Bµi tËp. Bµi tËp 1.[r]
(1)Các Chuyên đề Gt máy tính cầm tay
Chuyên đề 1: Các toán tính giá trị biểu thức
1/ PhÐp tính tràn hình :
a/ A = 1.1! + 2.2! + 3.3! + 4.4! + + 16.16! V× n n! = (n + - 1).n! = (n + 1)! - n! nªn:
A = 1.1! + 2.2! + 3.3! + 4.4! + + 16.16! = (2! - 1!) + (3! - 2!) + + (17! - 16!) A = 17! - 1! = 6227020800 57120
b/ A = 123456789 x 97531; B = 2468103 + 13579112.(§Ị thi HSG Casio Tỉnh Ninh Bình 03-04) 2/ Tính thông thờng:
a/
3 : 0, 0,1 34, 06 33, 81 4
26 : :
2, 0, 1, 6, 84 : 28, 57 25,15 21
D
b/ √2−3 √3+
4
455+6677+8899
3/ Tính giá trị biểu thức cã ®iỊu kiƯn kÌm theo cđa biÕn:
a/ Cho biÕt sin2x = 0,5842 (0 < x <900) TÝnh A = (1 tg x)(1 cotg x) 1 cos x ) x sin 1 ( x cos ) x cos 1 ( x sin 2 3
b/ Cho biÕt tgx = tg330 tg340 tg350… tg550 tg560 (0 < x < 900)
TÝnh B = (1 sinx cosx) sin x cos x
) x sin 1 ( x g cot ) x cos 1 ( x tg 3 3
c/ Tính giá trị biểu thức : A = 5a
+7a2bc2+3
11 ab
c −9,2768 bc2+√13−5,83
2a2+5 ab−7b2+2,54+15√23 víi a = 45,2008; b = 16 10
2009 ; c = 3+16 10
4/ Tính giá trị dÃy quy luật giá trị biến:
a/ A = 2005.2006.2007
1 1
b/ B = 4015 4030056
1 12 2 2
x x x x x x x
x ; víi x = 20072008
1 2008 B x x
c/ C = 2008 2007
1 1 1
x x x x x x x
x ; víi x= 20072008
C x2008 x
d/ Cho Sn = 13 + 23 + 33 +…+ n3 TÝnh S2012 4/ T×m x,y biÕt:
a/
1
4 : 0, 003 0,
1
2 20
: 62 17, 81 : 0, 0137 1301
3
1 (1, 88 2 ) 20
3 2, 65 :
25 20 x
Chuyên đề 2: Một số toán dãy số 2/ Cho dãy số với số hạng tổng quát đợc cho công thức
) 13 ( ) 13
( n n
n
U
víi n = , , , k ,
(2)a) TÝnh U1,U2,U3,U4,U5,U6,U7,U8
b) LËp c«ng thøc truy håi tÝnh Un1 theo Un vµ Un1
c) Lập quy trình ấn phím liên tục tính Un1 theo Un vµ Un1
2/ Cho d·y sè
5 7 5 7
n n
n
U
víi n = 0; 1; 2; 3; a/ TÝnh số hạng U0, U1, U2, U3, U4
b/ Chøng minh r»ng Un + = 10Un + 1– 18Un
c/ LËp quy tr×nh bÊm phÝm liªn tơc tÝnh Un + theo Un + Un HD giải:
a/ Thay n = 0; 1; 2; 3; vào công thức ta đợc U0 = 0, U1 = 1, U2 = 10, U3 = 82, U4 = 640
b/ Chứng minh: Giả sử Un + = aUn + + bUn + c Thay n = 0; 1; cơng thức ta đợc hệ phơng trình:
2
3
4
10
10 82
82 10 640
U aU bU c a c
U aU bU c a b c
a b c
U aU bU c
Giải hệ ta đợc a = 10, b = -18, c =
c) Quy tr×nh bÊm phím liên tục tính Un + máy Casio 570MS
