c) Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện là 12cm.. c) Cho dây cung BC của đường tròn đáy hình nón sao cho mặt phẳng (SBC) t[r]
(1)MẶT CẦU – MẶT TRỤ - MẶT NĨN A MẶT NĨN
Bài 1: Trong khơng gian cho tam giác vng OAB O có OA = 4, OB = Khi quay tam giác vuông OAB quanh cạnh góc vng OA đường gấp khúc OAB tạo thành hình nón trịn xoay
a) Tính diện tích xung quanh diện tích tồn phần hình nón b)Tính thể tích khối nón
HD: a) * Sxq = Rl = .OB.AB = 15
Tính: AB = ( AOB O)
* Stp = Sxq + Sđáy = 15 + 9 = 24
b) V = 1
3R h =
2 1
3.OB OA = 1
3 4
3 . = 12
Bài 2: Một hình nón có thiết diện qua trục tam giác cạnh 2a. a) Tính diện tích xung quanh diện tích tồn phần hình nón b) Tính thể tích khối nón
HD: a) * Sxq = Rl = .OB.SB = 2a2
* Stp = Sxq + Sđáy = 2a2 + a2 = 23a2
b) V = 1
3R h =
2 1
3.OB SO =
3
1 3
3
3 3
a .a a
Tính: SO = 2 3
3 2
a a
(vì SO đường cao SAB cạnh 2a)
Bài 3: Một hình nón có chiều cao a thiết diện qua trục tam giác vuông.
2a
A B
S
A
(2)a) Tính diện tích xung quanh diện tích tồn phần hình nón b) Tính thể tích khối nón
HD: a) * Thiết diện qua trục tam giác vuông cân S nên
A = B = 450
* Sxq = Rl = .OA.SA = a2 2
Tính: SA = a 2; OA = a ( SOA O)
* Stp = Sxq + Sđáy = a2 2 + a2 = (1 + 2) a2
b) V = 1
3R h =
2 1
3.OA SO =
3
1
3 3
a .a a
Bài 4: Một hình nón có đường sinh l thiết diện qua trục tam giác vng. a) Tính diện tích xung quanh diện tích tồn phần hình nón
b) Tính thể tích khối nón
HD: a) * Thiết diện qua trục tam giác SAB vuông cân S nên A
= B
= 450
* Sxq = Rl = .OA.SA = 2
l
.l =
2 l
Tính: OA = 2
l
( SOA O)
* Stp = Sxq + Sđáy =
2
2 l
+
2 l
=
2 1 1
2
2 l
b) V = 1
3R h =
2 1
3.OA SO =
2
1
3 2 2 6 2
l l l
.
Tính: SO = 2
l
( SOA O)
Bài 5: Một hình nón có đường cao a, thiết diện qua trục có góc đỉnh 1200
a) Tính diện tích xung quanh diện tích tồn phần hình nón
45 S
B A
l
45 S
B A
(3)b) Tính thể tích khối nón
HD: a) * Thiết diện qua trục tam giác SAB cân S nên
A = B = 300
hay ASO
= BSO
= 600
* Sxq = Rl = .OA.SA = .a 3.2a =
2 2a
Tính: OA = a 3; SA = 2a ( SOA O)
* Stp = Sxq + Sđáy =
2
2a 3 + 3a2 =
2 2 3 a
b) V =
2 1
3R h =
2 1
3.OA SO =
2
1 3
3 a aa
Bài 6: Một hình nón có độ dài đường sinh l góc đường sinh mặt đáy . a) Tính diện tích xung quanh diện tích tồn phần hình nón
b) Tính thể tích khối nón
HD: a) * Góc đường sinh mặt đáy A
= B
= * Sxq = Rl = .OA.SA = lcos.l =
2 l cos
Tính: OA = lcos ( SOA O)
* Stp = Sxq + Sđáy =
2 l cos
+ l2cos2 =
1 cos l cos2
b) V = 1
3R h =
2 1
3.OA SO
= 1 3
2
.l cos lsin
=
3
l cos sin
Tính: SO = lsin ( SOA O)
Bài 7: Một hình nón có đường sinh 2a diện tích xung quanh mặt nón 2a2.
