1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

De va dap an thi DH khoi B nam 2012

5 10 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 425,69 KB

Nội dung

Cán bộ coi thi không giải thích gì thêm.[r]

(1)

B GIÁO DC VÀ ĐÀO TO ĐỀ CHÍNH THC

ĐỀ THI TUYN SINH ĐẠI HC NĂM 2012 Mơn: TỐN; Khi B

Thời gian làm bài: 180 phút, không kể thời gian phát đề I PHN CHUNG CHO TT C THÍ SINH (7,0 điểm)

Câu (2,0 điểm). Cho hàm số y x= 3−3mx2+3m3 (1), m tham số thực a) Khảo sát sự biến thiên vẽđồ thị của hàm số (1) m=1.

b) Tìm mđểđồ thị hàm số (1) có hai điểm cực trịA B cho tam giác OAB có diện tích bằng 48 Câu (1,0 điểm) Giải phương trình 2(cosx+ sin ) cosx x=cosx− sinx+1

Câu (1,0 điểm) Giải bất phương trình x+ +1 x2−4x+ ≥1 3 x. Câu (1,0 điểm) Tính tích phân

1

4

0

d

3 2

x

I x

x x

=

+ +

Câu (1,0 điểm). Cho hình chóp tam giác đều S.ABC với SA=2 ,a AB a= Gọi H hình chiếu vng góc của A cạnh SC Chứng minh SC vng góc với mặt phẳng (ABH) Tính thể tích của khối chóp S.ABH theo a

Câu (1,0 điểm) Cho số thực x, y, z thỏa mãn điều kiện x y z+ + =0 Tìm giá trị lớn nhất của biểu thức

2 2 1. x +y +z = 5 5.

P x= +y +z

II PHN RIÊNG (3,0 điểm): Thí sinh làm hai phần riêng (phần A phần B) A Theo chương trình Chun

Câu 7.a (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn ( ):C1 x2+y2=4, đường thẳng

2 2

(C ):x +y −12x+18 0= d x y: − − =4 0. Viết phương trình đường trịn có tâm thuộc (C2), tiếp xúc với d cắt ( )C1 tại hai điểm phân biệt A B cho AB vng góc với d Câu 8.a (1,0 điểm). Trong không gian với hệ tọa độOxyz, cho đường thẳng :

2

x y z

d − = =

− hai điểmA(2;1;0), B( 2;3; 2).− Viết phương trình mặt cầu đi qua A, B có tâm thuộc đường thẳng d. Câu 9.a (1,0 điểm) Trong một lớp học gồm có 15 học sinh nam 10 học sinh nữ Giáo viên gọi ngẫu nhiên học sinh lên bảng giải tập Tính xác suất để học sinh được gọi có cả nam nữ B Theo chương trình Nâng cao

Câu 7.b (1,0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình thoi ABCD có đường trịn tiếp xúc với cạnh của hình thoi có phương trình

2 AC= BD 2 4.

x +y = Viết phương trình tắc của elip (E) đi qua đỉnh A, B, C, D của hình thoi Biết A thuộc Ox.

Câu 8.b (1,0 điểm). Trong không gian với hệ tọa độOxyz, cho Viết phương trình mặt phẳng (P) qua A cắt trục Ox, Oy lần lượt tại B, C cho tam giác ABC có trọng tâm thuộc đường thẳng AM

(0;0;3), (1; 2;0)

A M

Câu 9.b (1,0 điểm) Gọi z1 z2 hai nghiệm phức của phương trình z2−2 3i z− =4 0. Viết dạng

lượng giác của z1 z2

- HT -

Thí sinh khơng sử dụng tài liệu Cán coi thi khơng giải thích thêm

Họ tên thí sinh: ; Số báo danh:

(2)

BỘ GIÁO DỤC VÀ ĐÀO TẠO

⎯⎯⎯⎯⎯⎯⎯⎯

ĐỀ CHÍNH THỨC

ĐÁP ÁN – THANG ĐIỂM

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối B

(Đáp án - thang điểm gồm 04 trang)

Câu Đáp án Đim

a) (1,0 đim)

Khi m=1, ta có: y=x3−3x2+3 • Tập xác định: D=\

• Sự biến thiên:

