1. Trang chủ
  2. » Cao đẳng - Đại học

Trao doi bai song co voi ban Bui Thi Nhu

2 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 206,67 KB

Nội dung

Khoảng cách giữa hai điểm dao động với biên độ cực đại (hoặc cực tiểu) liên tiếp trên đoạn nối hai nguồn là 2..   .[r]

(1)

III/ Hai nguồn kết hợp vuông pha: Xét hai nguồn kết hợp A, B có độ lệch pha

khơng đổi, có phương trình uA = acos(t) uB = acos(t -2

) Tại điểm M mặt nước, ta có: u1M = acos(t -

1 d

 ), u2M = acos(t -

2 d

 - 2 

) Độ lệch pha: 1,2 =

2

(d d )

 

 

 .

 Các điểm dao động với biên độ cực đại:  = k2, k  Z  d2 – d1 = (k -

1

4), với k = 0,  1,  2, … (hay k  Z), cụ thể d2 – d1 =

9 11

, , , , , ,

4 4 4

     

  

= -2,25 ; -1,25 ; -0,25 ; 0,75 ; 1,75 ; 2,75 ; …  Các điểm dao động với biên độ cực tiểu:  = (2k + 1), k  Z

 d2 – d1 = (k +

4), với k = 0,  1,  2, … (hay k  Z), cụ thể d2 – d1 =

11

, , , , , ,

4 4 4

     

  

= -2,75 ; -1,75 ; -0,75 ; 0,25 ; 1,25 ; 2,25 ; … Các kết quả:

Gọi O trung điểm AB

1) Điểm dao động cực đại gần O cách O đoạn 8

phía nguồn dao động chậm pha Điểm dao động cực tiểu gần O cách O đoạn

phía nguồn dao động sớm pha

Khoảng cách hai điểm dao động với biên độ cực đại (hoặc cực tiểu) liên tiếp đoạn nối hai nguồn

  

 Ta vẽ hệ vân giao thoa Chú ý gần đường trung trực AB vân cực đại phía nguồn dao động chậm pha vân cực tiểu phía nguồn dao động sớm pha !?

2) Số vân cực đại quan sát = Số vân cực đại quan sát được: số giá trị k thỏa hệ thức AB

  -

1 4 < k <

AB

 -

1 Áp dụng: (Số liệu đề 22 – 2011) Tại hai điểm A B mặt nước cách 16 cm có hai nguồn phát sóng kết hợp dao động theo phương trình: u1 = acos(30t); u2 = acos(30t +2

) Tốc độ truyền sóng mặt nước 30 (cm/s) Số vân cực đại số vân cực tiểu quan sát bao nhiêu?

ĐS: 16 vân cực đại với k = 8,  7,  6, …,  1, ; 16 vân cực tiểu với k = - 8,  7,  6, …,  1, 0. HD: Số vân cực đại quan sát = Số vân cực đại quan sát = số giá trị k thỏa hệ thức

AB

  -

1 4 < k <

AB

 -

1 4 Thay số, ta có: f = 15 Hz ;  = cm ; AB = 16 cm  -8,25 < k < 7,75  k = - 8,  7,  6, …,  1,  16 vân cực đại 16 vân cực tiểu

1) (Đề 22 – 2011) Tại hai điểm A B mặt nước cách 16 cm có hai nguồn phát sóng kết hợp dao động theo phương trình: u1 = acos(30t); u2 = acos(30t +2

) Tốc độ truyền sóng mặt nước 30 (cm/s) Gọi E, F hai điểm đoạn AB cho AE = FB = cm Tìm số cực tiểu đoạn EF

A 10 B 11 C 12 D 13 HD: Trong tính f = 15 Hz ;  = cm.

+ Điểm dao động cực tiểu gần O cách O đoạn

phía nguồn dao động sớm pha (nguồn B)  OM =

+ k2

= (k + 4)2

 OF với OF = OB – FB = – = cm Thay số, ta có k  5,75  k = 0,1,2,3,4,5  OF có điểm cực tiểu

+ Về phía nguồn dao động trễ pha (nguồn A), điểm cực tiểu gần O cách O đoạn

-

=

8

(2)

8

+ k2

= (k + 4)2

 OE với OE = OA – AE = – = cm Thay số, ta có k  5,25  k = 0,1,2,3,4,5  OF có điểm cực tiểu

Vậy đoạn EF có 12 điểm cực tiểu

2) (Đề 09 – 2012) Hai nguồn phát sóng kết hợp A, B với AB16cm mặt thoáng chất lỏng, dao động theo phương trình uA 5cos(30 t) mm; B

u 5cos(30 t ) mm

  

Coi biên độ sóng khơng đổi, tốc độ sóng v = 60 cm/s Gọi O trung điểm AB, điểm đứng yên đoạn AB gần O xa O cách O đoạn tương ứng

A 1cm; cm B 0,25 cm; 7,75 cm C cm; 6,5 cm D. 0,5 cm; 7,5 cm. HD: Trong tính f = 15 Hz ;  = cm

Điểm dao động cực tiểu gần O cách O đoạn

= 0,5 cm phía nguồn dao động sớm pha (nguồn B) Điểm dao động cực tiểu xa O cách O đoạn

3

+ 32

= 7,5 cm phía nguồn dao động trễ pha (nguồn A) 3) (Dạng đặc biệt) Trên mặt chất lỏng có hai nguồn kết hợp A, B dao động với phương trình tương ứng u1 = asint = acos(t - /2) u2 = acosωt Khoảng cách hai nguồn AB = 3,25λ Trên đoạn AB , số điểm dao động với biên độ cực đại pha với A là: A B C D

HD: Gọi O trung điểm AB  AO = BO =

AB 3,25

2

 

= 1,625 Điểm M dao động cực đại gần O cách O

một đoạn 8

= 0,125 phía nguồn A (nguồn trễ pha hơn)  AM = AO – OM = 1,625 - 0,125 = 1,5.  Khoảng cách từ nguồn A đến điểm dao động cực đại đoạn AB :

d1 = 1,5 + k2

= 1,5 + k.0,5 với k = -2, -1, 0, 1, 2, (do < d1 < AB = 3,25)

Các điểm dao động cực đại AB dao động pha với nguồn A phải thỏa mãn d1 = 1,5 + k.0,5 = n với n = 1, 2, ,… Xét k = 0, d1 = 1,5 (loại) ; k = , d1 = 2 (nhận) ; k = 2, d1 = 2,5 (loại) ; k = 3, d1 = 3 (nhận) ; k = -1, d1 = 1 (nhận) ; k = -2, d1 = 0,5 (loại)

Tóm lại : Trên AB có tất điểm dao động cực đại với d1 = 0,5 ; 1 ; 1,5 ; 2 ; 2,5; 3, có điểm dao động cực đại pha với nguồn A

Ngày đăng: 26/05/2021, 21:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w