Tính thể tích hình nón
120
a S
B A
O
l
S
B A
(4)HD: * Sxq = Rl Rl = 2a2 R =
2
2 2
2
a a a
l a
* Tính: SO = a ( SOA O)
* V = 1
3R h =
2 1
3.OA SO =
3 1 3 3 3 3 a .a a
Bài 8: Một hình nón có góc đỉnh 600 diện tích đáy 9
Tính thể tích hình nón
HD: * Thiết diện qua trục tam giác SAB * Sđáy = R2 9 = R2 R2 = R =
* SO =
3 2 3
3 3
2 2
AB R
* V = 1
3R h =
2 1
3.OA SO = 1
3 3 9 3 3 . Bài 9:
Thiết diện qua trục hình nón tam giác vng có cạnh góc vng a. a) Tính diện tích xung quanh diện tích tồn phần hình nón
b) Tính thể tích khối nó
c) Một thiết diện qua đỉnh tạo với đáy góc 600 Tính diện tích thiết diện này
* Stp = Sxq + Sđáy =
2 2 a + 2 a = 1 1 2 2 a
b) V = 1
3R h =
2 1
3.OA SO =
2
1
3 2 2 6 2
a a a
.
Tính: SO = 2
a
( SOA O)
c) * Thiết diện (SAC) qua trục tạo với đáy góc 600:
SMO = 600
* SSAC =
1
2SM.AC = 1 2 . 6 3 a 2 3 3 a = 2 3 a
* Tính: SM = 6 3 a
( SMO O)
* Tính: AC = 2AM =
2 3 3 a
Tính: OA = 2
a
( SOA
HD:
a) * Thiết diện qua trục SAB vuông cân Snên A
=
B =450
(5)* Sxq = Rl = .OA.SA =
2
a
.a =
2 a
O)
* Tính: AM = OA2 OM2 = 3 3 a
* Tính: OM = 6 6 a
( SMO O)
Bài 10: Cho hình nón trịn xoay có đướng cao h = 20cm, bán kính đáy r = 25cm. a) Tính diện tích xung quanh diện tích tồn phần hình nón
b) Tính thể tích khối nón
c) Một thiết diện qua đỉnh hình nón có khoảng cách từ tâm đáy đến mặt phẳng chứa thiết diện 12cm Tính diện tích thiết diện đó
HD:
a) * Sxq = Rl = .OA.SA = .25.SA = 25 1025(cm2)
Tính: SA = 1025 ( SOA O)
Stp = Sxq + Sđáy = 25 1025 + 625
b) V = 1
3R h =
2 1
3.OA SO =
2 1
25 20 3 . (cm3)
c) * Gọi I trung điểm AB kẻ OH SI OH =
12cm
* SSAB =
1
2.AB.SI = 1
2 .40.25 = 500(cm2)
* Tính: SI =
OS.OI OH =
20 12
.OI
= 25(cm) ( SOI O)
* Tính: 1
OI = 1
OH - 1
OS OI = 15(cm) ( SOI
tại O)
* Tính: AB = 2AI = 2.20 = 40(cm)
* Tính: AI = OA2 OI2 20(cm) ( AOI I)
Bài 11: Cắt hình nón đỉnh S mp qua trục ta vng cân có cạnh huyền bằng a 2
a) Tính diện tích xung quanh diện tích tồn phần hình nón b) Tính thể tích khối nón
l
h O I H
B A
(6)c) Cho dây cung BC đường trịn đáy hình nón cho mặt phẳng (SBC) tạo với mặt phẳng chứa đáy hình nón góc 600 Tính diện tích tam giác SBC
HD:
a) * Thiết diện qua trục SAB vuông cân S nên A
= B
= 450
* Sxq = Rl = .OA.SA =
2 2 a
.a =
2 2 2 a
Tính: OA = 2
AB
= 2 2 a
; Tính: SA = a ( SOA O)
* Stp = Sxq + Sđáy =
2 2 2 a
+
2 a
=
2 2 1
2 ( ) a
b) V = 1
3R h =
2 1
3.OA SO =
2
1 2 2
3 2 2 12
a a a
.
Tính: SO = 2 2 a
( SOA O)
c) * Kẻ OM BC SMO
= 600 ; * S SBC =
1
2SM.BC = 1 2 2
2 3 3
a a
. .
