Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 34 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
34
Dung lượng
2,53 MB
Nội dung
Phơng trình , Bất phơng trìnhvôtỉBài 1: Giải phơng trình a) + = 3 3 1 2 2 1x x + = = + = 3 3 3 3 1 2 2 1 2 1 1 2 x x y x y x - Phơng trình đợc chuyển thành hệ = = = + = + = + = + = = + = = + + + = + = = = 3 3 3 3 3 3 2 2 3 1 1 2 1 2 1 2 1 5 2 1 2 2( ) 2 0( ) 1 5 1 2 2 x y x y x y x y x y x y y x x y x y x xy y vn x y x y - Vậy phơng trình đã cho có 3 nghiệm. b) + = + 2 2 1 1 (1 2 1 )x x x ĐS:x=1/2; x=1 c) + = + + 2 ( 3 2 1) 4 9 2 3 5 2x x x x x ĐS: x=2. d) + + + = 1 ( 3)( 1) 4( 3) 3 3 x x x x x ĐS: = = 1 13; 1 5x x e) + = + 2 2 1 1 2 2 4 ( )x x x x - Sử dụng BĐT Bunhia. f) + = 4 1 1 2x x x ĐS: x=0 Bài 2: Giải BPT: a) + 5 1 4 1 3x x x ĐS: x1/4 b) + > 2 2( 16) 7 3 3 3 x x x x x ĐK > 2 16 0 4 3 0 x x x - Biến đôỉ bất phơng trình về dạng + > > < > > < > 2 2 2 2 2( 16) 3 7 2( 16) 10 2 10 2 0 5 10 2 0 10 34. 10 34 5 2( 16) (10 2 ) x x x x x x x x x x x x - Kết hợp ĐK ta có nghiệm của BPT là > 10 34x . c) + > ( 1)(4 ) 2x x x . 1 d) < 2 1 1 4 3 x x . ĐK: < < 2 1 0 1 4 0 2 1 0 0 2 x x x x - Thực hiện phép nhân liên hợp ta thu đợc BPT < + > < < > > 2 2 2 2 2 2 2 4 3(1 1 4 ) 3 1 4 4 3 3 4 4 3 0 1 1 4 0 1 2 2 4 3 0 3 9(1 4 ) (4 3) 4 9(1 4 ) (4 3) x x x x x x x x x x x x x x x . - Kết hợp ĐK thu đợc nghiệm < < 1 0 2 1 0 2 x x Cách 2: - Xét 2 TH: + Với < < 2 1 0. 1 4 1 3 2 x BPT x x + Với < > 2 1 0 . 1 4 1 3 2 x BPT x x e) 2 2 5 10 1 7 2x x x x+ + ĐK: 2 5 2 5 5 5 10 1 0 5 2 5 5 x x x x + + + - Với Đk đó 2 2 5 5 10 1 36 5 10 1x x x x + + + + + - Đặt 2 5 10 1; 0t x x t= + + . - ĐS: x-3 hoặc x1. Bài 3: Tìm m để phơng trình sau có nghiệm: 2 2 1 1x x x x m+ + + = . Giải: Xét hàm số 2 2 1 1y x x x x= + + + + Miền xác định D= R . + Đạo hàm + = + + + = + + = + + + > + + = + + 2 2 2 2 2 2 2 2 2 1 2 1 ' 2 1 2 1 ' 0 (2 1) 1 (2 1) 1 (2 1)(2 1) 0 (vo nghiem) (2 1) ( 1) (2 1) ( 1) x x y x x x x y x x x x x x x x x x x x x x + y(0)=1>0 nên hàm số ĐB 2 + Giới hạn + = = + + + = 2 2 2 lim lim 1 1 1 lim 1. x x x x y x x x x y + BBT x - + y + y 1 -1 Vậy phơng trìnhcó nghiệm khi và chỉ khi -1<m<1. Bài 4: Tìm m để phơng trình sau có nghiệm thực 2 1x x m+ = + Giải: - Đặt 1; 0t x t= + . Phơng trình đã cho trở thành: 2t=t 2 -1+m m=-t 2 +2t+1 - Xét hàm số y=-t 2 +2t+1; t0; y=-2t+2 x 0 1 + y + 0 - y 2 1 - - Theo yêu cầu của bài toán đờng thẳng y=m cắt ĐTHS khi m2. Bài 5: Tìm m để phơng trình sau có đúng 2 nghiệm dơng: 2 2 4 5 4x x m x x + = + . Giải: - Đặt 2 2 2 ( ) 4 5; '( ) ; '( ) 0 2 4 5 x t f x x x f x f x x x x = = + = = = + . 