[r]
(1)Gv Nguyễn Vũ Minh Hình Học 11 TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG α VÀ β :
Muốn tìm giao tuyến hai mặt phẳng α β ta tìm hai điểm chung I ; J α β : α∩∪β = I J
Khi tìm điểm chung ta ý :
Cách gọi tên hai mặt phẳng để phát điểm chung M ∈ d d ⊂α , M ∈α
, M điểm chung ⎩
⎨ ⎧
β ⊂ α ⊂
= ∩
b ; a
M b
a (P)
α
β
I J
• •
Bài mẫu 1 Cho tứ diện ABCD có E trung điểm
A
của AB Hãy xác định giao tuyến mặt phẳng (ECD) với mặt phẳng (ABC) ; (ABD) ;
E
(BCD) ; (ACD)
Bài mẫu Cho tứ diện SABC điểm I
đoạn SA; d đường thẳng (ABC) cắt đoạn AB; BC J ; K Tìm giao tuyến mặt phẳng (I,d) với mặt phẳng sau : (SAB) ; (SAC) ; (SBC)
Bài mẫu Cho tứ giác lồi ABCD cho AB # CD AD # BC điểm S không nằm mặt phẳng chứa tứ giác Tìm giao tuyến :
a) (SAC) (SBD)
b) (SAB) (SCD) c) (SAD) (SBC)
Bài mẫu Cho hình chóp S.ABCD có đáy ABCD tứ giác lồi; M điểm cạnh CD Tìm giao tuyến mặt phẳng :
a)(SAM) (SBD) b)(SBM) ; (SAC
B C
D
S
I
K
A B
J C S
A B
C E
D
S
A B
C
M D
(2)Gv Nguyễn Vũ Minh Hình Học 11
Đt : 0919.008.716 Email : ngvuminh249@yahoo.com Bài mẫu Cho tứ diện ABCD; M điểm nằm ΔABC; N A
B C
D M N
là điểm nằm ΔACD Tìm giao tuyến : a) (AMN) (BCD)
b) (CMN) (ABD)
Bài mẫu Cho tứ diện ABCD M nằm AB cho A
B
N
I D
C M
AM =
4
MB ; N nằm AC cho AN = 3NC;
điểm I nằm ΔBCD Tìm giao tuyến : a) (MNI) (BCD)
b) (MNI) (ABD) c) (MNI) (ACD)
A
Bài mẫu Cho tứ diện ABCD ; gọi I ; J trung M
điểm AD; BC I
a) Tìm giao tuyến : (IBC) (JAD)
N
b)M điểm AB; N điểm AC Tìm giao
D
tuyến (IBC) (DMN)
Bài mẫu Cho tứ diện ABCD ; AB ; AC lấy hai điểm M N cho :
NC AN MB AM
≠ Tìm giao tuyến (DMN) (BCD)
Bài mẫu Cho bốn điểm ABCD không đồng phẳng ; gọi I ; K trung điểm AD ; BC Xác định giao tuyến hai mặt phẳng (IBC) (KAD) ?
Bài mẫu 10Hình chóp S.ABCD có đáy ABCD hình thang hai đáy AD ; BC Gọi M ; N trung điểm AB ; CD G trọng tâm ΔSAD Tìm giao tuyến :
a) (GMN) (SAC) b) (GMN) (SBC)
J
B C
A
B C
D M
N
A
B C
D I
K S
A D
B C
G