Học sinh cần được rèn luyện các thao tác tư duy: phân tích, tổng hợp, đặc biệt hóa, khái quát hóa, tương tự, quy lạ về quen,...Việc nắm vững các tri thức phương pháp nói trên tạo điều[r]
(1)(2)HƯỚNG ĐỔI MỚI PHƯƠNG PHÁP DẠY HỌC (PPDH) MƠN TỐN THCS HIỆN NAY:
1 Tích cực hóa hoạt động học sinh, khơi dậy phát triển khả năng tự học nhằm hình thành tư tích cực, độc lập, sáng tạo; 2 Nâng cao lực phát giải vấn đề;
3 Rèn luyện kĩ vận dụng kiến thức vào thực tiễn;
(3)3
Do đặc trưng mơn tốn, viêc dạy học cần chú ý:
1 Kết hợp ôn cũ giảng mới
2.Thực vừa giảng vừa luyện, kết hợp ôn tập, bước hệ thống hóa kiến thức
3.Rèn luyện kĩ phân môn :
(4)1 Dạy học thông qua hoạt động học sinh
ĐẶC TRƯNG CƠ BẢN CỦA PHƯƠNG PHÁP DẠY HỌC ĐỔI MỚI:
2 Dạy học trọng rèn luyện phương pháp tự học
(5)5
BIỆN PHÁP THƯC HIỆN
(6)1 Dạy học phát giải vấn đề
(7)7
Để thực hiện
dạy học phát giải vấn đề,
điểm xuất phát là tạo ra
tình có vấn đề (tốt tình gây được cảm xúc và làm cho học sinh ngạc nhiên)
(8)(9)9
1 Dự đoán nhờ nhận xét trực quan, thực hành hoạt động thực tiễn
CÁC CÁCH THƯỜNG DÙNG
2 Lật ngược vấn đề 3 Xem xét tương tự 4. Khái quát hóa
5 Khai thác kiến thức cũ đặt vấn đề dẫn đến kiến thức
6 Nêu toán mà việc giải cho phép dẫn đến kiến thức mới
(10)1 Dự đoán nhờ nhận xét trực quan, thực hành hoạt động thực tiễn
Ví dụ
Hình thành quy tắc cộng hai số nguyên khác dấu
Một em bé đứng khoảng cầu thang Nếu quy ước lên bậc viết +2, xuống bậc viết -3 Hãy nêu nhận xét số bậc lên xuống em bé các trường hợp sau:
1. Lên bậc lên tiếp bậc
2 Xuống bậc xuống tiếp bậc 3 Lên bậc xuống bậc
4 Lên bậc xuống bậc
(11)11
Hình thành quy tắc chuyển vế
Quan sát lời giải sau:
Từ x - 2 = - ta x = -3 + 2
Từ x + 4 = ta x = - 4
GV: "nhận xét dấu số hạng chuyển số hạng từ vế sang vế đẳng thức?"
HS: suy nghĩ trả lời câu hỏi… "phải đổi dấu số hạng đó: dấu + thành dấu – dấu – thành dấu +."
GV: "đó nội dung quy tắc chuyển vế."
(12)2 Lật ngược vấn đề.
Đặt vấn đề nghiên cứu mệnh đề đảo sau chứng minh tính chất, định lí
Ví dụ
Hình thành định lí đảo định lí Pitago
Đặt vấn đề: “Trong tam giác vng bình phương cạnh huyền tổng bình phương hai cạnh góc vng”
(13)13 Ví dụ
Hình thành tỉ lệ thức
Từ tỉ lệ thức ta suy đẳng thức a.d = b.c
Vậy từ đẳng thức a.d = b.c ta suy tỉ lệ thức nào?
Ví dụ
Hình thành phép trừ
Cho hai số tự nhiên a b ta tìm tổng của chúng Ngược lại, biết số tự nhiên c, ta có thể tìm hai số a b cho a + b = c không? Ví dụ: tìm hai số a b cho a + b =
(14)3 Xem xét tương tự.
