làgiác hainằm đường thẳng song song I với thẳng vàcócách Xétđường Qua trên ?3 em nửa rútmp rađó I được bờ nhận C H’ H B đường thẳng đó một khoảng chứagìđoạn xét về tập thẳng hợp BC các c[r]
(1)Chµo mõng quý thÇy c« vÒ dù giê th¨m líp! D¬ng quèc cêng (2) Nêu định nghĩa: Khoảng cách từ điểm A đến đường thẳng d ? Khoảng cách từ điểm A đến đường thẳng d là độ dài đoạn vuông góc AH kẻ từ điểm A đến đường thẳng d A h h h h h d H Vậy các điểm cách đường thẳng d khoảng h nằm trên đường nào? (3) Tiết 12 (4) TiÕt 12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: ?1 Cho hai đường thẳng song song a và b a (như hình vẽ) Gọi A và B là hai điểm bất kì Qua ?1 em rúta, thuộc đường thẳng AH nhận và BK làxét các gì ? đường vuông góc kẻ từ A và B đến đường b thẳng b Gọi độ dài AH là h Tính độ dài BK theo h A h H B h K • Mọi điểm thuộc đường thẳng a cách đường thẳng b khoảng h Tương tự, điểm thuộc đường Ta nói h là khoảng cách hai đường thẳng song song a thẳng b cách đường thẳng a khoảng và b h (5) TiÕt 12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: * Định nghĩa Khoảng cách hai Vậy khoảng cách hai đường thẳng song song là khoảng đường thẳng song song là gì? cách từ điểm tuỳ ý trên đường thẳng này đến đường thẳng a A B h h b H K Bài toán 1: Trong các hình vẽ sau, trường hợp nào h là khoảng cách hai đường thẳng song song a và b a A h a A B h a h b b B B a) b) b K c) (6) TiÕt 12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: * Định nghĩa (SGK trang 101) Tính chất các điểm cách đường thẳng cho trước: ?2 Cho đường thẳng b Gọi a và a’ là hai đường thẳng song song với đường thẳng b và cùng cách đường thẳng b khoảng h, (I) và (II) là các nửa mặt phẳng bờ b Gọi M, M’ là các điểm cách đường thẳng b khoảng h, đó M thuộc nửa mặt phẳng (I), M’ thuộc nửa mặt phẳng (II) Chứng minh M thuộc đường thẳng a, M’ thuộc đường thẳng a’ a A M h (I) h H’ b K’ H K h (II) a’ A’ h M’ (7) TiÕt 12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: * Định nghĩa (SGK trang 101) Tính chất các điểm cách đường thẳng cho trước: * Tính chất.Các điểm cách đường thẳng b khoảng h nằm trên hai đường thẳng song song với b và cách b khoảng cách h a Các điểm cách đường thẳng b (I) khoảng h nằm trên b đường thẳng nào? (II) a’ A M h h K’ H’ H K h A’ h M’ (8) TiÕt12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: * Định nghĩa (SGK trang 101) Tính chất các điểm cách đường thẳng cho trước: * Tính chất (SGK trang 101) A A’ *?3 Nhận Tậpgiác hợp cáccóđiểm Xét xét các tam ABC cạnh BC cố định, đường cao ứng với cạnh BC luôn cách đường thẳng cố định cmkhoảng ( xem hình vẽ ).hĐỉnh A 2cm 2cm không đổicác tam trên đường nào? làgiác hainằm đường thẳng song song (I) với thẳng vàcócách Xétđường Qua trên ?3 em nửa rútmp rađó (I) bờ nhận C H’ H B đường thẳng đó khoảng chứagìđoạn xét tập thẳng hợp BC các cố điểm định Giải Tương tự xét trênthẳng nửa mp (II) h cách đường cố (II) Vì AH vuông góc BC ; AH = cm 2cm 2cm taNên cóđiểm thêm kết gìđịnh ? hmột cáchluận BC cố định mộtAkhoảng khoảng không cách đổi ?không đổi 2cm Vậy đỉnh A tam giác ABC nằm trên đường A A’ thẳng song song với BC và cách BC khoảng 2cm (9) TiÕt12: Đường thẳng song song với đường thẳng cho trước Khoảng cách hai đường thẳng song song: * Định nghĩa (SGK trang 101) Tính chất các điểm cách đường thẳng cho trước: * Tính chất (SGK trang 101) * Nhận xét (SGK trang 101) Bài tập Khoảng cách hai đường thẳng song song là khoảng cách từ điểm tuỳ ý trên đường thẳng này đến điểm tuỳ ý trên đường thẳng A a A Đúng B Sai b H B (10) Bài 69: Ghép ý 1; 2; 3; với các ý a; b; c; d để khẳng định đúng 1.Tập hợp các điểm cách điểm A cố định khoảng 3cm a Là đường trung trực đoạn thẳng AB 2.Tập hợp các điểm cách đầu đoạn thẳng AB cố định b Là hai đường thẳng song song với a và cách a khoảng 3cm 3.Tập hợp các điểm nằm góc xOy và cách cạnh góc đó c Là đường tròn tâm A bán kính 3cm 4.Tập hợp các điểm cách đường thẳng a cố định khoảng 3cm d Là tia phân giác góc xOy (11) Đường thẳng song song với đường thẳng cho trước * Định nghĩa Khoảng cách hai đường thẳng song song là khoảng cách từ điểm tuỳ ý trên đường thẳng này đến đường thẳng a A h b H •Nhận xét Tập hợp các điểm cách đường thẳng cố định khoảng h không đổi là hai đường thẳng song song với đường thẳng đó và cách đường thẳng đó khoảng h * Tính chất Các điểm cách đường thẳng b khoảng h nằm trên hai đường thẳng song song với b và cách b khoảng h A h h b (12) Hướng dẫn nhà - Nắm định nghĩa khoảng cách hai đường thẳng song song , Tính chất các điểm cách đường thẳng cho trước và Nhận xét - Làm bài tập: 67, 70 ( SGK trang 102, 103) 126,128 (SBT trang 73) * HS khá , giỏi làm thêm bài 127 (SBT trang 73) Hướng dẫn bài 67: Áp dụng t/c đường trung bình Hướng dẫn bài 70: Áp dụng t/c đường trung trực Hướng dẫn bài 126, 128: tương tự bài 68 SGK (13) Bài 68: Cho điểm A nằm ngoài đường thẳng d và có khoảng cách đến d cm Lấy điểm B thuộc đường thẳng d Gọi C là điểm đối xứng với A qua điểm B Khi điểm B di chuyển trên đường thẳng d thì điểm C di chuyển trên đường nào ? A Giải: 2cm Từ C kẻ CK d K d Xét ∆AHB và ∆CKB có H B HAB = KCB (slt) 2c AB = BC (A đx C qua B) m ABH = CBK (đđ) C Vậy ∆AHB = ∆CKB (g-c-g) Suy ra: AH = CK (cạnh tương ứng) Mà AH = 2cm => CK = 2cm Vậy điểm C cách đường thẳng d cố định khoảng cách không đổi là 2cm Nên B di chuyển trên d thì C di chuyển trên đường thẳng song song với d và cách d khoảng 2cm (14)