= 2
3 a
* Tính: SM = 2 3 a
( SOM O) * Tính: BM = 3
a
(
SMB M)
B MẶT TRỤ
Bài 1: Một hình trụ có bán kính đáy R thiết diện qua trục hình vng. a) Tính diện tích xung quanh diện tích tồn phần hình trụ
b) Tính thể tích khối trụ HD:
C
M a
S
B
(7)a) * Sxq = 2Rl = 2.OA.AA’ = 2.R.2R = 4R2
* OA =R; AA’ = 2R
* Stp = Sxq + 2Sđáy = 4R2 + R2 = 5R2
b) * V = R h2 = .OA OO2 = .R R2 2 R3
Bài 2: Một hình trụ có bán kính đáy r = 5cm khoảng cách hai đáy 7cm. a) Tính diện tích xung quanh diện tích tồn phần hình trụ
b) Tính thể tích khối trụ
c) Cắt khối trụ mặt phẳng song song với trục cách trụ 3cm Hãy tính diện tích thiết diện tạo nên
HD:
a) * Sxq = 2Rl = 2.OA.AA’ = 2.5.7 = 70
(cm2)
* OA = 5cm; AA’ = 7cm
* Stp = Sxq + 2Sđáy = 70 + 50 = 120(cm2)
b.* V =R h2 = .OA OO2 = .52.7 =175(cm3)
c) * Gọi I trung điểm AB OI = 3cm
* SABB A = AB.AA’ = 8.7 = 56 (cm2) (hình
chữ nhật)
* AA’ =
* Tính: AB = 2AI = 2.4 =
* Tính: AI = 4(cm) ( OAI I)
Bài 3: Một hình trụ có bán kính r chiều cao h = r
a) Tính diện tích xung quanh diện tích tồn phần hình trụ b) Tính thể tích khối trụ tạo nên hình trụ cho
c) Cho hai điểm A B nằm hai đường trịn đáy cho góc đường thẳng AB trục hình trụ 300 Tính khoảng cách đường thẳng AB
trục hình trụ HD:
a) * Sxq = 2Rl = 2.OA.AA’ = 2.r r = r2 A
B O
O' A'
B'
l h
h r
l
B'
A' O'
I
O B
(8)* Stp = Sxq + 2Sđáy = 2r2 + 2r2 = ( 3 1 )r2
b) * V = R h2 = .OA OO2 = .r r2 r3
c) * OO’//AA’ BAA
= 300
* Kẻ O’H A’B O’H khoảng cách đường
thẳng AB trục OO’ hình trụ
* Tính: O’H =
3 2 r
(vì BA’O’ cạnh r)
* C/m: BA’O’ cạnh r
* Tính: A’B = A’O’ = BO’ = r
* Tính: A’B = r ( AA’B A’)
Cách khác: * Tính O’H = O A 2 A H =
2
2 3
4 2 r r r
( A’O’H H)
* Tính: A’H = 2
A B = 2
r
* Tính: A’B = r ( AA’B A’)
Bài 4: Cho hình trụ có hai đáy hai đường trịn tâm O O’, bán kính R, chiều cao
hình trụ R 2.
a) Tính diện tích xung quanh diện tích tồn phần hình trụ b) Tính thể tích khối trụ
HD:
a) * Sxq = 2Rl = 2.OA.AA’ = 2.R R 2 = 2 R2
* Stp = Sxq + 2Sđáy = 2 R2 + 2R2 = ( 2 1 )R2
b) * V = R h2 = .OA OO2 = .R R2 2 R3 2
Bài 5: Một hình trụ có bán kính đáy 50cm có chiều cao h = 50cm.
