1. Trang chủ
  2. » Trung học cơ sở - phổ thông

bai tap hinh 10 chuong 1

6 54 1

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 315,63 KB

Nội dung

Chứng minh đẳng thức vetơ có chứa tích của vectơ với một số 1 Gọi M, N lần lượt là trung điểm của hai đoạn thẳng AB và CD.. 2 Cho hình bình hành ABCD..[r]

(1) Xác định vectơ k a CÁC BÀI TẬP CƠ BẢN  PP: vào định nghĩa vectơ k a và các tính chất  Dựa   1) Cho a  AB và điểm hai điểm M và N cho :   O  Xác định  OM 3a; ON  4a 2) Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB cho AM= AB Tìm k  các đẳng  thức  sau:   a ) AM k AB; b) MA k MB; c) MA k AB Biểu diễn (phân tích, biểu thị) thành hai vectơ không cùng phương 1) Cho  ABC có trọng âtm G Cho các điểm D, E, F là   điểm   trung u  AE; v  AF các cạnh BC, CA, AB vàI là  giao  điểm AD và EF Đặt  Hãy phân tích các vectơ AI , AG , DE , DC theo hai vectơ u, v 2) Cho tam giác ABC Điểm M nằm BC cho MB= 2MC Hãy phân    trên  cạnh   tích vectơ AM theo hai vectơ u  AB, v  AC Chứng minh điểm thẳng hàng     AC  0≠k   : AB k AC + A, B, C thẳng  hàng  AB cùng phương + Nếu AB kCD và hai đường thẳng AB và CD phân biệt thì AB//CD 1) Cho tam giác ABC có trung tuyến AM Gọi I là trung điểm AM và K là trung điểm AC AK= AC Chứng minh ba điểm B, I, K thẳng hàng    BC  MA 0 , 2)  Cho  tam giác ABC Hai điểm M, N xác định hệ thức: AB  NA  AC 0 Chứng minh MN//AC Chứng minh đẳng thức vetơ có chứa tích vectơ với số 1) Gọi M, N là trung điểm hai đoạn thẳng AB và CD Chứng minh:    2MN  AC  BD     2) Cho hình bình hành ABCD Chứng minh: AB  AC  AD 3 AC 3) Chứng minh G và  G’  lần  lượt là trọng tâm tam giác ABC và A’B’C’ thì 3GG '  AA '  BB '  CC ' Xác định  vị  trí điểm nhờ đẳng thức véctơ + AB 0  A B   a AM a + Cho  điểm A và  Có  M cho : + AB  AC  B C ; AD BD  A B 1)  Cho  tam giác ABC có D là trung điểm BC Xác định vị trí G biết AG 2GD (2)    IA  IB 0 2) Cho hai điểm A và B Tìm điểm I cho:      3) Cho tứ giác ABCD Xác định vị trí điểm G cho: GA  GB  GC  GD 0 BÀI TẬP Bài 1: Cho ABC Gọi M, N, P là trung điểm BC, CA, AB và O là điểm tùy ý     BN CP a/ CMR : AM + + =       b/ CMR : OA + OB + OC = OM + ON + OP   Bài 2: Cho ABC có trọng tâm G Gọi MBC cho BM = MC          a/ CMR : AB + AC = AM b/ CMR : MA + MB + MC = MG Bài 3: Cho tứ giác ABCD Gọi E, F là trung điểm AB, CD và O là trung điểm EF         BC OA OB OC OD AD EF a/ CMR : + =2 b/ CMR : + + + =    c/ CMR : MA + MB + MC + MD = MO (với M tùy ý)  d/ Xác định vị trí điểm M cho MA    + MB + MC + MD  nhỏ Bài 4: Cho tứ giác ABCD