1. Trang chủ
  2. » Luận Văn - Báo Cáo

DE 18 TOAN CO DAP ON THI DH 2012

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 148,24 KB

Nội dung

Tính thể tích khối lăng trụ ABC.[r]

(1)

Câu I (2 điểm) Cho hàm số y2x3 3(2m1)x26 (m m1)x1 có đồ thị (Cm) Khảo sát biến thiên vẽ đồ thị hàm số m =

Tìm m để hàm số đồng biến khoảng (2;+)

Câu II (3 điểm) 1) Giải phương trình: cos 3x(2cos 2x+1)=1 2) Giải phương trình : (3x+1)√2x21=5x2+3

2x −3 3) Giải bất phương trình: x(3 log2x −2)>9 log2x −2

Câu III (1 điểm) Tính tích phân

ex+2¿2 ¿ ¿ dx

¿ I=∫

0 ln

¿

Câu IV (1 điểm) Cho hình lăng trụABC.ABC’ có đáy tam giác cạnh a, hình chiếu vng góc A’lên măt phẳng (ABC) trùng với tâm Ocủa tam giácABC Tính thể tích khối lăng trụABC.ABC’ biết khoảng cách AA’ BC

a

Câu V(1 điểm) Giải phương trình: (z2− z)(z+3)(z+2)=10 , ¿ z∈

¿

C.

Câu VI (2 điểm)

1) Trong mp(Oxy) cho điểm A(1;0),B(-2;4),C(-1;4),D(3;5) Tìm toạ độ điểm M thuộc đường thẳng ( ) : 3 x y  0 cho hai tam giác MAB, MCD có diện tích nhau

2) Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng: d

1: x −4

3 =

y −1 1 =

z+5

2 d2: x −2

1 =

y+3

3 =

z

Viết phương trình mặt cầu có bán kính nhỏ tiếp xúc với hai đường thẳng d1 d2

-HẾT -TTBDVH KHAI TRÍ ĐỀ SỚ 17

ĐỀ THI TỦN SINH ĐẠI HỌC - NĂM 2011 Mơn: TỐN

(2)

ĐÁP ÁN ĐỀ SỐ 17 Câu I

1) Đồ Học sinh tự làm 1,0

2) y2x3 3(2m1)x26 (m m1)x1

⇒y '=6x26(2m+1)x+6m(m+1) y’ có 2m+1¿

2

4(m2+m)=1>0 Δ=¿

0,5

y '=0 x=m

¿ x=m+1

¿ ¿ ¿ ¿ ¿

Hàm số đồng biến (2;+) y '>0 ∀x>2 m+12

m≤1

0,25 0,25

Câu II 1) Giải phương trình: cos 3x(2cos 2x+1)=1 1 điểm

PT cos3x(4 cos2x −1)=1 cos3x(34 sin2x)=1 0,25

Nhận xét x=kπ , k∈Z khơng nghiệm phương trình ta có: cos 3x(34 sin2x)=1 cos 3x(3 sinx −4 sin3x)=sinx

cos 3xsin 3x=sinx sin 6x=sinx

0,25

6x=x+m2π ¿

6x=π − x+m2π ¿

¿ ¿ ¿

x=2 ¿ x=π

7+ 2

7 ¿ ¿ ¿ ¿

; m∈Z

0,25

Xét 2

5 =¿ 2m=5k m ¿5t , t∈Z

Xét π7+2

7 = 1+2m=7k k=2(m-3k)+1 hay k=2l+1& m=7l+3, l∈Z

Vậy phương trình có nghiệm: x=2

5 ( m≠5t ); x=

π 7+

2

7 (

m≠7l+3 ) m ,t ,l∈Z

0,25

2) Giải phương trình : (3x+1)√2x2

1=5x2+3 2x −3

(3)

PT 2(3x+1)√2x21=10x2+3x −6

2(3x+1)√2x21=4(2x21)+2x2+3x −2 Đặt t=√2x21(t ≥0) Pt trở thành 4t22(3x+1)t+2x2+3x −2=0

Ta có:

x −3¿2

3x+1¿24(2x2+3x −2)=¿ Δ'=¿

0,25

Pt trở thành 4t22(3x+1)t+2x2+3x −2=0 Ta có:

x −3¿2

3x+1¿24(2x2+3x −2)=¿ Δ'=¿

0,25

Từ ta có phương trình có nghiệm : t=2x −1

2 ;t=

x+2

Thay vào cách đăt giải ta phương trình có nghiệm: x∈{1+√6

2 ;

2+√60

7 }

0,5

3) Giải bất phương trình x(3 log2x −2)>9 log2x −2 1 điểm Điều kiện: x>0

Bất phương trình 3(x −3)log2x>2(x −1) Nhận thấy x=3 khơng nghiệm bất phương trình