3 Xét x>0 ta có BBT: x 0 2 + f(x) - 0 + f(x) 5 + 1 - Khi đó phơng trình đã cho trở thành m=t 2 +t-5 t 2 +t-5-m=0 (1). - Nếu phơng trình (1) có nghiệm t 1 ; t 2 thì t 1 + t 2 =-1. Do đó (1) có nhiều nhất 1 nghiệm t1. - Vậy phơng trình đã cho có đúng 2 nghiệm dơng khi và chỉ khi phơng trình (1) có đúng 1 nghiệm t (1; 5) . - Đặt g(t)=t 2 +t-5. Ta đi tìm m để phơng trình g(t)=m có đúng 1 nghiệm t (1; 5) . f(t)=2t+1>0 với mọi t (1; 5) . Ta có BBT sau: t 1 5 g(t) + g(t) 5 -3 Từ BBT suy ra -3<m< 5 là các giá trị cần tìm. Bài 6: Xác định m để phơng trình sau có nghiệm 2 2 4 2 2 ( 1 1 2) 2 1 1 1m x x x x x+ + = + + . Giải: - Điều kiện -1x1. Đặt 2 2 1 1t x x= + . - Ta có 2 2 2 4 1 1 0; 0 0 2 2 1 2 2; 2 1 x x t t x t x t t x + = = = = = - Tập giá trị của t là 0; 2 (t liên tục trên đoạn [-1;1]). Phơng trình đã cho trở thành: 2 2 2 ( 2) 2 (*) 2 t t m t t t m t + + + = + + = + - Xét 2 2 ( ) ;0 2. 2 t t f t t t + + = + Ta có f(t) liên tục trên đoạn 0; 2 . Phơng trình đã cho có nghiệm x khi và chỉ khi phơng trình (*) có nghiệm t thuộc 0; 2 0; 2 0; 2 min ( ) max ( )f t m f t . - Ta có 2 2 0; 2 0; 2 4 '( ) 0, 0; 2 ( ) 0; 2 . ( 2) Suy ra min ( ) ( 2) 2 1;ma x ( ) (0) 1 t t f t t f t NB t f t f f t f = + = = = = . - Vậy 2 1 1.m Bi 7: Tỡm m bt phng trỡnh 3 1mx x m + (1) cú nghim. 4 Giải: Đặt 3; [0; )t x t= − ∈ +∞ . Bất phươngtrình trở thành: 2 2 2 1 ( 3) 1 ( 2) 1 2 t m t t m m t t m t + + − ≤ + ⇔ + ≤ + ⇔ ≤ + (2) (1)có nghiệm (2) có nghiệm t≥0 có ít nhất 1 điểm của ĐTHS y= 2 1 2 t t + + với t≥0 không ở phía dưới đường thẳng y=m. Xét y= 2 1 2 t t + + với t≥0 có 2 2 2 2 2 ' ( 2) t t y t − − + = + t 1 3− − 0 1 3− + + ∞ y’ - 0 + | + 0 - y 3 1 4 + Từ Bảng biến thiên ta có m≤ 3 1 4 + . Bài 8: Tìm m để phươngtrình 3 6 (3 )(6 )x x x x m+ + − − + − = có nghiệm. Giải: Đặt ( ) 3 6t f x x x= = + + − với [ 3;6]x ∈ − thì 6 3 ' '( ) 2 (6 )(3 ) x x t f x x x − − + = = − + x -3 3/2 6 +∞ f’(x) ║ + 0 - ║ f(x) | 3 2 | 3 3 Vậy t [3;3 2]∈ . Phươngtrình (1) trở thành 2 2 9 9 2 2 2 t t t m t m − − = ⇔ − + + = (2). Phươngtrình (1) có nghiệm Phươngtrình (2) có nghiệm t [3;3 2]∈ đường thẳng y=m có điểm chung với đồ thị y= 2 9 2 2 t t− + + với t [3;3 2]∈ . Ta có y’=-t+1 nên có t 1 3 3 2 y’ + 0 - | - | y 3 9 3 2 2 − Bài 9: Cho bất phươngtrình 2 1 (4 )(2 ) (18 2 ) 4 x x a x x− + ≥ − + − . Tìm a để bất phươngtrình nghiệm đúng với mọi x ∈ [-2;4]. Giải: 5 Đặt 2 (4 )(2 ) 2 8; [0;3]t x x x x t= − + = − + + ∈ . Bất phươngtrình trở thành: 2 2 1 (10 ) 4 10 4 t a t a t t≥ − + ⇔ ≥ − + .