Chuyên đề 3: TíNH Số Lẻ THậP PHÂN THứ N SAU DấU PHẩY 1/ Tìm chữ số lẻ thập phân thứ 105 phép chia 17 : 13
Gi¶i:
Bíc 1:
+ Thực phép chia 17 : 13 = 1.307692308 (thực chất máy thực phép tính làm trịn hiển thị kết hình)
Ta lÊy ch÷ số hàng thập phân là: 3076923 + LÊy 1,3076923 13 = 16,9999999
17 - 16,9999999 = 0,0000001
VËy 17 = 1,3076923 13 + 0.0000001
(tại không ghi số 08)??? Không lấy chữ số thập cuối máy làm trịn Khơng lấy số khơng
17 = 1,30769230 13 + 0,0000001= 1,30769230 13 + 0,0000001 Bíc 2:
+ lÊy : 13 = 0,07692307692
11 chữ số hàng thập phân là: 07692307692
Vy ta ó tỡm đợc 18 chữ số hàng thập phân sau dấu phẩy là: 307692307692307692
VËy 17 : 13 = 1,(307692) Chu kú gåm ch÷ sè Ta cã 105 = 6.17 + (105 3(mod 6) )
Vậy chữ số thập phân thứ 105 sau dấu phẩy chữ số thứ ba chu kỳ Đó số
2/ Tìm chữ số thập phân thø 132007 sau dÊu phÈy phÐp chia 250000 cho 19 Gi¶i:
Ta cã
250000 17
13157
19 19 Vậy cần tìm chữ số thËp ph©n thø 132007 sau dÊu phÈy phÐp chia 17 : 19
Bíc 1:
Ên 17 : 19 = 0,8947368421
Ta đợc chữ số sau dấu phẩy 894736842 + Lấy 17 - 0, 894736842 * 19 = 10-9 Bớc 2:
LÊy : 19 = 0,1052631579
ChÝn số hàng thập phân là: 105263157
(3)LÊy 17 : 19 = 0,8947368421
Chín số hàng thập phân + LÊy 17 - 0,0894736842 * 19 = 10-9 Bíc 4:
- LÊy : 19 = 0,1052631579
Chín số hàng thập phân lµ: 105263157
VËy 17 : 19 = 0, 894736842105263157894736842105263157 = 0,(894736842105263157) Chu kú gåm 18 ch÷ sè
Ta cã
669
3 2007 669
13 1(mod18)13 13 1 (mod18)
Kết số d 1, suy số cần tìm sồ đứng vị trí chu kỳ gồm 18 chữ số thập phân
KÕt qu¶ : sè
Chuyên đề : Toán liên phân số, số thập phân vhth
1/ Tính giá trị biểu thức sau biểu diễn kết dới dạng phân số:
31
1
1
5
A
;
10
1
1
4
B
;
2003
4
8
9
C
Đáp số: A) 2108/157 ; B) 1300/931 ; C) 783173/1315
2/ BiÕt
2003
7
1
273 2
1
1
a b
c d
Tìm số a, b, c, d.
3/ Tìm giá trị x, y Viết dới dạng phân số từ phơng trình sau:
a)
1
1
1
2
1
3
4
x x
; b)
1
1
1
3
5
y y
5/ Phân số sinh số thập phân tuần hoàn sau:
a/ 0,(123)
1 123 41
.123
999 999333 b/ 7,(37) c/ 5,34(12)
Chuyên đề :tìm cln, bcnn hai hay nhiều số
1/ Cho a = 168599421; b = 2654176 Tìm ớc chung lớn bội chung nhá nhÊt cđa a vµ b 2/ Cho a11994;b153923;c129935 Tìm ƯCLN(a; b; c) BCNN(a; b; c);
3/ HÃy tìm tất số tự nhiên bội cđa 2009 cã d¹ng 7*13*1
Chun đề :đa thc
