1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Dap an De Toan Thi vao lop 10 Thanh Hoa nam 20122013

3 11 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 107,93 KB

Nội dung

[r]

(1)

Đáp án đề Thi Mơn Tốn vào lớp 10 Năm học 2012 – 2013 Tỉnh Thanh Hoá

Đề C

Bài 1:

1 Giải phơng trình a) x =0 x =

Vậy phơng trình có nghiệm x = b) x2 + x – = 0

Ta cã a + b +c = + + (-2) =0

Vậy phơng trình cho có nghiệm x1 = 1; x2 = -2 Giải hệ Phơng trình

2 3

2

x y x x

x y x y y

                   

VËy hƯ ph¬ng trình có nghiệm nhất: (x=1; y=-3) Bài 2:

1 Điều kiện xác định:

0

2 0

1

2

1 c c c c c c                    

Rót gän: Víi c0; c 1 ta cã C =

2

1 1

2(1 ) 2(1 ) (1 )(1 )(1 )

c

c c c c c

 

    

C =

2

2 2

(1 )(1 ) (1 )(1 ) 2( 1)

2(1 ) 2(1 ) 2(1 )

c c c c c

c c c

    

 

   =

2

2 2

1 2

2(1 ) 2(1 ) 2(1 )

c c c c c c c c c

c c c

            = 2

1 2

2(1 )

c c c c c c c c c

c           = 2 2 2(1 ) c c c   =

2 (1 ) 2(1 )(1 )

c c

c c

  =1

c c

VËy víi c0; c 1 th× C =

c c

2 Víi c0; c 1 th× C =

c c

 , để C <

1

3  1

c c

 <

1 

c c

-1

3 < 

2 3( 1) c c   

2 1

1 c c c c                     1 2 1 c c c c c                         Kết hợp với điều kiện

1

2

c

 

C <

1

Bài 3:

1 Vì (d) qua C(1; -3) // y = 5x +3 nªn ta cã

5

3

a a

a b b

            

Vậy với a = 5; b=-8 đờng thẳng (d) qua C(1; -3) // y = 5x +3

(2)

O C

D

E

H M

Q P

2 Để phơng trình có hai nghiệm phân biệt

0

3( 1) .(2 4)

c

c c c

   

      

 2

0

2 ( 1) Voi

c

c c c c

  

        

  c0

Với c0 PT có hai nghiệm phân biệt theo định lí Viet ta có

1

1

3( 1)

c

x x

c c x x

c

  

  

 

   

 thay

vµo x12 + x22 =  (x1 +x2)2 – 2x1.x2 =4 

2

3( 1)

c c

 

 

 

 

2c

c

 =4 

2 2

2

9c 18c 4c 8c 4c

c c

    

c210c 9  (c+1)(c+9)=0

1

c c

   

 (thoả mản điều kiện)

Vậy với c =-1 c = -9 PT có hai nghiệm x1; x2 thoả mÃn x12+x22=4 Bài 4:

1 Ta có MP CD => CPM 900 MQ CE => CQH 900

Xét tứ giác CPMQ có CPM CQH  900900 1800 Vậy tứ giác CPMQ nội tiếp đờng tròn tâm O đờng kính CM

2 Ta cã CPM vu«ng => PO =

1 2CM

Ta cã CQM vu«ng => QO =

1 2CM

=> PO = QO (1)

Ta có CH đờng cao => CHM vuông => H (O)

Do CH đờng cao

  1 300

2

PCH QCH  DCE

Ta cã C, P, H, M, Q (O) => PCHPQH 300( gãc néi tiÕp cïng ch¾n PH )

=> QCH QPH 300( gãc néi tiÕp cïng ch¾n QH ) => PQH QPH => PQH c©n => HP = HQ (2)

Từ (1) (2) => HO đờng trung trực củaPQ => HO  PQ Ta có SCDESCMESCMD =>

1 1

2CH DE2MQ CE2MP CD mµ DE = CE = CD

=> CH = MQ + MP Bµi 5:

Ta cã

2

2 2

8 1

2 2

4 4 4

p q q p q

C q p q p q p q

p p p p

 

            

Víi

(3)

=>

2 2

1 1 1

2 ( 1 )

4 4 4

C p q p p q p q q Do p q p q

p p p

                   

2

2

1 1 4 (2 1)

1

4 4 4

1

p>0, theo Cosi ta co (1)

4

q q q

C p q q p p

p p p

Do p p

p p

   

            

  

2

(2 1) (2)

4

q 

Tõ (1) vµ (2) =>

1

2

C  

Vởy C đạt giá trị nhỏ

1

3 1

Khi

2

2

p q

C p p q

p q

   

      

   

Ngày đăng: 28/05/2021, 19:41

w