0.25 TH1 Nếu x>3 BPT

2log2x> x −1 x −3 Xét hàm số: f(x)=3

2log2x đồng biến khoảng (0;+) g(x)=x −1

x −3 nghịch biến khoảng (3;+) *Với x>4 :Ta có

¿ f(x)>f(4)=3

g(x)<g(4)=3 }

¿

 Bpt có nghiệm x>4

* Với x<4 :Ta có

¿ f(x)<f(4)=3

g(x)>g(4)=3 }

¿

 Bpt vô nghiệm

0,25

TH :Nếu 0<x<3 BPT

2log2x< x −1 x −3 f(x)=3

2log2x đồng biến khoảng (0;+) g(x)=x −1

x −3 nghịch biến khoảng (0;3)

(4)

*Với x>1 :Ta có

¿ f(x)>f(1)=0 g(x)<g(1)=0

} ¿

 Bpt vô nghiệm

* Với x<1 :Ta có

¿ f(x)<f(1)=0 g(x)>g(1)=0

} ¿

 Bpt có nghiệm 0<x<1

VậVậy Bpt có nghiệm

x>4 ¿ 0<x<1

¿ ¿ ¿ ¿ 0,25 Câu III

Tính tích phân

3

ex+2¿2 ¿ ¿ dx

¿ I=∫

0 ln

¿

1 điểm

Ta có e

x

+2¿2 ¿ e x ¿ e x 3dx ¿ I=∫

0 ln

¿ =

Đặt u= ex3 3 du

=e

x

3dx ; x=0⇒u=1; x=3 ln2⇒u=2

0,25

Ta được:

u+2¿2 ¿ u¿ du

¿ I=∫

1

¿

=3

u+2¿2

4u− 4(u+2)

1 2(¿)du ¿ ∫ ¿ 0,25

=3 (1

4ln|u|

4ln|u+2|+ 2(u+2))¿1

2 0,25

¿3 4ln(

3 2)

1

8 Vậy I ¿3

4ln( 2)

(5)

Gọi M trung điểm BC ta thấy:

¿

AMBC

A ' O⊥BC } ¿

BC(A 'AM) Kẻ MHAA ', (do ∠A nhọn nên H thuộc đoạn AA’.)

Do

BC(A 'AM) HM(A 'AM)

}

HMBC

.Vậy HM đọan vơng góc chung

AA’và BC, d(AA',BC)=HM=a√3

4

0,5

Xét tam giác đồng dạng AA’O AMH, ta có: A ' O

AO =

HM AH

suy A ' O=AO HM

AH =

a√3

a√3

4 3a=

a

Thể tích khối lăng trụ:

V=A ' O.SABC=12A ' O AM BC=12a3 a2√3a=a

√3 12

0,5

CâuV

Giải phương trình: (z2− z)(z+3)(z+2)=10 , ¿ z∈

¿

C. 1 điểm

PT z(z+2)(z −1)(z+3)=10 (z2+2z)(z2+2z −3)=0 Đặt t=z2+2z Khi phương trình (8) trở thành:

0,25

Đặt t=z2+2z Khi phương trình (8) trở thành

t23t −10=0

0,25

t=2 ¿ t=5

¿ z=1±i

¿ z=1±√6

¿ ¿ ¿

¿ ¿ ¿ ¿

Vậy phương trình có nghiệm: z=1±√6 ; z=1± i

0,5 A

B

C H

O

(6)

Câu VI 1)

1 điểm Viết phương trình đường AB: 4x3y 0 AB5

Viết phương trình đường CD: x 4y17 0 CD 17

0,25

Điểm M thuộc có toạ độ dạng: M ( ;3t t 5) Ta tính được:

13 19 11 37

( , ) ; ( , )

5 17

t t

d M AB   d M CD  

0,25

Từ đó: SMABSMCDd M AB AB d M CD CD( , )  ( , )

7

3

t t

   

 Có điểm cần tìm là:

7 ( 9; 32), ( ; 2)

3

M   M

0,5

2) 1 điểm

Giả sử mặt cầu S(I, R) tiếp xúc với hai đương thẳng d1, d2 hai điểm A B ta ln có IA + IB ≥ AB AB ≥d d d 1, 2 dấu xảy I

là trung điểm AB AB đoạn vng góc chung hai đường thẳng d1, d2 0, 25 Ta tìm A, B :

' AB u AB u

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ad1, Bd2 nên: A(3 + 4t; 1- t; -5-2t), B(2 + t’; -3 + 3t’; t’)

0,25

 AB(….)…  A(1; 2; -3) B(3; 0; 1) I(2; 1; -1) 0,25 Mặt cầu (S) có tâm I(2; 1; -1) bán kính R=

Nên có phương trình là:  

2 2 2

2 ( 1) ( 1)

Ngày đăng: 21/05/2021, 13:55

w