1/ Tính tổng tất hƯ sè cđa ®a thøc sau : P(x) = 7−2008x+1003x
2
+1004x3−5x5¿3 2008−2008x+√2 x3¿66.¿
¿
2/ Cho biÓu thøcE= 5√2 x2−4,5−3√7
√4,6−2,5.x −7√11+2 Tìm giá trị nhỏ bthức E 3/ Cho ®a thøc P(x) = 2x3 + 3x2 - 4x + + m
a/ Giả sử m = 2010 Tìm số d r chia P(x) cho x +
(4)b/ Tìm m để P(x) chia hết cho 2x -
c/ Giả sử m = 2010 Tìm d R(x) chia P(x) cho (x + 4)( 2x - 6)
4/ Cho ®a thøc P(x) = x3 + ax2 + bx + c BiÕt r»ng: P(45) = 45; P(54) = 54; P(75) = 75.T×m a,b,c
5/ Cho P(x) = x4 + ax3 + bx2 + cx + d BiÕt P(1) = 0; P(2) = ; P(3) = 18 ; P(4) = 48 Tính P(2009) - Đặt Q(x) = P(x) – (x-1) x2 Q(1) = Q(2) = Q(3) = Q(4) = 1,2,3,4 lµ nghiƯm cđa Q(x) Mµ P(x) cã bËc Q(x) cã bËc
Q(x) = P(x) – (x-1) x2 = (x-1)(x-2)(x-3)(x- 4) P(x) = (x-1)(x-2)(x-3)(x- 4) + (x-1) x2
Chuyên đề 7:Toán phần trăm
1/ Tại thời điểm gốc dân số tỉnh Ninh Bình a ngời; tỉ lệ tăng dân số trung bình năm Ninh Bình m%
a/ Hãy xây dựng cơng thức tính dân số Tỉnh Ninh Bình đến năm thứ n
b/ Giả sử dân số Tỉnh Ninh Bình năm 2005 có khoảng 910 000 ngời Hỏi dân số Tỉnh ta đến năm 2010 ngời tỉ lệ tăng dân số trung bình hàng năm 1,2% ? (Lấy kết số tự nhiên)
c/ Đến năm 2025 muốn dân số tỉnh ta có khoảng 200 000 ngời tỉ lệ tăng dân số trung bình hàng năm (Lấy kết với chữ số thập phân)
2/ Một ngời lĩnh lơng khởi điểm 400 000 đồng/tháng Cứ năm lại đợc tăng lơng thêm 7% a/ Hỏi sau 36 năm công tác đợc lĩnh tất tiền?
b/ Hàng tháng tháng lơng gửi tiết kiệm 200 000 đồng với lãi suất kép 0,4%/ tháng (hàng tháng không rút tiền lãi mà để lại số tiền làm gốc) Hỏi hu (sau36 năm công tác) tiết kiệm đợc tiền?
HD:
a/ Sau 36 năm công tác, đợc tăng lơng 11 lần đợc số tiền :
12
3600
(1 ) 100
x r
r
=
12
3600.1400000
(1 )
7 100
= 901 577 944 ng
b/ Gọi số tiền gửi tháng lµ lµ y0, l·i st tiÕt kiƯm lµ m %/ tháng, sau 36 năm công tác gửi tiết kiệm 36 12 = 432 (lần)
- Cui tháng thứ n tiết kiệm đợc:
1
0 (1 )n (1 )
y
m m
m
=
432
200000
(1 0, 4%) (1 0, 4%) 0, 4%
= 231 422 695 đồng Chuyên đề 8: tìm số d, chữ số tận cùng, số chữ số số
1/ T×m sè d r phÐp cña: 1978197819781978 : 2009
- Chia 1978197819 chia cho 2009 ta đợc d 1816 thơng 984 667 - Chia 1816781978 chia cho 2009 ta đợc d 1089 thơng 904321
1089 số d phép chia 2/ T×m sè tËn cïng cđa 321978.