r
H A
B O
O' A'
r
R R
(9)a) Tính diện tích xung quanh diện tích tồn phần hình trụ b) Tính thể tích khối trụ tạo nên hình trụ cho
c) Một đoạn thẳng có chiều dài 100cm có hai đầu mút nằm hai đường trịn đáy Tính khoảng cách từ đoạn thẳng đến trục hình trụ
ĐS: a) * Sxq = 2Rl = 5000(cm2)
* Stp = Sxq + 2Sđáy = 5000 + 5000 = 10000(cm2)
b) * V = R h2 = 125000(cm3)
c) * O’H = 25(cm)
C. MẶT CẦU
Bài 1: Cho tứ diện ABCD có DA = 5a vng góc với mp(ABC), ABC vng B AB = 3a, BC = 4a
a) Xác định mặt cầu qua điểm A, B, C, D
(10)a) * Gọi O trung điểm CD
* Chứng minh: OA = OB = OC = OD;
* Chứng minh: DAC vuông A OA = OC = OD =
1 2 CD (T/c: Trong tam giác vuông trung tuyến thuộc cạnh huyền nửa cạnh ấy)
* Chứng minh: DBC vuông B OB =
1 2 CD
* OA = OB = OC = OD = 1
2CD A, B, C, D thuộc mặt cầu
S(O; 2
CD
)
b) * Bán kính R = 2
CD
= 1
2 AD2 AC2 = 1 2
2 2
AD AB BC = 1 2
2 2 5 2
25 9 16
2 a a a a
* S =
2
2 5 2
4 50
2
a a
;
* V = 4
3 R3 =
3
3 4 5 2 125 2
3 2 3
a a
Bài 2: Cho hình chóp tứ giác S.ABCD có tất cạnh a. a) Xác định mặt cầu qua điểm A, B, C, D, S
b) Tính bán kính mặt cầu nói Tính diện tích thể tích mặt cầu HD: a) Gọi O tâm hình vng (đáy) Chứng minh: OA = OB = OC = OD = OS
b) R = OA = 2 2 a
; S = 2a2; V =
3 2 3 a
Bài 3: Cho hình chóp S ABCD có đáy ABCD hính vng cạnh a SA = 2a vng góc với mp(ABCD).
a) Xác định mặt cầu qua điểm A, B, C, D, S
b) Tính bán kính mặt cầu nói Tính diện tích thể tích mặt cầu
O D
C
(11)a) * Gọi O trung điểm SC
* Chứng minh: Các SAC, SCD, SBC vuông A, D, B
* OA = OB = OC = OD = OS = 2
SC
S(O; 2
SC
)
b) * R = 2
SC
= 1
2 SA2 AB BC2 = 6 2 a
* S =
2 6 4 6 2 a a ;
* V =
3 4 6 6 3 2 a a
Bài 4: Cho hình chóp S.ABC có đỉnh nằm mặt cầu, SA = a, SB = b, SC = c ba cạnh SA, SB, SC đôi vng góc Tính diện tích mặt cầu thể tích khối cầu tạo nên mặt cầu đó.
HD:
* Gọi I trung điểm AB Kẻ vng góc với mp(SAB) I
* Dựng mp trung trực SC cắt O OC = OS (1)
* I tâm đường trịn ngoại tiếp SAB (vì SAB vuông S)
OA = OB = OS (2)
* Từ (1) (2) OA = OB = OC = OS
Vậy: A, B, C, S thuộc S(O; OA)
* R = OA =
2
2
2 2
SC AB
OI AI
=
2 2
4 a b c
* S =
2 2
2 2 4
4
a b c (a b c )
* V =
3 2
2 2 2
4 1
3 4 6
a b c (a b c ) a b c
BÀI TẬP ÁP DỤNG:
Bài tập1: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a, SA = a SA vng góc với đáy
a) Tính thể tích khối chóp S.ABCD
(12)b) Chứng minh trung điểm I cạnh BC tâm mặt cầu ngoại tiếp hình chóp Bài giải:
a) Áp dụng công thức
1 3
V Bh
B = a2,
h = SA = a
3
1 3
V a
( đvtt)
b) Trong tam giác vuông SAC, có AI trung tuyến ứng với cạnh huyền SC nên
AI = IS = IC.(1)
BC AB BC SA BC SB SBC vuông B, IB trung tuyến ứng với cạnh huyền SC nên IB = IS = IC (2)
Tương tự ta có ID = IS = IC(3) Từ (1), (2), (3)
ta có I cách tất đỉnh hình chóp nên I tâm mặt cầu ngoại tiếp
Bài tập2 Cho hình chóp S.ABC có đáy tam giác ABC vuông B, ABa BC, a 3 Tam giác
SAC nằm mặt phẳng vng góc với đáy Tính thể tích khối chóp S.ABC
Giải: Trong mp( SAC), dựng SH AC H SH (ABC) 1
. 3
V B h
, B diện tích ABC, h = SH
2
1
2
a B AB BC
Trong tam giác SAC có AC = 2a
2 3
a SH a
Vậy
3
2
a
V
(đvtt)
Bài tập3 Cho hình chóp S.ABCD có cạnh đáy a, góc SAC 45o
a) Tính thể tích khối chóp
(13)Giải:
a) Gọi O tâm hình vng ABCD SO (ABCD)
2
1 2
, ; tan 45 .