Gọi E, F, G, H là trung điểm AB, BC, CD, DA và M là điểm tùy ý      a/ CMR : AF + BG + CH + DE =         b/ CMR : MA + MB + MC + MD = ME + MF + MG + MH     c/ CMR : AB  AC + AD = AG (với G là trung điểm FH) Bài 5: Cho hai ABC và DEF có trọng tâm là G và H     CMR : AD + BE + CF = GH Bài 6: Cho hình bình hành ABCD có tâm O và E là trung điểm AD CMR :          OA OB OC OD a/ + + + = b/ EA + EB + EC = AB     c/ EB + EA + ED = EC Bài 7: Cho ABC có M, D là trung điểm AB, BC và N là điểm trên cạnh AC   cho AN = NC Gọi K là trung điểm MN 1   a/ CMR : AK = AB + AC  1   b/ CMR : KD = AB + AC    Bài 8: Cho ABC Trên hai cạnh AB, AC lấy điểm D và E cho AD = DB   , CE = EA Gọi M là trung điểm DE và I là trung điểm BC CMR : 1       a/ AM = AB + AC b/ MI = AB + AC Bài 9: Cho lục giác ABCDEF tâm O cạnh a (3) 1 1   AB  BC  a) Phân tích AD theo AB và AF b) Tinh theo a Bài 10: Cho tam giác ABC có trung tuyến AM (M là trung điểm BC)    Phân tích AM theo AB và AC Bài 11: Cho tam giác ABC Gọi M là trung điểm AB, N làmột điểm  trên AC cho NA=2NC  Gọi K là trung điểm MN Phân tích AK theo AB và AC Bài 15: Cho tam giác ABC, Gọi I là điểm trên cạnh BC cho 2CI = 3BI, gọi J là điểm trên BC kéo dài cho 5JB = 2JC     AI , AJ theo AB, AC a) Tính    AG AI b) Gọi G là trọng tâm tam giác ABC Tính theo và AJ   Bài 16: Cho điểm A, B, C, D thỏa AB + AC = CMR : B, C, D thẳng hàng        MC NA NC MB PA PB Bài 17: Cho ABC, lấy M, N, P cho =3 ; +3 = và + =      a/ Tính PM , PN theo AB và AC b/ CMR : M, N, P thẳng hàng Bài 18: Cho tam giác ABC.Gọi A’ là điểm đối xứng với A qua B, B’ là điểm đối xứng với B qua C, C’ là điểm đối xứng với C qua A.Chứng minh các tam giác ABC và A’B’C’ có cùng trọng tâm Bài 19: Cho tam giác ABC và điểm M tuỳ ý Gọi A’, B’, C’ là điểm đối xứng M qua các trung điểm K, I, J các cạnh BC, CA, AB a/ Chứng minh ba đường thẳng AA’, BB’, CC’ đồng qui b/ Chứng minh M di động , MN luôn qua trọng tâm G tam giác ABC §4 TRỤC TỌA ĐỘ VÀ HỆ TRỤC TỌA ĐỘ BÀI  TẬP  CƠ  BẢN  a xi  y j a 1) Biểu diễn  vectơ dạng  a a a a) =(1;1) c) =(0;2)  b) =(5;0) 2) Xác định tọa độ vectơ u , biết:      1   a) u =3 i 4 j b)u =2 i + j c) u = 3 i c , biết: 3) Xác định  tọa  độcủa vectơ    c a b a b c a)  = +3 ; với (2;1), (3;4) Tính độ dài b) c =2 a 5 b ; với a (1;2), b (2;3) → → → 4) Cho a =(2;4); b =(-3;1); c =(5;-2) Tìm vectơ:  a d) =(0;0)   u d) = j (4) → → → → → a) m=2 a +3 b − c 5) Cho hai điểm A(1;1), B(1;3) → → b) n =24 a +14 c   , BA a) Xác định tọa độ các vectơ AB  b) Tìm tọa độ điểm M cho BM (3;0) c) Tìm tọa độ điểm N cho NA (1;1) 6) Cho tam giác ABC Các điểm M(1;0), N(2;2) và P(1;3) là trung điểm các cạnh BC, CA và AB Tìm tọa độ các đỉnh tam giác 7) Cho hình bình hành ABCD có A(1;3), B(2;4), C(0;1) Tìm tọa độ đỉnh D 8) Cho hai điểm A(1;3);B(13;8)  a) Xác định tọa độ AB Tính AB b) Tìm tọa độ trung điểm I đoạn AB c) Tìm tọa độ điểm C biết A là trung điểm BC d) A’ là điểm đối xứng A qua B Tìm tọa độ A’ 9) Cho biết các véctơ sau cùng phương hay không cùng phương    a) a = (1;2) và b = (3;6)   b) a =( = -1) và b = (-2; )    c) a = (-1;4) và b = (3;7) d) a = (-1;-3) và b =(1;2) 10) Tìm  x để các  cặp véctơ sau cùng phương   a) a =(2;3), b=(4;x) b) u =(0;5), v =(x;7)  m n a b c) =(2;3), =(1;x) d) =( t+1;2) =(3;4-t)    11) Biểu diễn véctơ c theo hai véctơ a và b   a) c = (4;7) ; a = (2;1)   b) c = (1;3) ; a = (1;1)   c) c = (0;5) ; a = (4;3)  ; b = (-3;4)  ; b = (2;3)  ; b = (2;1)  AD theo 12) Cho  bốn điểm A(1;1), B(2;1), C(4;3) và D(16;3) Hãy biểu diễn AB, AC 13) Cho ba điểm A(1;1), B(1;3), C(2;0) Chứng minh điểm A, B, C thẳng hàng 14) Cho A(3;4), B(2;5) Tìm x để điểm C(7;x) thuộc đường thẳng AB 15) Cho tam giác ABC có A(1;1), B(5;3) đỉnh C trên Oy và trọng tâm G trên Ox Tìm tọa độ đỉnh C 16) Cho A(2;1), B(4;5) Tìm tọa độ trung điểm I đoạn AB và tọa độ diểm C cho tứ giác OABC là hình bình hành, O là gốc tọa độ 17) Cho ba điểm A(0;4), B(5;6), C(3;2) a) Chứng minh ba điểm A, B, C không thẳng hàng b) Tìm tọa độ trọng tâm tam giác ABC BÀI TẬP ÔN TẬP CHƯƠNG I 1/ Cho ABC với trung tuyến AM Gọi I là trung điểm AM     IC IA IB a/ CMR : + + = (5)     b/ Với điểm O CMR : OA + OB + OC = OI 2/ Cho hình bình hành ABCD tâm O Gọi I là trung điểm BC và G là trọng tâm ABC      a/ CMR : AI = AO + AB   b/ CMR : DG = DA + DB + DC      3/ Cho ABC Lấy trên cạnh BC điểm N cho BC = BN Tính AN theo AB và AC 4/ Cho hình bình hành ABCD tâm O Gọi I và J là trung điểm BC, CD        a/ CMR : AI = ( AD + AB ) b/ CMR : OA + OI + OJ =     MC MA MB c/ Tìm điểm M thỏa :  + = (6) 7/ Cho ABC Tìm tập hợp các điểm M thỏa điều kiện :   a/ MA = MB     MC MA MB b/ + + =           c/  MA + MB  =  MA  MB   d/  MA + MB  =  MA  +  MB   e/  MA + MB  =  MA + MC    8/ Cho ABC có trọng tâm G Gọi D và E là các điểm xác định AD = AB ,   AE = AC      a/ Tính AG , DE , DG theo AB và AC b/ CMR : D, E, G thẳng hàng  9/ Cho ABC Gọi D là điểm xác định AD = AC và M là trung điểm đoạn BD     a/ Tính AM theo AB và AC IB AM b/ AM cắt BC I Tính IC và AI (7)

Ngày đăng: 04/06/2021, 16:08

TỪ KHÓA LIÊN QUAN

w