3/ T×m tất chữ số x, y cho N 1235679 6x y chia hÕt cho 24 4/ T×m sè d phép chia sau: (trình bày cách gi¶i)
a) 20092010: 2011; b) 2009201020112012 : 2020;
5/ Tìm số chữ số số 2100 : (Log2) 100 + = 31,102… sè ch÷ sè cđa sè 2100 là 31 6/ Số phơng P có dạng P17712 81ab Tìm chữ số a b, biết r»ng a b 13 7/ Sè chÝnh ph¬ng Q cã dạng Q15 26849cd Tìm chữ số c d, biÕt r»ng c2d2 58 8/ Sè chÝnh ph¬ng M cã dạng M 1mn399025 chia hết cho Tìm chữ sè m n,
Chuyên đề 9: phơng trình, hệ phơng trình, phơng pháp lặp
1/ T×m nghiƯm cđa hệ phơng trình sau :
4x2
+y2+4 xy=4
x2+y2−2(xy+8)=0
¿{
¿
(5)x2 + sin x –1 =
3/ Giải hệ phương trình:
3
2
13 26102 2009 4030056
( 4017)( 1) 4017
x x x
x x y y
4/
13 2 2 y x y x y x y x
5/
13 2 2 y x y x
6/
) 1 )( ( ) 1 )( ( 2 2 y x y x xy y x
6/ Cho
12 , 34 34 , 12
2y xy
x
y x xy
TÝnh P=3 x3 y3
7/ Cho a, b tho¶ m·n:
98 19 3 b a b ab a
Tính P = a2+b2.
8/ Tìm nghiệm nguyên dơng x2+2y2=2008
9/ Tìm nghiệm nguyên phơng trình: 7(x+y)=3(x2-xy+y2)
10/ Tìm nghiệm nguyên dơng 3x + 4y =95
11/ Tìm cặp số ( x , y ) nguyên dơng với x nhỏ thỏa phơng trình : 156 807 (12 ) 20 52 59
2
x y x
x
Chuyên đề 10: Hàm số, giảI tốn cách lập phơng trình
1/ Cho hai hµm sè
3
y= x +
5 5 (1) vµ
5 y = - x +
3 (2)
a/ Vẽ đồ thị hai hàm số mặt phẳng tọa độ Oxy
b/ Tìm tọa độ giao điểm A(xA, yA) hai độ thị (kết dới dạng phân số hỗn số)
c/ Tính góc tam giác ABC, B, C thứ tự giao điểm đồ thị hàm số (1) độ thị hàm số (2) với trục hoành (lấy nguyên kết máy)
d/ Viết phơng trình đờng thẳng phân giác góc BAC (hệ số góc lấy kết với hai chữ số phần thập phân)
2/ Một thuyền khởi hành từ bến sông A Sau 10 phút, canô chạy từ A đuổi theo gặp thuyền cách bến A 20,5 km Hỏi vận tốc thuyền, biết canô chạy nhanh thuyền 12,5km h/ ( Kết xác với chữ số thập phân)
3/ Lúc sáng, ô tô từ A đến B, đờng dài 157 km Đi đợc 102 km xe bị hỏng máy phải dừng lại sửa chữa 12 phút tiếp đến B với vận tốc lúc đầu 10,5km h/ Hỏi ô tô bị hỏng lúc giờ, biết ô tô đến B lúc 11 30 phút ( Kết thời gian làm tròn đến phút)
Chuyên đề 11: Hình học
1/ Tam giác ABC có A 90o; AB = c = 1010cm; AC = b = 2010cm Biết AD, AE lần lợt phân giác góc góc ngồi đỉnh A ABC (nh hình vẽ)
a/ Tính góc cịn lại ABC độ phút
b/ViÕt c«ng thøc tÝnh AD, AE theo b, c? ¸p dơng tÝnh AD AE
(Trình bày ngắn gọn lời giải ghi kết tính AD, AE vào ô vuông)
Kẻ DM AC, EM AC mà AB AC MD AB, NE AB *AD phân giác cđa ABC vµ MD AB
AB BD AM
AC CD MC
AB AM AB AC
AM
AC AB MC AM AB AC
(6)- AMD vuông cân M AD = AM 2 =
AB AC
AB AC .
*AD phân giác ABC NE AB
AB BE AN
AC CE NC
AB AN AB AC
AN
AC AB NC AN AC AB
- ANE vuông cân N AE = AN 2 =
AB AC
AC AB .
2/ Tam giác ABC có 0o< Â < 90o sin BAC = 0,6153 ; AB =17,2 cm ; AC = 14,6 cm; ng cao BH Tớnh :
1) Độ dài cạnh CH ? 2) Độ dài cạnh BC ?