(2) (1)ghiệm (2) có nghiệm mọi t ∈ [0;3] đường thẳng y=a nằm trên ĐTHS y=t 2 -4t+10 với t ∈ [0;3] y’=2t-4; y’=0t=2 t 0 2 3 y’ | - 0 + | y 10 7 6 Vậy m≥10. Bài 10: Cho phươngtrình 4 2 2 2 ( 1)x x x m x+ + = + (1). Tìm m để phươngtrìnhcó nghiệm. Giải: Phươngtrình đã cho tương đương 3 2 2 2 2 2 2 2 2 2 2 4( ) 4 ( 1) 4 2 2 4 2. ( ) 4 (1 ) (1 ) 1 1 x x x x x x x x m m m x x x x + + + + = ⇔ = ⇔ + = + + + + Đặt t= 2 2 1 x x+ ; t ∈ [-1;1]. Khi đó phươngtrình (1) trở thành 2t+t 2 =4m. (1) có nghiệm (2) có nghiệm t ∈ [-1;1] Xét hàm số y=f(t)=t 2 +2t với t ∈ [-1;1]. Ta có f’(t)=2t+2≥0 với mọi t ∈ [-1;1]. t -1 1 f’ 0 + | f 3 -1 Từ BBT -1≤4m≤3 1 3 4 4 m⇔ − ≤ ≤ . 6 HUYÊN ĐỀ : PHƯƠNG PHÁP GIẢI PHƯƠNGTRÌNHVÔTỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phươngtrình a) Phương pháp Thông thường nếu ta gặp phươngtrình dạng : A B C D+ = + , ta thường bình phương 2 vế , điều đó đôi khi lại gặp khó khăn hãy giải ví dụ sau ( ) 3 3 3 3 3 3 3 .A B C A B A B A B C+ = ⇒ + + + = và ta sử dụng phép thế : 3 3 A B C+ = ta được phươngtrình : 3 3 . .A B A B C C+ + = b) Ví dụ Bài 1. Giải phươngtrình sau : 3 3 1 2 2 2x x x x+ + + = + + Giải: Đk 0x ≥ Bình phương 2 vế không âm của phươngtrình ta được: ( ) ( ) ( ) 1 3 3 1 2 2 1x x x x x+ + + = + + , để giải phươngtrình này dĩ nhiên là không khó nhưng hơi phức tạp một chút . Phươngtrình giải sẽ rất đơn giản nếu ta chuyển vế phươngtrình : 3 1 2 2 4 3x x x x+ − + = − + Bình phương hai vế ta có : 2 2 6 8 2 4 12 1x x x x x+ + = + ⇔ = Thử lại x=1 thỏa Nhận xét : Nếu phươngtrình : ( ) ( ) ( ) ( ) f x g x h x k x+ = + Mà có : ( ) ( ) ( ) ( ) f x h x g x k x+ = + , thì ta biến đổi phươngtrình về dạng : ( ) ( ) ( ) ( ) f x h x k x g x− = − sau đó bình phương ,giải phươngtrình hệ quả Bài 2. Giải phươngtrình sau : 3 2 1 1 1 3 3 x x x x x x + + + = − + + + + Giải: Điều kiện : 1x ≥ − Bình phương 2 vế phươngtrình ? Nếu chuyển vế thì chuyển như thế nào? Ta có nhận xét : 3 2 1 . 3 1. 1 3 x x x x x x + + = − + + + , từ nhận xét này ta cólời giải như sau : 3 2 1 (2) 3 1 1 3 x x x x x x + ⇔ − + = − + − + + Bình phương 2 vế ta được: 3 2 2 1 3 1 1 2 2 0 3 1 3 x x x x x x x x = − + = − − ⇔ − − = ⇔ + = + Thử lại : 1 3, 1 3x x= − = + l nghiệm Qua lời giải trên ta có nhận xét : Nếu phươngtrình : ( ) ( ) ( ) ( ) f x g x h x k x+ = + Mà có : ( ) ( ) ( ) ( ) . .f x h x k x g x= thì ta biến đổi ( ) ( ) ( ) ( ) f x h x k x g x− = − 2. Trục căn thức 2.1. Trục căn thức để xuất hiện nhân tử chung