và mẫu cho n 2 ) b) limu n = 0 ( Chia tử và mẫu cho n 4 ) c) limu n = 2 3 2.3.3 2 2.5 5 = ( Chia tử và mẫu cho n 4 ) d) limu n = 3 11 3 12 = + (Chia tử và mẫu cho n = 3 23 nn= ) e) limu n = 2 00 0 2 + = (Chia tử và mẫu cho n 2 = 4 n) 4. 15. a) limu n = lim n n 3 4. 7 07 7 7 01 5 2. 1 7 ⎛⎞ + ⎜⎟ + ⎝⎠ == + ⎛⎞ + ⎜⎟ ⎝⎠ Chương 4. Giớihạn www.saosangsong.com.vn 10 b) limu n = lim n n 2 3 03 3 04 2 10. 4 3 ⎛⎞ + ⎜⎟ + ⎝⎠ = − ⎛⎞ − ⎜⎟ ⎝⎠ = - 3 4 c) limu n = nn 2 n 614 26. . 929 22 3. 33 ⎛⎞ ⎛⎞ +− ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ ⎛⎞ ⎛⎞ − ⎜⎟ ⎜⎟ ⎜⎟ ⎝⎠ ⎝⎠ = 9 2 = 4. 16. a) S = 1 10000 1000. 1 9 1 10 = − b) S = 22 11 1. 1cosx sinx = − c) S = 1. 1 1x+ 4. 17. Các hoành đ ộ l ầ n l ượ t c ủ a ốc sên là : 1 , - 11 ;; . 416 lập thành m ộ t cấp số nhân , số hạng đầu 1 , công bội - 1 4 . Suy ra hoành đ ộ c ủ a ốc sẽ tiến đ ế n v ị trí 14 1. 1 5 1 4 = + (m) . Các tung độ c ủ a ốc sên là : 111 ; ; ; 2816 − lập thành m ộ t cấp số nhân , số hạng đầu 1 2 , công bội - 1 4 . Suy ra tung độ c ủ a ốc sẽ tiến đ ế n v ị trí la : 11 2 . 1 25 1 4 = + V ậ y ốc sên sẽ bò đ ế n điểm 42 ; 55 ⎛⎞ ⎜⎟ ⎝⎠ 4. 18. Ta viết số thập phân d ướ i dạng m ộ t tổng vô hạn : 0,123 + 0, 123123 + 0, 123123123 . . . . Đây là tổng vô hạn c ủ a m ộ t cấp số nhân , số hạng đầu 0, 123 , công bội q = 1 1000 , suy ra số đó là : 123 1 123 41 . 1 1000 999 333 1 1000 == − b) Ta có : 1, 272727 . . . = 1 + 0, 27 + 0, 2727 + 0, 272727 + . . . = 1 + 27 1 27 3 14 .11 1 100 99 11 13 1 100 =+ =+ = − 4. 19. Các tam giác OAA 1 , OA 1 A 2 . . . là các tam giác nữ a đều , cho ta : 23 12 112 AA AA 3 . AA AA 2 === , suy ra các đoạn AA 1 , A 1 A 2 , A 2 A 3 . . . lập thành m ộ t cấp số nhân , số hạng đầu AA 1 = 11 .OA 33 = , công bội 3 2 . V ậ y đ ộ dài đoạn gấp khúc là : 11 2 . 33233 1 2 = − − O A A 1 A 2 A 3 . - 2 4. 27.(a) lim ( ) 22 2 2 (4n 2n 7) (2n 3) 4n 2n 7 2n 3) lim 4n 2n 7 2n 3 ++− − ++−+= + ++ − = = lim 2 14n 2 14 7 22 2 4n 2n 7 2n 3 − == + +++− 4. 28.(d). n 4. 4. 25.(d) * n 3( 2n 1 2n 4 ) lim u lim 3 ++ + ==−∞ − * n 1 n3 1 n lim u lim 31 n2 1 nn ⎛⎞ +− ⎜⎟ ⎝⎠ = ⎛⎞ +− + ⎜⎟ ⎝⎠ = 31 21 − − 4. 26. (b) n 44 2n 4