3)Trung tun AM cđa tam gi¸c ABC
3/ Hình chóp tứ giác O ABCD có độ dài cạnh đáyBC a, độ dài cạnh bên OA l
a) TÝnh diƯn tÝch xung quanh, diƯn tÝch toµn phần thể tích hình chóp O ABCD theo a vµ l.
b/ Tính ( xác đến chữ số thập phân) diện tích xung quanh và thể tích hình chóp O ABCD khi cho biết a5,75cm l, 6,15cm
c/ Ngời ta cắt hình chóp O ABCD cho câu mặt phẳng song song với đáy ABCDsao cho diện tích xung quanh hình chóp
O MNPQ đợc cắt diện tích xung quanh hình chóp cụt
MNPQ ABCD đợc cắt Tính thể tích hình chóp cụt đợc cắt
( xác đến chữ số thập phân )
Phơng pháp lặp giải gần phơng trình f x( ) 0
Néi dung phơng pháp: Giả sử phơng trình có nghiệm khoảng ( , )a b Giải phơng trình f x( ) phơng pháp lặp gồm c¸c bíc sau:
1 Đa phơng trình f x( ) 0 phơng trình tơng đơng x g x ( ) Chọn x0( , )a b làm nghiệm gần ban đầu
3.Thay xx0 vào vế phải phơng trình xg x( ) ta đợc nghiệm gần thứ x1g x( )0 Thay x1g x( )0 vào vế phải phơng
trình x g x ( ) ta đợc nghiệm gần thứ hai x2 g x( )1 Lặp lại trình trên, ta nhận đợc dãy nghiệm gần
1 ( )0
x g x , x2g x( )1
, x3g x( )2 , x4g x( )3 , ,xng x( n1), Nếu dãy nghiệm gần xn , n1, 2, hội tụ, nghĩa tồn nlimxn x
(với giả thiết hàm g x( ) là
liên tục khoảng ( , )a b ) ta cã:
1
lim n lim ( n ) (lim n ) ( )
n n n
x x g x g x g x
Chứng tỏ x nghiệm phơng trình xg x( ) x nghiệm phơng trình ( )
f x .
Tính hội tụ: Có nhiều phơng trình dạng x g x ( ) tơng đơng với phơng trình f x( ) 0 Phải chọn hàm số g x( ) cho dãy xn xây dựng theo phơng pháp lặp dãy hội tụ hội tụ nhanh tới nghiệm Ta có tiêu chuẩn sau.
a O
l K
M P
N
H B D
C
(7)Định lý Giả sử ( , )a b khoảng cách ly nghiệm x phơng trình f x( ) 0 phơng trình x g x ( ) tơng đơng với phơng trình f x( ) 0 Nếu g x( ) g x'( ) hàm số liên tục cho g x( ) q x a b, từ vị trí ban đầu x0( , )a b
d·y n
x
xây dựng theo phơng pháp lặp xng x( n1) sÏ héi tơ tíi nghiƯm nhÊt x khoảng ( , )a b phơng tr×nh f x( ) 0
ThÝ dơ Giải phơng trình x3 x21
Phng trỡnh có nghiệm khoảng (1;1.5) tơng đơng với 1
x x Do g x( )3x21 có đạo hàm 2
2 '( )
3 ( 1) x g x
x
tháa m·n ®iỊu kiƯn
1 '( )
4
g x
kho¶ng (1;1.5) nên dÃy lặp
1
n n
x x
héi tơ tíi nghiƯm nhÊt tõ mét ®iĨm bÊt kỳ khoảng (1;1.5) DÃy lặp máy Casio fx-570 MS:
Khai báo hàm
3 ( ) g x x :
SHIFT ( ALPHA X x2
1)
Bắt đầu tính toán CALC máy X? Khai báo giá trị ban đầu x01 bấm phím
Sau thực dãy lặp CALC Ans ta đến x1.465571232 Dãy lặp máy Casio fx-570 MS Casio fx-500 MS : Khai báo giá trị ban đầu x01 cách bấm phím 1 Khai báo dãy xấp xỉ
2 ( ) n
n n
x g x x :
SHIFT ( Ans x2
1) Sau thực dãy lặp ta đến x1.465571232
Vậy nghiệm xấp xỉ (chính xác đến chữ số thập phân) x1.465571232 Thí dụ Tìm nghiệm gần phơng trình ex x 0 .