a) Phương pháp Một số phươngtrìnhvôtỉ ta có thể nhẩm được nghiệm 0 x như vậy phươngtrình luôn đưa về được dạng tích ( ) ( ) 0 0x x A x− = ta có thể giải phươngtrình ( ) 0A x = hoặc chứng minh ( ) 0A x = vô nghiệm , chú ý điều kiện của nghiệm của phươngtrình để ta có thể đánh gía ( ) 0A x = vô nghiệm 7 b) Ví dụ Bài 1 . Giải phươngtrình sau : ( ) 2 2 2 2 3 5 1 2 3 1 3 4x x x x x x x− + − − = − − − − + Giải: Ta nhận thấy : ( ) ( ) ( ) 2 2 3 5 1 3 3 3 2 2x x x x x− + − − − = − − v ( ) ( ) ( ) 2 2 2 3 4 3 2x x x x− − − + = − Ta có thể trục căn thức 2 vế : ( ) 2 2 2 2 2 4 3 6 2 3 4 3 5 1 3 1 x x x x x x x x x − + − = − + − + − + + − + Dể dàng nhận thấy x=2 là nghiệm duy nhất của phươngtrình . Bài 2. Giải phươngtrình sau (OLYMPIC 30/4 đề nghị) : 2 2 12 5 3 5x x x+ + = + + Giải: Để phươngtrìnhcó nghiệm thì : 2 2 5 12 5 3 5 0 3 x x x x+ − + = − ≥ ⇔ ≥ Ta nhận thấy : x=2 là nghiệm của phươngtrình , như vậy phươngtrìnhcó thể phân tích về dạng ( ) ( ) 2 0x A x− = , để thực hiện được điều đó ta phải nhóm , tách như sau : ( ) ( ) 2 2 2 2 2 2 2 2 4 4 12 4 3 6 5 3 3 2 12 4 5 3 2 1 2 3 0 2 12 4 5 3 x x x x x x x x x x x x x x − − + − = − + + − ⇔ = − + + + + + + + ⇔ − − − = ⇔ = ÷ + + + + Dễ dàng chứng minh được : 2 2 2 2 5 3 0, 3 12 4 5 3 x x x x x + + − − < ∀ > + + + + Bài 3. Giải phươngtrình : 2 33 1 1x x x− + = − Giải :Đk 3 2x ≥ Nhận thấy x=3 là nghiệm của phươngtrình , nên ta biến đổi phươngtrình ( ) ( ) ( ) ( ) 2 2 3 3 2 3 2 2 3 3 3 3 9 3 1 2 3 2 5 3 1 2 5 1 2 1 4 x x x x x x x x x x x − + + + − − + − = − − ⇔ − + = − + − + − + Ta chứng minh : ( ) ( ) 2 2 2 2 23 3 3 3 3 1 1 2 1 2 1 4 1 1 3 x x x x x + + + = + < − + − + − + + 2 3 3 9 2 5 x x x + + < − + Vậy pt có nghiệm duy nhất x=3 2.2. Đưa về “hệ tạm “ a) Phương pháp Nếu phươngtrìnhvôtỉcó dạng A B C+ = , mà : A B C α − = ở dây C có thể là hàng số ,có thể là biểu thức của x . Ta có thể giải như sau : A B C A B A B α − = ⇒ − = − , khi đĩ ta có hệ: 2 A B C A C A B α α + = ⇒ = + − = b) Ví dụ Bài 4. Giải phươngtrình sau : 2 2 2 9 2 1 4x x x x x+ + + − + = + Giải: Ta thấy : ( ) ( ) ( ) 2 2 2 9 2 1 2 4x x x x x+ + − − + = + 4x = − không phải là nghiệm Xét 4x ≠ − Trục căn thức ta có : 2 2 2 2 2 8 4 2 9 2 1 2 2 9 2 1 x x x x x x x x x x + = + ⇒ + + − − + = + + − − + 8 Vậy ta có hệ: 2 2 2 2 2 0 2 9 2 1 2 2 2 9 6 8 2 9 2 1 4 7 x x x x x x x x x x x x x x = + + − − + = ⇒ + + = + ⇔ = + + + − + = + Thử lại thỏa; vậy phươngtrìnhcó 2 nghiệm : x=0 v x= 8 7 Bài 5. Giải phươngtrình : 2 2 2 1 1 3x x x x x+ + + − + = Ta thấy : ( ) ( ) 