3 2
V B h B a hSO OA a
3
2 6
a V
(đvtt)
b) Áp dụng cơng thức Sxq .r l r = OA, l =SA= a
Thay vào công thức ta được:
2
2 2
.
2 2
xq
a a
S a
(đvdt)
Bài tập4: Cho hình lăng trụ tam giác ABC.A’B’C’ có tất cạnh a. a) Tính thể tích khối lăng trụ ABC.A’B’C’
b) Tính diện tích mặt trụ trịn xoay ngoại tiếp hình trụ Giải:
a) Ta có V B h. , B diện tích đáy lăng trụ, h chiều cao lăng trụ
Vì tam giác ABC đều, có cạnh a nên
2
3 a B
h = AA’ = a
3
3 4
a
V
(đvtt)
b) Diện tích xung quanh mặt trụ tính theo cơng thức
2
xq
S r l
r bán kính đường tròn ngoại tiếp ABC
2 3
3
a a
r
,
(14)
2
3 3
2 . 2
3 3
xq
a a
S a
Bài tập5: Cho hình chóp S.ABC có SA = 2a SA (ABC) Tam giác ABC vng cân B,
ABa
a) Tính thể tích khối chóp S.ABC
b) Tính bán kính mặt cầu ngoại tiếp hình chóp
c) Gọi I H trung điểm SC SB Tính thể tích khối chóp S.AIH Giải:
a)
3
1
1
2 ,
2
V B h
a
B S a a a h SA a V
#ABC
b) Gọi I trung điểm SC
SA AC nên A thuộc mặt cầu đường kính SC
BC SA BC Ab nên BC SB B thuộc mặt cầu đường kính SC Như tâm mặt cầu trung điểm I SC bán kính
mặt cầu SC R
Ta có
2
2 2
2 2
4 2
AC a a a
SC SA AC a a a R a
c) Áp dụng công thức
3
1 1
. .
4 4 6
S AIH
S AIH S ACB S ACB
V SI SH a
V V
V SC SB
Bài tập6:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a a) Tính thể tích khối lập phương
b) Tính bán kính mặt cầu qua đỉnh lập phương
(15)a) V = a3 (đvtt)
b) Gọi O điểm đồng quy đường chéo AC’, DB’, A’C, BD’ O tâm mặt cầu ngoại tiếp lập phương
Bán kính mặt cầu
'
2
AC a R
c) Hai khối chóp ảnh qua phép đối xứng mặt phẳng (ABC’D’) đpcm
BÀI TẬP ĐỀ NGHỊ.
1) Cho hình chóp S.ABCD cậnh đáy a, góc SAC 600
a) Tính thể tích khối chóp
b) Xác định tâm tính bán kính mặt cầu ngoại tiếp
2) Cho hình chóp S.ABCD đáy hình vng cạnh a, SA a SA vng góc đáy a) Tính thể tích khối chóp
b) Xác định tâm tính bán kính mặt cầu ngoại tiếp
c) Quay tam giác vuông SAC quanh đường thẳng chứa cạnh SA, tính diện tích xung quanh khối nón tạo
3) Cho hình nón có đường cao 12cm, bán kính đáy 16cm a) Tính diện tích xung quanh hình nón
b) Tính thể tích khối nón
4) Cho hình chóp S.ABC cạnh đáy a, mặt bên hợp đáy góc 600
a) Tính thể tích khối chóp S.ABC
b) Tìm tâm tính bán kính mặt cầu ngoại tiếp hình chóp
5) Cho tứ diện OABC có OA = OB = OC =a đơi vng góc Gọi H trực tâm tam giác ABC
a) Chứng minh OH (ABC)
b) Chứng minh 2 2
1 1
OH OA OB OC
(16)