Ví dụ:
Hình thành đẳng thức bình phương hiệu hai biểu thức:
(15)15
4. Khái qt hóa
Ví dụ
Hình thành đẳng thức n phương
một hiệu hai biểu thức Từ: “bình phương
một hiệu hai biểu thức”
có thể dự đốn: “ Lập phương hiệu hai
(16)5 Khai thác kiến thức cũ đặt vấn đề dẫn đến kiến thức
Ví dụ 1:
Hình thành phương pháp giải tốn phương trình Giải tốn:
“Vừa gà vừa chó Bó lại cho trịn Ba mươi sáu
Một trăm chân chẵn” Hỏi có gà, chó?
(17)17
Ví dụ 2:
Hình thành khái niệm hai phân số (lớp 6) Đặt vấn đề:
Ở lớp ta biết hai phân số với tử số mẫu số số tự nhiên
Thế phân số mà tử số mẫu số
số ngun sao, ví dụ: hai phân số có khơng làm để biết điều đó?
(18)Ví dụ 3: Hình thành khái niệm phép chia có dư
Sau học sinh biết phép chia hết, giáo viên tổ chức cho học sinh quan sát: “Hai phép chia sau:
14: 15 :2 có khác nhau?” Dự kiến:
Nếu học sinh trả lời “số bị chia khác nhau” GV “đúng vậy” cịn khác nữa?
Nếu học sinh trả lời “số dư khác nhau” GV “đúng vậy,
chính xác phép chia thứ số dư khơng cịn phép chia thứ hai số dư khác khơng”
Từ giới thiệu phép chia hết, phép chia có dư
Nhận xét: GV nên cho học sinh quan sát không với hai phép chia mà nhiều tốt chia làm hai
(19)19
Ví dụ 3: Hình thành khái niệm phép trừ
Tình huống:
Xét xem có số tự nhiên x mà a) + x = hay không? b) + x = hay không?
Học sinh tìm giá trị x:
Ở câu a, tìm x =
Ở câu b, khơng tìm giá trị x Nhận xét: câu a ta có phép trừ: – =
Khái quát ghi bảng:
(20)6 Nêu toán mà việc giải cho phép dẫn đến kiến thức mới
Ví dụ 1: Hình thành phương pháp chứng minh Bài toán: Cho A = 2000.2000 B = 1999.2001
Hãy tìm cách nhanh để so sánh hai phép tính Bài tốn địi hỏi học sinh phải phát đặc điểm số cho:
Nếu đặt 2000 = n A = n2
còn B = (n - 1)(n + 1) = n2 -
(21)21
Ví dụ 2: Hình thành phép cộng hai số nguyên khác dấu
Kiểm tra cũ: “Cộng hai số nguyên dấu”:
Bài tập 26: “Nhiệt độ phịng -5°C Nhiệt độ tới biết nhiệt độ giảm 7°C?”
Sau giáo viên đặt vấn đề (vừa phát biểu dùng phấn sửa dấu trừ thành dấu cộng):
“Vậy nhiệt độ tới biết nhiệt độ giảm 7°C nhiệt độ phòng +5°C”
Muốn biết nhiệt độ tới phịng bao nhiêu, ta đặt phép tính gì?
