1. Trang chủ
  2. » Giáo Dục - Đào Tạo

DE 6 TOAN CO DAP AN ON THI DH 2012

5 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 518,45 KB

Nội dung

[r]

(1)

TTBDVH KHAI TRÍ ĐỀ SỚ 5

ĐỀ THI TUYỂN SINH ĐẠI HỌC - NĂM 2011 Mơn: TỐN

Thời gian làm bài: 180 phút, khơng kể thời gian phát đề

Câu I (2 điểm) Cho hàm số y x 4 2mx2m1 (1) , với m tham số thực Khảo sát biến thiên vẽ đồ thị hàm số (1) m1.

2 Xác định m để hàm số (1) có ba điểm cực trị, đồng thời điểm cực trị đồ thị tạo thành tam giác có bán kính đường trịn ngoại tiếp

Câu II (3 điểm)

3.Giải phương trình tan4x +1 =

2 (2 sin )sin

os

x x

c x

4 Giải hệ phương trình sau:

x+y¿2 ¿ ¿7

¿

2x+

x+y=3

¿ ¿

4 xy+4(x2+y2)+3

¿

5 Giải bất phương trình log5(3+ x) >log4 x.

Câu III (1 điểm) Tính tích phân: I =

3

sinxdx (sinx + cosx) 

Câu IV (1 điểm)

Tính thể tích hình chóp S.ABC, biết đáy ABC tam giác cạnh a, mặt bên ( SAB) vng góc với đáy, hai mặt bên lạ tạo với đáy góc.

Câu V (1 điểm)

Chứng minh với số tự nhiên n ( với n  2), ta có: ln2n > ln(n-1).ln(n+1) Câu VI (1 điểm)

Trong mặt phẳng với hệ toạ độ Oxy, tìm điểm A thuộc trục hồnh điểm B thuộc trục tung cho A B đối xứng với qua đường thẳng d:2x y  3

Câu VII.a(1 điểm)

Tìm số hạng không chứa x khai triển nhị thức Niutơn

 

18

1

2x x

x

 

 

 

  .

(2)

-Hết -ĐÁP ÁN MƠN TỐN – ĐỀ SỐ 5 ( áp án- Thang i m g m 04 trang)Đ đ ể ồ

Câu Nội dung Điể

m I (2điểm) 1.(1 điểm) Khi m1 hàm số trở thành: y x4 2x2

   TXĐ: D=

 Sự biến thiên:

 

' 4 4 0 4 1 0

1 x

y x x x x

x          



 0.25

yCDy 0 0, yCTy 1 0.25

 Bảng biến thiên

x - -1 + y’  +  +

y + +

-1 -1

0.25

 Đồ thị

0.25

2 (1 điểm)  

'

2

4 4 x

y x mx x x m

x m  

      

 

Hàm số cho có ba điểm cực trị  pt y' 0 có ba nghiệm phân biệt y' đổi dấu

khi x qua nghiệm  m0 0.25

 Khi ba điểm cực trị đồ thị hàm số là:

0; 1 ,  ; 1 ,  ; 1

A mBm m mC m m m 0.25

2

ABC B A C B

S  yy xxm m

; ABACm4m BC, 2 m

0.25

8

6

4

2

-2

-4

-6

-8

-10 -5 10

(3)

 

3

1

1 5 1

4

2

ABC

m

m m m

AB AC BC

R m m

S m m m

                  0.25 II

(2điểm) ( điểm) ĐK: cosx

  sinx   1.

Ta có phương trình  sin4x + cos4x = ( – sin22x)sin3x  ( – sin22x)(1 – sin3x) =  sin3x =

1

2 ( ( – sin22x1) 0.50

 3sinx – 4sin3x =

2 Thay sinx =  vào không thỏa mãn 0.25

Vậy nghiệm PT

2

; ( )

18 18

k k

x   x    kZ

0.25 (1 điểm) ĐK: x + y  0

 Ta có hệ 

2

2

3( ) ( )

( )

1

3 x y x y

x y

x y x y

x y                    0.25

 Đặt u = x + y +

x y ( u 2) ; v = x – y ta hệ :

2 13 u v u v        0.25

 Giải hệ ta u = 2, v = ( u 2)

 Từ giải hệ

1

2 1

1

1

x y x y x

x y

x y y

x y                          0.5

* Lời giải: ĐK x > Đặt t = log4x  x = 4t,

BPT trở thành log5(3 + 2t) > t  3 + 2t >5t

3

( ) 5

t

t  

Xét hàm số f(t) =

3 ( ) 5 t t

nghịch biến R f(t) =  t1 Nên bất phương trình trở thành: f(t) > f(1)  t < 1, ta log4x <  < x < 4

0,25 0,25 0,25 0,25 III

(1 điểm) Đặt x = 2  u  dx = - du

Đổi cận: x = u =  

; x = 

 u =

Vậy: I =

 

2

3

0

sin( ) cosxdx

2

sinx + cosx

sin os

2

u du

u c u

(4)

Vậy : 2I =  

2

2

0

sinx + cosx

(sinx + cosx) sinx + cosx

dx dx

 

 

=

2

tan

1 2

2 os

4

x dx

c x

 

 

      

 

      

1 I  

0.50

IV

(1 điểm)  Dựng Ta có: SH AB

(SAB) (ABC), (SAB) (ABC) AB, SH (SAB)    SH (ABC)

  SH đường cao hình chóp.  Dựng HN BC, HP AC 

 

SN BC, SP AC SPH SNH

     

 ΔSHN = ΔSHP  HN = HP  ΔAHP vuông có:

o a

HP HA.sin60

4

 

0.50

 ΔSHP vuông có:

  a 

SH HP.tan tan

4

 Thể tích hình chóp

    

2

ABC

1 a a a

S.ABC : V SH.S tan tan

3 4 16

0.50 V

(1 điểm)

 Với n = BĐT cần chứng minh

0.25  Xét n > ln(n – 1) > BĐT tương đương với:

ln ln( 1) ln( 1) ln

n n

n n

 

 (1)

0.25  Hàm số f(x) =

ln ln( 1)

x

x , với x > hàm nghịch biến, nên với n >

f(n) > f(n+1) 

ln ln( 1) ln( 1) ln

n n

n n

 

 BĐT (1) chứng minh. 0.50

VI

(1 điểm) A Ox B Oy ,   A a ;0 , B0; ,b AB   a b; 



0.25 Vectơ phương d u1; 2

Toạ độ trung điểm I AB ; 2 a b    

  0.25

A Bđối xứng với qua d khi 0.50

S

H

P

C A

B

N

(5)

2 4

2

2

a b a

AB u

b b

a

I d

  

   

 

 

  



  

 

 

                           

Vậy A4;0 , B0; 2  VII

(1 điểm)

Số hạng tổng quát khai triển nhị thức Niutơn

18

1 2x

x

 

 

  là

 

6 18

18 18 5

1 18 5 18

1

k k

k

k k k

k

T C x C x

x

 

 

   

  0.50

Số hạng không chứa x ứng với k thoả mãn

18 15

5 k

k    

Vậy số hạng cần tìm T16 C1815.23 6528 0.50

Nếu thí sinh làm không theo cách nêu đáp án mà đủ điểm phần đáp án quy định.

Ngày đăng: 25/05/2021, 03:15

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w