1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn kinh tế Phát Triển Tài Chính Và Qui Mô Kinh Tế Ngầm Ở Các Quốc Gia

93 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 93
Dung lượng 1,3 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC KINH TẾ TP HỒ CHÍ MINH PHẠM THỊ KIM HUỆ PHÁT TRIỂN TÀI CHÍNH VÀ QUI MƠ KINH TẾ NGẦM Ở CÁC QUỐC GIA ĐÔNG NAM Á LUẬN VĂN THẠC SĨ KINH TẾ TP Hồ Chí Minh – Năm 20116 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC KINH TẾ TP HỒ CHÍ MINH PHẠM THỊ KIM HUỆ PHÁT TRIỂN TÀI CHÍNH VÀ QUI MƠ KINH TẾ NGẦM Ở CÁC QUỐC GIA ĐƠNG NAM Á Chun ngành: Tài – Ngân hàng Mã số: 60340201 LUẬN VĂN THẠC SĨ KINH TẾ NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS NGUYỄN KHẮC QUỐC BẢO TP Hồ Chí Minh – Năm 2016 LỜI CAM ĐOAN Tôi xin cam đoan nghiên cứu “Phát triển tài quy mơ kinh tế ngầm quốc gia Đơng Nam Á”, cơng trình nghiên cứu Các số liệu nêu luận văn trung thực chưa công bố cơng trình khác Tơi xin cam đoan giúp đỡ cho việc thực luận văn cảm ơn thông tin trích dẫn luận văn rõ nguồn gốc TP.HCM, Ngày 31 Tháng 10 Năm 2016 Học viên thực luận văn Phạm Thị Kim Huệ MỤC LỤC TRANG PHỤ BÌA LỜI CAM ĐOAN MỤC LỤC DANH MỤC TỪ VIẾT TẮT DANH MỤC CÁC BẢNG BIỂU DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ TĨM TẮT CHƢƠNG 1: GIỚI THIỆU ĐỀ TÀI 1.1 Lý chọn đề tài 1.2 Mục tiêu câu hỏi nghiên cứu 1.3 Đóng góp tình đề tài 1.4 Đối tượng phạm vi nghiên cứu 1.5 Phương pháp nghiên cứu 1.6 Ý nghĩa đề tài 1.7 Bố cục đề tài CHƢƠNG II: TỔNG QUAN NGHI N C U 2.1 Cơ sở lý thuyết phát triển tài kinh tế ngầm 2.1.1 Lý thuyết phát triển tài 2.1.2 Lý thuyết kinh tế ngầm 2.1.3 Cở sơ lý thuyết mối quan hệ nhân phát triển tài kinh tế ngầm 17 2.2 Bằng chứng thực nghiệm mối quan hệ nhân phát triển kinh tế ngầm phát triển tài 25 2.2.1 Bằng chứng thực nghiệm phát triển tài làm giảm kinh tế ngầm 25 2.2.1 Bằng chứng thực nghiệm kinh tế ngầm kìm hãm phát triển tài 27 CHƢƠNG 3: PHƢƠNG PHÁP NGHI N C U 30 3.1 Câu hỏi nghiên cứu giả thuyết đề xuất: 30 3.2 Biến đo lường, chọn mẫu: 30 3.3 Mơ hình thực nghiệm 35 3.4 Phương pháp nghiên cứu mơ hình PVAR 35 CHƢƠNG 4: KẾT QUẢ NGHI N C U 39 4.1 Kiểm định tính dừng: 39 4.2 Độ trễ tối ưu kiểm định tính ổn định mơ hình: 41 4.3 Hàm phản ứng xung phân rã phương sai 44 4.3.1 Mơ hình chính: lgdp, m2gdp, shadow 44 4.3.2 Robustness check: Phương pháp đo lường khác phát triển tài chình: lgdp, creditprivate (creditfinancial) shadow 49 4.3.3 Thay đổi xếp thứ tự biến mơ hình sở: lgdp, shadow, m2gdp 54 CHƢƠNG 5: KẾT LUẬN 58 5.1 Kết luận: 58 5.2 Gợi ý sách 59 5.3 Hạn chế đề tài: 59 DANH MỤC TÀI LIỆU THAM KHẢO PHỤ LỤC DANH MỤC TỪ VIẾT TẮT ADF : Kiểm định Augmented Dickey – Fuller AR : tự hồi qui đơn chiều ASEAN : Hiệp hội quốc gia Đông Nam Á Creditprivate : Tín dụng nước cung cấp cơng ty tài cho khu vực tư nhân GDP, đơn vị phần trăm % Creditfinancial: Tín dụng nước từ khu vực tài bao gồm tổng tín dụng cho lĩnh vực khác tín dụng rịng với quyền trung ương GDP, đơn vị phần trăm % EU : Liên minh châu Âu GDP : Tổng sản phẩm nước Lgdp : logarit tự nhiên GDP bính quân đầu người MIMIC : Multiple Indicators and Multiple Causes m2gdp : cung tiền M2 GDP M2 : cung tiền M2 OECD : Tổ chức hợp tác phát triển kinh tế OLS : Phương pháp bính phương nhỏ PVAR : Mơ hình vector tự hồi qui liệu bảng Shadow : Quy mô kinh tế ngầm (phần trăm GDP) VAR : Mơ hình vector tự hồi qui DANH MỤC CÁC BẢNG BIỂU Bảng Tên bảng Trang Tóm tắt ưu nhược điểm khu vực kinh tế chình thức Bảng 2.1 dựa vào lập luận “nguồn vốn đăng ký ban đầu thấp doanh nghiệp 20 Tóm tắt ưu nhược điểm khu vực kinh tế chình thức Bảng 2.2 dựa vào lập luận “lựa chọn cơng nghệ tìn dụng doanh nghiệp” 21 Bảng 3.1 Tóm tắt biến chình sử dụng mơ hính 31 Bảng 3.2 Thống kê mơ tả biến 33 Bảng 3.3 Tóm tắt mơ hính nghiên cứu 36 Bảng 4.1 Kết kiểm định nghiệm đơn vị 39 Bảng 4.2 Bảng 4.3 Bảng 4.4 Bảng 4.5 Bảng 4.6 Bảng 4.7 Kết mơ hính PVAR với biến: d_lgdp, d_m2gdp d_shadow 43 Kết phân tìch phân rã phương sai với biến: d_lgdp, d_m2gdp d_shadow 45 Kết mô hính PVAR với biến: d_lgdp, d_creditprivate d_shadow 49 Kết mơ hính PVAR với biến: d_lgdp, d_creditprivate d_shadow 49 Kết mơ hính PVAR với biến: d_lgdp, d_shadow d_m2gdp 53 Kết phân tìch phân rã phương sai với biến: d_lgdp,d_shadow d_m2gdp 54 DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình Tên hình Hình 2.1 Trang 16 Mơ hính xác định quy mơ kinh tế ngầm – MIMIC Hình 3.1 Đồ thị quy mô kinh tế ngầm nước Đông Nam Á 31 giai đoạn 1997 – 2014 Hình 4.1 Kiểm tra giá trị Roots mơ hính 41 Hình 4.2 Kiểm tra giá trị Roots mơ hính 41 Hình 4.3 Kiểm tra giá trị Roots mơ hính 42 Hình 4.4 Kiểm tra giá trị Roots mơ hính 42 Hình 4.5 Kết hàm phản ứng xung với biến: d_lgdp, 45 d_m2gdp d_shadow Hình 4.6 Kết hàm phản ứng xung với biến: d_lgdp, 50 d_creditprivate d_shadow Hình 4.7 Kết hàm phản ứng xung với biến: d_lgdp, 51 d_creditfinancial d_shadow Hình 4.8 Kết hàm phản ứng xung với biến: d_lgdp, d_shadow d_m2gdp 56 TÓM TẮT Bài nghiên cứu phân tích mối quan hệ qui mơ kinh tế ngầm phát triển tài sử dụng liệu quốc gia Đông Nam Á giai đoạn 1997-2014 Tác giả sử dụng phương pháp phân tìch mơ hính VAR liệu bảng để tìm hiểu phản ứng biến tài chình cú sốc kinh tế ngầm ngược lại Tác giả tìm thấy sau cú sốc trực giao m2gdp, quy mô kinh tế ngầm tăng đột biến, nhiên sau năm thí quy mơ kinh tế ngầm co lại ổn định từ năm thứ Mối quan hệ ngược lại sử dụng biến creditprivate creditfinancial đại diện cho phát triển tài chính, năm cú sốc creditprivate creditfinancial làm giảm mạnh quy mô kinh tế ngầm, sau chu kì quy mơ kinh tế ngầm tăng lên ổn định theo thời gian năm thứ Đồng thời có số chứng mối quan hệ ngược lại phát triển tài quy mơ kinh tế ngầm, cụ thể cú sốc quy mô kinh tế ngầm cản trợ phát triển tài chình sau năm Tác giả tìm thấy chứng điều với biến creditfinacial creditprivate Cuối tác giả thấy phát triển kinh tế quy mơ kinh tế ngầm có mối quan hệ không đáng kể CHƢƠNG 1: GIỚI THIỆU ĐỀ TÀI 1.1 Lý chọn đề tài Q trình chuyển đổi từ kế hoạch hóa tập trung sang kinh tế thị trường làm bùng phát mạnh mẽ nhiều mối quan hệ phức tạp sở kinh tế đa thành phần, đa sơ hữu, với hệ thống hành luật pháp cịn phát triển Tất tạo điều kiện hình thành khu vực kinh tế khơng nhỏ, nằm ngồi quản lý nhà nước, kinh tế ngầm Kinh tế ngầm hiểu hoạt động sản xuất kinh doanh chưa đăng ký bất hợp pháp, hoạt động phi kinh doanh liên quan