2 2 2 2 1 1 2x x x x x x+ + − − + = + , như vậy không thỏa mãn điều kiện trên. Ta có thể chia cả hai vế cho x và đặt 1 t x = thì bài toán trở nên đơn giản hơn Bài tập đề nghị Giải các phươngtrình sau : ( ) 2 2 3 1 3 1x x x x+ + = + + 4 3 10 3 2x x− − = − (HSG Toàn Quốc 2002) ( ) ( ) ( ) ( ) 2 2 5 2 10x x x x x− − = + − − 23 4 1 2 3x x x+ = − + − 2 33 1 3 2 3 2x x x− + − = − 2 3 2 11 21 3 4 4 0x x x− + − − = (OLYMPIC 30/4-2007) 2 2 2 2 2 1 3 2 2 2 3 2x x x x x x x− + − − = + + + − + 2 2 2 16 18 1 2 4x x x x+ + + − = + 2 2 15 3 2 8x x x+ = − + + 3. Phươngtrình biến đổi về tích Sử dụng đẳng thức ( ) ( ) 1 1 1 0u v uv u v+ = + ⇔ − − = ( ) ( ) 0au bv ab vu u b v a+ = + ⇔ − − = 2 2 A B= Bài 1. Giải phươngtrình : 23 3 3 1 2 1 3 2x x x x+ + + = + + + Giải: ( ) ( ) 3 3 0 1 1 2 1 0 1 x pt x x x = ⇔ + − + − = ⇔ = − Bi 2. Giải phươngtrình : 2 23 3 3 3 1x x x x x+ + = + + Giải: + 0x = , không phải là nghiệm + 0x ≠ , ta chia hai vế cho x: ( ) 3 3 3 3 3 1 1 1 1 1 1 0 1 x x x x x x x x + + + = + + ⇔ − − = ⇔ = ÷ Bài 3. Giải phương trình: 2 3 2 1 2 4 3x x x x x x+ + + = + + + Giải: : 1dk x ≥ − pt ( ) ( ) 1 3 2 1 1 0 0 x x x x x = ⇔ + − + − = ⇔ = Bài 4. Giải phươngtrình : 4 3 4 3 x x x x + + = + Giải: Đk: 0x ≥ Chia cả hai vế cho 3x + : 2 4 4 4 1 2 1 0 1 3 3 3 x x x x x x x + = ⇔ − = ⇔ = ÷ + + + Dùng hằng đẳng thức 9 Biến đổi phươngtrình về dạng : k k A B= Bài 1. Giải phươngtrình : 3 3x x x− = + Giải: Đk: 0 3x≤ ≤ khi đó pt đ cho tương đương : 3 2 3 3 0x x x+ + − = 3 3 1 10 10 1 3 3 3 3 x x − ⇔ + = ⇔ = ÷ Bài 2. Giải phươngtrình sau : 2 2 3 9 4x x x+ = − − Giải: Đk: 3x ≥ − phươngtrình tương đương : ( ) 2 2 1 3 1 3 1 3 9 5 97 3 1 3 18 x x x x x x x x = + + = + + = ⇔ ⇔ − − = + + = − Bài 3. Giải phươngtrình sau : ( ) ( ) 2 2 3 3 2 3 9 2 2 3 3 2x x x x x+ + = + + Giải : pttt ( ) 3 3 3 2 3 0 1x x x⇔ + − = ⇔ = II. PHƯƠNG PHÁP ĐẶT ẦN PHỤ 1. Phương pháp đặt ẩn phụ thông thường Đối với nhiều phương trìnhvôvôtỉ , để giải chúng ta có thể đặt ( ) t f x= và chú ý điều kiện của t nếu phươngtrình ban đầu trở thành phươngtrình chứa một biến t quan trọng hơn ta có thể giải được phươngtrình đó theo t thì việc đặt phụ xem như “hoàn toàn ” .Nói chung những phươngtrình mà có thể đặt hoàn toàn ( ) t f x= thường là những phươngtrình dễ . Bài 1. Giải phương trình: 2 2 1 1 2x x x x− − + + − = Điều kiện: 1x ≥ Nhận xét. 2 2 1. 