Dự kiến:
Nếu học sinh trả lời: “(+5) – 7” GV cơng nhận nói phép trừ hai số nguyên, ta học sau Cịn cách khác khơng? Nếu học sinh trả lời: “(+5) + (-7)” GV giới thiệu phép cộng hai số nguyên khác dấu kết phép cộng bao nhiêu, nội dung học hôm
(22)22
7 Tìm sai lầm lời giải
Ví dụ 1: Hình thành quy tắc nhân hai vế bất đẳng thức với số âm
Bài toán: Chứng minh rằng: “Bất kì số khơng lớn 0”
Thật vậy, giả sử a số thực bất kì:
Nếu số a số âm điều hiển nhiên a < Nếu số a số khơng a =
Nếu số a số dương ta có: a – < a nhân hai vế bất đẳng thức với –a ta được: -a2
+ a < -a2 thêm a2 vào hai vế bất đẳng thức ta
được: -a2 + a + a2 < -a2 + a2 suy a <
(23)23
Dạy học toán thực chất dạy hoạt động toán học Học sinh chủ thể hoạt động học, cần phải hút vào hoạt động học tập do giáo viên tổ chức đạo, qua đó, học sinh tự lực khám phá điều chưa biết khơng phải thụ động tiếp thu tri thức đặt Giáo viên không cung cấp, áp đặt kiến thức có sẵn mà hướng dẫn học sinh phát chiếm lĩnh tri thức, rèn luyện kĩ thông qua các hoạt động, hình thành thói quen vận dụng kiến thức toán học vào học tập môn học khác và vào thực tiễn
(24)Trong hoạt động dạy học theo phương pháp đổi mới, giáo viên giúp học sinh chuyển từ thói quen học tập thụ động sang tự học chủ động Muốn vậy, cần truyền thụ tri thức phương pháp để học sinh biết cách học, biết cách suy luận, biết cách tìm lại điều quên, biết cách tìm tịi để phát kiến thức Các tri thức phương pháp thường quy tắc, quy trình, nói chung phương pháp có tính chất thuật toán Tuy nhiên, cần coi trọng phương pháp có tính chất tìm đốn (ví dụ phương pháp tổng quát Polya để giải tập toán học) Học sinh cần rèn luyện thao tác tư duy: phân tích, tổng hợp, đặc biệt hóa, khái qt hóa, tương tự, quy lạ quen, Việc nắm vững tri thức phương pháp nói tạo điều kiện cho học sinh tự đọc hiểu tài liệu, tự làm tập, nắm vững hiểu sâu kiến thức đồng thời phát huy tiềm sáng tạo thân
(25)25
Phương pháp dạy học đổi yêu cầu học sinh ”nghĩ nhiều hơn, làm nhiều hơn, thảo luận nhiều hơn” Điều có nghĩa học sinh phải có cố gắng trí tuệ nghị lực cao trình tự lực tiếp cận tri thức mới, phải thực suy nghĩ làm việc cách tích cực, độc lập, đồng thời phải có mối quan hệ hợp tác cá nhân Lớp học mơi trường giao tiếp: thày-trị, trị-trị, cần phát huy tích cực mối quan hệ hoạt động hợp tác, tạo điều kiện cho người nâng cao trình độ qua việc vận dụng vốn hiểu biết kinh nghiệm cá nhân tập thể
(26)Trong phương pháp dạy học đổi mới, để phát huy vai trò tích cực chủ động học sinh, giáo viên cần hướng dẫn học sinh phát triển khả tự đánh giá để tự điều chỉnh cách học Giáo viên yêu cầu học sinh tự đánh giá làm thân, nhận xét góp ý làm, cách phát biểu bạn, phê phán sai lầm tìm nguyên nhân, nêu cách sửa chữa sai lầm
(27)27 Kĩ tính tốn khơng dụng cụ có
dụng cụ (bảng số, máy tính bỏ túi), lập bảng, biểu
2 Kĩ thực phép biến đổi đồng
3 Kĩ giải phương trình, bất phương trình hệ phương trình
4 Kĩ đọc vẽ đồ thị hàm số
5 Kĩ chứng minh: đẳng thức, bất đẳng thức, tính chia hết
6 Kĩ tốn học hóa tình thực tế, giải toán cách lập phương trình, vẽ đồ thị
PHÂN MƠN: ĐẠI SỐ
(28)28 PHÂN MƠN: HÌNH HỌC
Cần rèn luyện kỹ năng:
-Sử dụng ký hiệu hình học
-Sử dụng dụng cụ vẽ hình, đo đạc
-Vẽ hình minh họa theo yêu cầu, điều kiện cho trước, nhận biết biểu tượng hình học
-Đọc ký hiệu, hình vẽ
-Vận dụng khái niệm, định nghĩa, định lý tính chất vào giải toán, hiểu chứng minh định lý chứng minh định lý đơn giản
-Biết vận dụng mối quan hệ yếu tố, đối tượng hình vẽ để giải tập
dạy học phát giải vấn đề tình có vấn đề Hình thành