đến chiếm dụng tài sản hay tạo thu nhập bất thường thông qua: gian lận thương mại, tham nhũng, trốn thuế, cố ý làm thất thoát ngân sách nhà nước Kinh tế ngầm chứng minh trở ngại nhiều phủ, đặc biệt quốc gia phát triển với 75% sản phẩm quốc gia thuộc khu vực ngầm này, so sánh với 10% quốc gia phát triển, theo Schneider Enste (2000) Theo nghiên cứu trước nghiên cứu thị trường ngầm, Blackburn cộng sự., 2012; Bose cộng sự., 2012; Capasso Jappelli, 2013; Straub, 2005; Dabla-Norris cộng sự., 2008 cho ngành tài khu vực có tác động tới mở rộng kinh tế ngầm Đặc biệt ngành tài phục vụ nhiều chức quan trọng kinh tế cung cấp vốn cho chủ thể cần vốn, giám sát định đoạt chứng từ thương mại liên quan tới thuế quan Do đó, tăng giảm phát triển ngành tài có khả tạo hội tác động tới giá cho việc sản xuất khu vực kinh tế ngầm, cách giảm mức rào cản để chủ thể kinh tế ngầm tiếp cận nguồn vốn, làm hợp pháp hóa giao dịch cho chủ thể khơng thức thị trường – theo Blackburn cộng sự., 2012; Capasso Jappelli, 2013 Hơn nữa, phát triển khu vực tài cao tăng khả giám sát tăng hiệu chứng từ thuế, phát triển thấp khu vực AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 2.6614 0.9975 Inverse normal Z 3.3084 0.9995 Inverse logit t(34) L* 3.4934 0.9993 Modified inv chi-squared Pm -1.9062 0.9717 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels -Fisher-type unit-root test for m2gdp Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 18 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag Statistic p-value -Inverse chi-squared(12) P 2.6614 0.9975 Inverse normal Z 3.3084 0.9995 Inverse logit t(34) L* 3.4934 0.9993 Modified inv chi-squared Pm -1.9062 0.9717 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels xtunitroot fisher d_m2gdp, dfuller lag(1) trend (6 missing values generated) Fisher-type unit-root test for d_m2gdp Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 17 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 72.5382 0.0000 Inverse normal Z -6.5028 0.0000 Inverse logit t(34) L* -8.2485 0.0000 Modified inv chi-squared Pm 12.3573 0.0000 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels -Fisher-type unit-root test for creditprivate Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 18 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 84.0611 0.0000 Inverse normal Z -1.0039 0.1577 Inverse logit t(34) L* Modified inv chi-squared Pm -5.7315 14.7094 0.0000 0.0000 P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels Fisher-type unit-root test for d_creditprivate Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 17 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 108.1676 Inverse normal Z -6.3602 Inverse logit t(34) L* -12.0368 Modified inv chi-squared Pm 19.6301 0.0000 0.0000 0.0000 0.0000 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels Fisher-type unit-root test for d_creditprivate Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 17 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 108.1676 0.0000 Inverse normal Z -6.3602 0.0000 Inverse logit t(34) L* -12.0368 0.0000 Modified inv chi-squared Pm 19.6301 0.0000 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels Fisher-type unit-root test for creditfinancial Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 18 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 3.5529 0.9902 Inverse normal Z 2.3216 0.9899 Inverse logit t(29) L* 2.3735 0.9878 Modified inv chi-squared Pm -1.7243 0.9577 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels Fisher-type unit-root test for d_creditprivate Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 17 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 108.1676 0.0000 Inverse normal Z -6.3602 0.0000 Inverse logit t(34) L* -12.0368 0.0000 Modified inv chi-squared Pm 19.6301 0.0000 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels xtunitroot fisher creditfinancial, dfuller lag(1) trend Fisher-type unit-root test for creditfinancial Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 18 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P 3.5529 0.9902 Inverse normal Z 2.3216 0.9899 Inverse logit t(29) L* 2.3735 0.9878 Modified inv chi-squared Pm -1.7243 0.9577 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels xtunitroot fisher d_creditfinancial, dfuller lag(1) trend (6 missing values generated) Fisher-type unit-root test for d_creditfinancial Based on augmented Dickey-Fuller tests -Ho: All panels contain unit roots Number of panels = Ha: At least one panel is stationary Number of periods = 17 AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included Time trend: Included Drift term: Not included ADF regressions: lag -Statistic p-value -Inverse chi-squared(12) P Inverse normal Z 36.7248 0.0002 -3.6366 0.0001 Inverse logit t(34) L* -4.0126 Modified inv chi-squared Pm 5.0469 0.0002 0.0000 -P statistic requires number of panels to be finite Other statistics are suitable for finite or infinite number of panels PHỤ LỤC 2: THỐNG KÊ MÔ TẢ Variable | Obs Mean Std Dev Min Max -+ -shadow | 108 34.82648 14.21678 10.8 66.37 creditfina~l | 108 76.55927 49.08848 creditpriv~e | 108 64.47609 45.56984 5.585181 166.5041 lgdp | 108 7.397314 9704156 5.591147 9.333183 m2gdp | 108 74.85597 39.46556 10.47646 140.0639 5.57218 178.4178 PHỤ LỤC 3: KẾT QUẢ CHẠY PVAR MÔ HÌNH 1: GMM Estimation Final GMM Criterion Q(b) = 1.03e-33 Initial weight matrix: Identity GMM weight matrix: Robust No of obs = 90 No of panels = Ave no of T = 15.000 | Coef Std Err z P>|z| [95% Conf Interval] -+ -d_lgdp | d_lgdp | L1 | 0.03897 0.1556183 0.25 0.802 -0.2660362 0.3439762 | d_m2gdp | L1 | 0.0044161 0017669 2.50 0.012 0.000953 0078792 | d_shadow | L1 | 0.001543 0.0019168 0.81 0.421 -0.0022138 0.0052999 -+ -d_m2gdp | d_lgdp | L1 | -8.408285 6.131954 -1.37 0.170 -20.42669 3.610125 -2.66 0.008 -0.775445 -0.1172816 | d_m2gdp | L1 | -.4463633 1679019 | d_shadow | L1 | 0.1795903 0.151519 1.19 0.236 -0.1173816 0.4765622 -+ d_shadow | d_lgdp | L1 | -1.674154 5.219467 | d_m2gdp | -0.32 0.748 -11.90412 8.555813 L1 | 0378641 0.1210827 0.31 0.754 -0.1994537 0.2751819 | d_shadow | L1 | -0.3653501 0.1458513 -2.50 0.012 -0.6512135 -0.0794868 -MƠ HÌNH 2: Panel vector autoregresssion GMM Estimation Final GMM Criterion Q(b) = 1.23e-33 Initial weight matrix: Identity GMM weight