1 1x x x x− − + − = Đặt 2 1t x x= − − thì phươngtrìnhcó dạng: 1 2 1t t t + = ⇔ = Thay vào tìm được 1x = Bài 2. Giải phương trình: 2 2 6 1 4 5x x x− − = + Giải Điều kiện: 4 5 x ≥ − Đặt 4 5( 0)t x t= + ≥ thì 2 5 4 t x − = . Thay vào ta cóphươngtrình sau: 4 2 2 4 2 10 25 6 2. ( 5) 1 22 8 27 0 16 4 t t t t t t t − + − − − = ⇔ − − + = 2 2 ( 2 7)( 2 11) 0t t t t⇔ + − − − = Ta tìm được bốn nghiệm là: 1,2 3,4 1 2 2; 1 2 3t t= − ± = ± Do 0t ≥ nên chỉ nhận các gái trị 1 3 1 2 2, 1 2 3t t= − + = + Từ đó tìm được các nghiệm của phươngtrình l: 1 2 2 3 vaø x x= − = + Cách khác: Ta có thể bình phương hai vế của phươngtrình với điều kiện 2 2 6 1 0x x− − ≥ Ta được: 2 2 2 ( 3) ( 1) 0x x x− − − = , từ đó ta tìm được nghiệm tương ứng. Đơn giản nhất là ta đặt : 2 3 4 5y x− = + và đưa về hệ đối xứng (Xem phần dặt ẩn phụ đưa về hệ) Bài 3. Giải phươngtrình sau: 5 1 6x x+ + − = 10 [...]... Xây dựng phươngtrìnhvơtỉ bằng phương pháp lượng giác như thế nào ? Từ cơng phươngtrình lượng giác đơn giản: cos3t = sin t , ta có thể tạo ra được phươngtrìnhvơtỉ Chú ý : cos3t = 4cos3 t − 3cos t ta cóphươngtrìnhvơ tỉ: 4 x 3 − 3 x = 1 − x 2 (1) Nếu thay x bằng 1 ta lại cóphươngtrình : 4 − 3 x 2 = x 2 x 2 − 1 x (2) Nếu thay x trong phươngtrình (1) bởi : (x-1) ta sẽ cóphươngtrìnhvốtỉ khó:... -Giải phươngtrình khi m=1 -Tìm m để phươngtrìnhcó nghiệm Bài 4: Cho phương trình: 2 x 2 + mx − 3 = x − m -Giải phươngtrình khi m=3 -Với giá trị nào của m thì phươngtrìnhcó nghiệm II.PHƯƠNG PHÁP ĐẶT ẨN PHỤ Phương pháp đặt ẩn phụ thơng thường -Nếu bài tốn có chứa f ( x) và f ( x) khi đó đặt t = f ( x) (với điều kiện tối thiểu là t ≥ 0 đối với các phươngtrìnhcó chứa tham số thì nhất thiết phải... Hãy tạo ra những phươngtrìnhvơtỉ dạng trên ví dụ như: 4 x 2 − 2 2 x + 4 = x 4 + 1 Để có một phươngtrình đẹp , chúng ta phải chọn hệ số a,b,c sao cho phươngtrình bậc hai at 2 + bt − c = 0 giải “ nghiệm đẹp” ( ) 2 3 Bài 1 Giải phươngtrình : 2 x + 2 = 5 x + 1 Giải: Đặt u = x + 1, v = x 2 − x + 1 u = 2v Phươngtrình trở thành : 2 ( u + v ) = 5uv ⇔ u = 1 v 2 3 4 Bài 2 Giải phươngtrình : x 2 −... những phươngtrìnhvơtỉ khơng tầm thường chút nào, độ khó của phươngtrình dạng này phụ thuộc vào phươngtrình tích mà ta xuất phát Từ đó chúng ta mới đi tìm cách giải phươngtrình dạng này Phương pháp giải được thể hiện qua các ví dụ sau ( ) 2 2 2 Bài 1 Giải phươngtrình : x + 3 − x + 2 x = 1 + 2 x + 2 Giải: t = t = 3 2 x 2 + 2 , ta có : t − ( 2 + x ) t − 3 + 3x = 0 ⇔ t = x − 1 24 Bài 2 Giải phương. .. phươngtrìnhvơtỉ khơng tầm thường chút nào, độ khó của phươngtrình dạng này phụ thuộc vào phươngtrình tích mà ta xuất phát Từ đó chúng ta mới đi tìm cách giải phươngtrình dạng này Phương pháp giải được