Vì f x( )ex x có đạo hàm f x'( )ex 1 x nên đồng biến
toàn trục số Hơn nữa, f(0)3, f(1) e 0 nên phơng trình cho có nghiệm nằm khoảng (0,1)
Phơng trình cho tng ng vi xln(3 x)
Đặt g x( ) ln(3 x) th×
1 '( )
3 g x
x
nªn
1
'( ) 0,1
g x x
Do dãy lặp xn1ln(3 xn) hội tụ từ điểm bt k khong (0,1)
DÃy lặp m¸y Casio fx-570 MS:
Khai b¸o g x( ) ln(3 x): ln ( ALPHA X ) Bắt đầu tính toán CALC máy X? Khai báo giá trị ban đầu
1 x
: ab c/ bấm phím Sau thực dãy lặp CALC Ans ta đến
(8)26 27 28 0.792059968
x x x .
Vậy nghiệm gần 0,792059968
D·y lỈp máy Casio fx-570 MS Casio fx-500 MS : Khai báo giá trị ban đầu
1 x
: /
b c
a 2 vµ bÊm phÝm
Khai b¸o d·y xÊp xØ xn1g x( ) ln(3n xn): ln ( Ans )
Sau thực dãy lặp ta đến x26 x27 x28 0,792059968 Vậy nghiệm xấp xỉ (chính xác đến chữ số thập phân) x0,792059968
Nhận xét Nếu địi hỏi nghiệm xác đến chữ số thập phân sau dấu phẩy cần sau 13 b ớc lặp ta đến nghiệm 0,79206
Nhận xét 2.Nếu ta đa phơng trình ex x 0 dạng x 3 ex g x( ) 3 ex có đạo hàm g x'( )ex khơng
tháa m·n ®iỊu kiƯn
'( ) 0,1
g x q x
nên ta cha thể nói đợc hội tụ dãy lặp
Nhận xét Chọn điểm xuất phát x02 ([2], trang 62) cần nhiều bớc lặp hơn. Dùng lệnh solve để giải phơng trình Maple:
> solve(exp(x)+x-3,x);
-LambertW(exp(3)) + Máy cho đáp số thơng qua hàm LambertW
Ta tính xác nghiệm đến 30 chữ số nhờ lệnh: > evalf(",30);
.79205996843067700141839587788 Lời bình: Maple cho ta đáp số đến độ xác tuỳ ý. Thí dụ Tìm nghiệm gần phơng trình xlnx0.
Vì f x( ) x lnx hàm đồng biến ngặt (0,) Hơn f(1) 0
1 ( ) f
e e nên phơng
trình có nghiệm khoảng ( ,1)
e Phơng trình cho tơng đơng với x e x g x( )
V× '( )
x
g x e
nªn
1 '( ) x
e
g x e
e
víi mäi ( ,1) x
e
nên dÃy lặp n
x n
x e
héi tô.