− Chiều biến thiên: y' 3= x2−6 ;x ' 0y = ⇔ x=0 x=2

0,25

Các khoảng đồng biến: (−∞; 0) (2;+ ∞), khoảng nghịch biến: (0; 2) − Cực trị: Hàm sốđạt cực đại x=0, yCĐ = 3; đạt cực tiểu x=2, yCT = −1

− Giới hạn: lim

x→−∞y= −∞ x→+ ∞lim y= +∞

0,25 − Bảng biến thiên:

0,25

•Đồ thị:

0,25

b) (1,0 đim)

' ;

y = xmx ' y = ⇔ x=0 x=2 m

Đồ thị hàm số có điểm cực trị m≠0 (*) 0,25 Các điểm cực trị đồ thị làA(0; 3m3) B(2 ;mm3)

Suy OA=3 |m3| d B OA( , ( )) | | = m

0,25 48

OAB

S∆ = ⇔ 3m4 =4 0,25

1 (2,0 đim)

⇔ thm= ±2, ỏa mãn (*) 0,25

O

2

−1

x y

+∞ –1

3 −∞

y '

y + – + x −∞ +∞

(3)

Phương trình cho tương đương với: cos 2x+ sin 2x=cosx− sinx 0,25 ⇔ cos 2( ) ( )π cos π

3

x− = x+ 0,25

⇔ π ( )π 2π( )

3

x− =± + +x k k∈] 0,25

2 (1,0 đim)

⇔ 2π 2π

3

x= +k 2π ( )

x=k k∈] 0,25

Điều kiện: 0≤ ≤ −x x≥ +2 (*) Nhận xét: x=0là nghiệm bất phương trình cho

Với x>0,bất phương trình cho tương đương với: x x x x

+ + + − ≥ (1)

0,25

Đặt t x (2), x

= + bất phương trình (1) trở thành 6 3

t − ≥ −t

2

3

6 (3 ) t t t t − < ⎡ ⎢ − ≥ ⇔ ⎧ ⎢⎨ ⎢ − ≥ − ⎣⎩ 0,25 t

⇔ ≥ Thay vào (2) ta được

2

x x

x

+ ≥ ⇔ ≥

2

x0,25

3 (1,0 đim)

1

4 x

⇔ < ≤ Kx ≥4 ết hợp (*) nghiệm x=0, ta tập nghiệm bất phương trình cho là: 0;1 [4; )

4

⎡ ⎤ ∪ +∞ ⎢ ⎥

⎣ ⎦

0,25

Đặt t x= 2, suy dt=2xdx Với x=0 t=0;với x=1 t=1 0,25 Khi

1 2

2

0

1 d d

2 ( 1)( 2) ( x x x t t I t t x x = = 1)( 2) + + + +

∫ ∫ 0,25

( ) ( )

1

0

1 1

d ln| 2| ln| 1| t t t t t

= − = + − +

+ +

0,25

4 (1,0 đim)

= ln3 3ln2

0,25

Gọi D trung điểm cạnh AB O tâm ∆ABC Ta có

ABCD ABSO nên AB⊥(SCD), ABSC 0,25 Mặt khác SCAH, suy SC⊥(ABH) 0,25 Ta có: 3,

2

a a

CD= OC= nên 2 33 a SO= SCOC = Do 11

4 SO CD a DH

SC

= = Suy

2 1 ABH a S∆ = AB DH=

0,25

5 (1,0 đim)

Ta có 2

4 a SH SC HC SC= − = − CDDH = Do .

3

S ABH ABH

a 11

6 H S

(4)

Với x+ + =y z x2+y2+z2=1, ta có:

2 2 2

0 (= + +x y z) = + + +x y z (x y z+ +) 2yz= −1 2x +2 ,yz nên 2 yz x= − Mặt khác

2 1

,

2

y z x

yz≤ + = − suy ra:

2

2 1 ,

2

x

x − ≤ − 6

3 x

− ≤ ≤ (*)

0,25

Khi đó: P= x5+(y2+z2)(y3+z3)−y z2 2(y+z)

= (1 2) ( 2)( ) ( ) ( )2

2 x + −x ⎣⎡ y +z y z+ −yz y z+ ⎤⎦+ xx

= (1 2) (1 2) ( ) ( )2 2

2

x + −x ⎡⎢−xx +x x − ⎤⎥+ x

⎣ ⎦ x = ( )