thể hiện qua các ví dụ sau ( ) 2 2 2 Bài 1 Giải phươngtrình : x + 3 − x + 2 x = 1 + 2 x + 2 Giải: t = 3 2 t = x 2 + 2 , ta có : t − ( 2 + x ) t − 3 + 3x = 0 ⇔ t = x − 1 Bài 2 Giải phương trình. .. trình: -Tìm m để phươngtrìnhcó nghiệm ( ) 2 2 Bài 5: Cho phương trình: 2 x − 2 x + x − 2 x − 3 − m = 0 -Giải phươngtrình với m = 9 -Tìm m để phươngtrìnhcó nghiệm 2 Phương pháp đặt ẩn phụ khơng hồn tồn Là việc sử dụng một ẩn phụ chuyển phươngtrình ban đầu thành một phươngtrình với một ẩn phụ nhưng các hệ số vẫn còn chứa x -Từ những phươngtrình tích ( )( x +1 −1 ) x +1 − x + 2 = 0 , ( 2x + 3 − x... C ta được phươngtrình : A + B + 3 3 A.B.C = C Bài 1: Giải phương trình: f) 3 + x − 2 − x = 1 a) x 2 − 1 = x − 1 g) x + 9 = 5 − 2 x + 4 b) x − 2 x + 3 = 0 h) c) x 2 + x + 1 = 1 e) 3 x − 2 + x − 1 = 3 3x + 4 − 2 x + 1 = x + 3 i) ( x + 3) 10 − x 2 = x 2 − x − 12 Bài 2: Tìm m để phươngtrình sau có nghiệm: − x 2 + 3 x − 2 = 2m + x − x 2 Bài 3: Cho phương trình: x 2 − 1 − x = m -Giải phươngtrình khi m=1... Đến đây bài tốn được giải quyết Các em hãy tự sáng tạo cho mình những phươngtrìnhvơtỉ “đẹp “ theo cách trên 3 Phương pháp đặt ẩn phụ khơng hồn tồn Từ những phươngtrình tích ( )( x +1 −1 ) x +1 − x + 2 = 0 , ( 2x + 3 − x )( ) 2x + 3 − x + 2 = 0 Khai triển và rút gọn ta sẽ được những phươngtrìnhvơtỉ khơng tầm thường chút nào, độ khó của phươngtrình dạng này phụ thuộc vào phươngtrình tích... Phươngtrìnhcó nghiệm : x = − 2 3 + 1 1 2 Bài 4 .Giải phươngtrình x 1 + ( ) 21 2 x 2 + 1 ( x + 1) x +1 = + 2x 2x ( 1 − x2 ) 2 2 Bài 5 Giải phươngtrình : Giải: đk x ≠ 0, x ≠ ±1 π π ; ÷ 2 2 2 Khi đó pttt 2sin t cos 2t + cos 2t − 1 = 0 ⇔ sin t ( 1 − sin t − 2sin t ) = 0 Ta có thể đặt : x = tan t , t ∈ − Kết hợp với điều kiện ta có nghiệm x = 1 3 Bài tập tổng hợp Giải các phươngtrình sau... Tức là nghiệm của phươngtrình là x ∈ {2;3} 1 2 −1 − x + 4 x = 4 Bài 2 Giải phương trình: 2 Điều kiện: 0 ≤ x ≤ 2 − 1 2 −1− x = u ⇒0≤u≤ 2 − 1,0 ≤ v ≤ 4 2 − 1 Đặt 4 x =v Khi đó phươngtrình chuyển về hệ phươngtrình sau: 1 1 u = 4 2 − v u + v = 4 2 ⇔ Ta đưa về hệ phươngtrình sau: 2 u 2 + v 4 = 2 − 1 1 − v + v 4 = 2 − 1 ÷ 4 2 2 1 Giải phươngtrình thứ 2: (v + . PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÔ TỈ I. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG 1. Bình phương 2 vế của phương trình a) Phương pháp Thông thường nếu ta gặp phương. thức vô tỉ thì sẽ nhận được phương trình vô tỉ theo dạng này . a) . Phương trình dạng : ( ) ( ) ( ) ( ) . .a A x bB x c A x B x+ = Như vậy phương trình