D·y lặp máy Casio fx-570 MS:
Khai báo g x( )ex: SHIFT ex ( ALPHA X )
Bắt đầu tính toán CALC máy X? Khai báo giá trị ban đầu x
:
/
b c
a 2 vµ bÊm phÝm
Sau thực dãy lặp CALC Ans ta đến x0,567143290 Vậy nghiệm gần x0,567143290
DÃy lặp máy Casio fx-570 MS Casio fx-500 MS: Khai báo giá trị ban đầu
1 x
: /
b c
a 2 vµ bÊm phÝm
Khai b¸o ( )
n n
x n
x g x e
: SHIFT ex ( Ans )
(9)Vậy nghiệm gần x0,567143290
Thí dụ Tìm nghiệm gần phơng trình xcos :x g x( )
Vì f x( ) x cosx có đạo hàm f x'( ) sin x0 x số điểm rời rạc x 2k
nên hàm đồng biến ngặt Do f(0)1 f( )2
nên phơng trình có nhÊt nghiƯm kho¶ng (0, )2
HiĨn nhiªn g x'( ) sinx sin(2 )
víi mäi x (0,2 )
với đủ nhỏ nên dãy xn1cosxn hội tụ trong
kho¶ng (0,2 )
DÃy lặp máy Casio fx-570 MS:
Ên phÝm MODE MODE MODE MODE (tÝnh theo Radian)
Khai b¸o g x( ) cos x: cos ALPHA X
Bắt đầu tính toán CALC máy X? Khai báo giá trị ban đầu x01.5 bấm phím Sau thực dãy lặp CALC Ans ta i n x0,739085133 radian
DÃy lặp máy Casio fx-500 MS hc Casio fx-570 MS:
BÊm phÝm MODE MODE MODE MODE (tÝnh theo Radian) trªn Casio fx-570 MS hc MODE MODE
MODE
(tÝnh theo Radian) trªn Casio fx-500 MS Khai báo giá trị ban đầu x01.5: 1.5 bÊm phÝm Khai b¸o xn1g x( n) cos xn
: cos Ans
Sau thực dãy lặp ta đến x0.739085133
Thí dụ Tìm nghiệm gần phơng trình x33x 1 0.
Vì f( 2) 1, f( 1) 3 , f(1)1,f(2) 3 x3 3x 1 phơng trình bậc nên có nghiệm khoảng ( 2, 1) , ( 1,1) ,(1, 2)
Phơng trình tơng đơng với x33x1 Xét khoảng ( 2, 1)
Đặt g x( )33x1 Ta có
3
1 '( )
16 (3 1) g x
x
nên dÃy xn133xn1 hội tụ khoảng ( 2, 1) .
DÃy lặp máy Casio fx-570 MS: Ên phÝm MODE 1 (tÝnh theo sè thùc)
Khai b¸o g x( )33x1: SHIFT ( 3 ALPHA X )
Bắt đầu tính tốn CALC máy X? Khai báo giá trị ban đầu x01 bấm phím Sau thực dãy lặp CALC Ans ta cng i n x11,879385242.
DÃy lặp máy Casio fx-570 MS hc Casio fx-500 MS : Khai báo giá trị ban đầu x01: 1 bÊm phÝm Khai b¸o xn1g x( )n 33xn1: SHIFT ( 3 Ans 1 )
Sau thực dãy lặp ta đến x11,879385242 Vậy nghiệm gần x11,879385242.
(10)Dùng sơ đồ Horner để hạ bậc, sau giải phơng trình bậc hai ta tìm đợc hai nghiệm lại là: x1,53208886 x0,3472963
Chú ý: Để tính nghiệm x2 0,3472963 ta khơng thể dùng phơng trình tơng đơng
33 1 ( )
x x g x nh vì
2
1 '( )
(3 1) g x
x
kh«ng tháa m·n ®iỊu kiƯn g x'( ) q
khoảng (0,1) dÃy lặp xn133xn1 không hội
tụ (HÃy thử khai báo giá trị ban đầu x0,3472963 thực dÃy lặp xn133xn1 theo quy trình bấm phím
trên, ta thấy dÃy lỈp héi tơ tíi x11,879385242)
NhËn xÐt 1: Có thể giải phơng trình x3 3x 0 Casio fx-570 MS Casio fx-570 MS theo chơng
trình cài sẵn máy, quy trình bấm phím sau:
Vào MODE giải phơng trình bậc ba: MODE MODE
Khai b¸o hƯ sè: = = (-) = =
Máy đáp số x11.53088886
BÊm tiÕp phÝm = , m¸y hiƯn x21.879385242. BÊm tiÕp phÝm = , m¸y hiƯn x30.347296355. Vậy phơng trình có ba nghiệm thực
1 1.53088886
x ;x21.879385242; x30.347296355.
Thí dụ Tìm giao điểm đồ thị hàm số f x( )x33x21 với trục hồnh (chính xác đến 107) Giải: Giao điểm đồ thị hàm số
3
( )
f x x x
víi trơc hoµnh chÝnh nghiệm phơng trình
( )
f x x x
V× f( 1) 3 , f(0)1, f(1) , f(2,5) 2,125 f(3)1 nên phơng trình có nghiệm khoảng ( 1;0) ,(0;1)và (2,5;3).