5

2 xx

0,25

Xét hàm f x( ) 2= x3−x 6; 3 ,

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎣ ⎦ suy

2

'( ) 1;

f x = x − '( ) 6 f x = ⇔ = ±x

Ta có 6

9 ,

3

f⎛⎜− ⎞⎟=f⎛⎜ ⎞⎟=−

⎝ ⎠ ⎝ ⎠

6

3

f⎛⎜ ⎞⎟= −f⎛⎜ ⎞⎟=

⎝ ⎠ ⎝ ⎠

6

9 Do

6 ( )

9 f x ≤ Suy

36 P

0,25

6 (1,0 đim)

Khi 6,

3

x= y z= =− dấu xảy Vậy giá trị lớn P

36 0,25

(C1) có tâm gốc tọa độO Gọi I tâm đường tròn (C)

cần viết phương trình, ta có ABOIABd Od nên OI//d, OI có phương trình y=x

0,25 Mặt khác I∈(C2), nên tọa độ I thỏa mãn hệ:

2

3

(3;3)

12 18

y x x

I y x y x

=

⎧ ⎧ =

⎪ ⇔ ⇒

⎨ ⎨ =

+ − + = ⎩

⎪⎩

0,25

Do (C) tiếp xúc với d nên (C) có bán kính R d I d= ( , ) 2.= 0,25

7.a (1,0 đim)

Vậy phương trình (C) (x−3)2+(y−3)2 =8 0,25 Gọi (S) mặt cầu cần viết phương trình I tâm (S)

Do I d∈ nên tọa độ điểm I có dạng I(1 ; ; ).+ t tt 0,25 Do A B, ∈( )S nên AI BI= , suy (2 1)t− + − +2 ( 1)t 4t2=(2 3)t+ 2+ −( 3)t 2+(2 2)t+ 2⇒ =−t 0,25 Do I( 1; 1; 2)− − bán kính mặt cầu IA= 17 0,25

8.a (1,0 đim)

Vậy, phương trình mặt cầu (S) cần tìm (x+1)2+(y+1)2+ −(z 2)2 =17 0,25 Số cách chọn học sinh lớp C254 =12650 0,25 Số cách chọn học sinh có nam nữ 2

15 10 15 10 15 10

C C +C C +C C 0,25

= 11075 0,25

9.a (1,0 đim)

Xác suất cần tính 11075 443 12650 506

P= = 0,25

B

A I d

(C2)

(C)

(C1)

(5)

Giả sử ( ):E x22 y22 1(a 0) a b

b

+ = > > Hình thoi ABCD

AC= BD A, B, C, D thuộc (E) suy OA=2OB

0,25 Khơng tính tổng qt, ta xem A a( ;0)

( )0; a

B Gọi H hình chiếu vng góc O AB, suy OH bán kính đường trịn ( )C :x2+y2=4

0,25

Ta có: 12 12 12 12

4 =OH =OA +OB =a +a2 0,25 7.b

(1,0 đim)

Suy a2=20, b2=5 Vậy phương trình tắc (E)

2

1 20 x y

+ = 0,25

Do ,BOx COy nên tọa độ B C có dạng: B b( ; 0; 0) C(0; ; 0).c 0,25 Gọi G trọng tâm tam giác ABC, suy ra: G( ); ;

3 b c

0,25 Ta có JJJJGAM=(1;2; 3)− nên đường thẳng AM có phương trình

1 x= =y z−

− Do G thuộc đường thẳng AM nên

3 b = =c

− Suy b=2 c=4

0,25

8.b (1,0 đim)

Do phương trình mặt phẳng (P) 1, x+ + =y z

nghĩa ( ) : 6P x+3y+4z−12 0.= 0,25 Phương trình bậc hai z2−2 3i z− =4 có biệt thức ∆ =4 0,25 Suy phương trình có hai nghiệm: z1= +1 3i z2= − +1 3i 0,25 • Dạng lượng giác z1 1 cosπ sinπ

3

z = ⎛⎜ +i ⎞⎟

⎝ ⎠ 0,25

9.b (1,0 đim)

• Dạng lượng giác z2 2 cos2π sin2π

3

z = ⎛⎜ +i ⎞⎟

⎝ ⎠ 0,25

O H

x y

D

A B

C

- HẾT -

Ngày đăng: 25/05/2021, 09:55

w