Phơng trình f x( )x33x21 0 tơng đơng vi x33x21
Đặt
3 ( )
g x x th× 2
2 '( )
(3 1) x g x
x
vµ g x'( ) 0,9 1
DÃy lặp máy Casio fx-570 MS:
Bấm phÝm MODE 1 (tÝnh theo sè thùc) Khai b¸o
3 ( )
g x x : SHIFT ( 3 ALPHA X x2 )
Bắt đầu tính tốn CALC máy X? Khai báo giá trị ban đầu x02,7 bấm phím Sau thực dãy lặp CALC Ans ta đến nghiệm x2,879385242
DÃy lặp máy Casio fx-570 MS Casio fx-500 MS : Khai báo giá trị ban đầu x02,7: 2.7
Khai báo
2 ( ) n
n n
x g x x
: SHIFT ( 3 Ans x2 ) Sau thực dãy lặp ta đến x2,879385242 Vậy nghiệm gần x2,879385242
(11)Bài tập
Bài tập Tìm khoảng cách ly nghiệm phơng trình sau đây:
1) x4 4x1 0 ; 2) x39x218x1 0 ; 3) lgx 3x 5 Bài tập (Thi Giải toán máy tính bỏ túi, Sở GD & ĐT Tp HCM, 24.11.1996) Giải phơng trình (tìm nghiệm gần phơng trình):
1) x37x 4 0; 2) x32x2 9x 3 0; 3)32x532x17 0 ;
4)x615x 25 0 ; 5)2x5 2cosx 1 0; 6)x2sinx1 0 ;
7) 2cos3x 4x1 0 ; 8)
2 1 ( 0)
x tgx x
; 9) Cho 1 x0
Tìm nghiệm gần cosx tg x 0;
10) (Câu hỏi thêm cho trờng chuyên Lê Hồng Phong):
10a) x4 x27x 2 ; 10b) x 6x1 0
Bài tập (Thi Giải toán máy tính bỏ túi, Sở GD & ĐT Hà Nội, 18.12.1996) Tìm nghiệm gần phơng trình:
1) x35x1 0 ; 2) x615x 25 0 ; 3) x9 x 10 0 ;
4) x 6x1 0 ; 5) x3 cosx0; 6) x cotgx (0 x 2)
; 7) Tìm nghiệm gần (lấy số lẻ) phơng trình: x2 tgx1 0 ;
8) Tìm nghiệm gần (lấy số lẻ thập phân) của: x2sinx1 0
Bài tập (Thi Giải toán máy tính bỏ túi, Sở GD & ĐT Đồng Nai, 15.2.1998) Tìm nghiệm gần phơng trình:
1) x35x 0 ; 2) x9 x 0 ; 3) x7x1 0 ; 4) x7x 0 Bài tập (Thi Giải tốn máy tính bỏ túi, Sở GD & ĐT Tp HCM, 15.3.1998) Tìm nghiệm gần phơng trình:
1) 3x 28x 0 ; 2) x5 2x sin(3x1) 0 ;
3) Tìm nghiệm âm gần phơng trình: x105x32x 0 ; 4) (Câu hỏi thêm cho trờng chuyên Lê Hồng Phong):
Tìm nghiệm gần phơng trình 2x3x5x 11x
Bài tập Tìm nghiệm gần phơng trình máy tính điện tử bỏ túi: 1) x33x23 0 ; 2) x3 x1 0 ; 3)x35x1 0 ;
4) 5x3 20x 3 0; 5) 8x332x17 0 ; 6) x5 x0, 0 ; 7) x3 x 1000 0 ; 8) x75x1 0 ; 9) x16 x 0 ;
10) x x1; 11) 5x x 0 ; 12)
1 x
x
; 13) x 3x1; 14) 3x 26x5 0 ; 15) 3x28x5 0 16) 4x5x 6x; 17) 13x11x 19x; 18) 2x3x4x 10x;
19) x3logx 0 ; 20) 2cosx e x0; 21)cosx logx (0 x 2)
; 22) cosx tgx 0