matrix: Robust No of obs = 90 No of panels = Ave no of T = 15.000 | Coef Std Err z P>|z| [95% Conf Interval] + -d_lgdp | d_lgdp | L1 | -0.0091826 0.1438839 -0.06 0.949 -0.2911899 0.2728246 0.0020038 0.0012054 1.66 0.096 -0.0003588 0.0043664 0.0009537 0.0017063 0.56 0.576 -.0023905 0.0042979 | d_creditprivate | L1 | | d_shadow | L1 | + d_creditprivate | d_lgdp | L1 | 25.20248 6.658391 3.79 0.000 12.15227 38.25268 0.3568844 0.1266942 2.82 0.005 0.1085684 0.6052005 1.42 0.156 -0.0665973 0.4144458 | d_creditprivate | L1 | | d_shadow | L1 | 0.1739242 0.1227173 + -d_shadow | d_lgdp | L1 | -0.8222178 3.867131 -0.21 0.832 -8.401656 6.757221 | d_creditprivate | L1 | 0.1256604 0.0651575 1.93 0.054 -0.0020459 0.2533668 -2.65 0.008 -0.6667842 -0.0994045 | d_shadow | L1 | -0.3830944 0.1447424 MƠ HÌNH 3: Panel vector autoregresssion GMM Estimation Final GMM Criterion Q(b) = 1.08e-33 Initial weight matrix: Identity GMM weight matrix: Robust No of obs = No of panels = 90 Ave no of T = 15.000 | Coef Std Err z P>|z| [95% Conf Interval] + -d_lgdp | d_lgdp | L1 | -0.0077762 0.1349535 -0.06 0.954 -0.2722801 0.2567278 | d_creditfinancial | L1 | 0.0018176 0.0011978 1.52 0.129 -0.00053 0.0041652 0.67 0.505 -0.002198 0.0044656 | d_shadow | L1 | 0.0011338 0.0016999 + -d_creditfinancial | d_lgdp | L1 | 6.472043 8.433893 0.77 0.443 -10.05808 23.00217 1.71 0.088 -0.038391 552116 1.39 0.164 -0.070958 0.4185981 | d_creditfinancial | L1 | 0.2568625 0.1506423 | d_shadow | L1 | 0.17382 0.1248891 + -d_shadow d_lgdp | | L1 | -0.3378077 4.222681 -0.08 0.936 -8.61411 7.938495 | d_creditfinancial | L1 | 0.1430603 0.0822882 1.74 0.082 -0.0182215 0.3043421 -2.61 0.009 -0.6522535 -0.0930807 | d_shadow | L1 | -0.3726671 0.1426487 -MƠ HÌNH 4: Panel vector autoregresssion GMM Estimation Final GMM Criterion Q(b) = 1.14e-33 Initial weight matrix: Identity GMM weight matrix: Robust No of obs = 90 No of panels = Ave no of T = 15.000 | Coef Std Err z P>|z| [95% Conf Interval] -+ -d_lgdp | d_lgdp | L1 | 0.03897 0.1556183 0.25 0.802 -0.2660362 0.3439762 0.001543 0.0019168 0.81 0.421 -0.0022138 0.0052999 | d_shadow | L1 | | d_m2gdp | L1 | 0.0044161 0.0017669 2.50 0.012 0.000953 0.0078792 -+ -d_shadow | d_lgdp | L1 | -1.674154 5.219467 -0.32 0.748 -11.90412 8.555813 | d_shadow | L1 | -0.3653501 0.1458513 -2.50 0.012 -0.6512135 -.0794868 0.31 0.754 -0.1994537 | d_m2gdp | L1 | 0.0378641 0.1210827 0.2751819 -+ -d_m2gdp | d_lgdp | L1 | -8.408285 6.131954 -1.37 0.170 -20.42669 3.610125 | d_shadow | L1 | 0.1795903 0.151519 1.19 0.236 -0.1173816 0.4765622 | d_m2gdp | L1 | -0.4463633 0.1679019 -2.66 0.008 -0.775445 -0.1172816 ... phát triển tài làm giảm kinh tế ngầm tăng lên tỷ lệ kinh tế ngầm cản trở phát triển tài 2.1 Các chứng thực nghiệm phát triển tài kinh tế ngầm 2.1.1 Phát triển tài Phát triển tài nhập lượng quan trọng... cho thấy mức độ phát triển khác kinh tế ảnh hưởng tới kinh tế ngầm Và mức độ phát triển khác kinh tế ảnh hưởng tới mức độ phát triển tài theo Levin, 1997 Các quốc gia có kinh tế giàu có thịnh... cứu phát triển tài cho kinh nghiệm doanh nghiệp giới hạn tài tiêu phân biệt mức độ phát triển tài quốc gia có mức phát triển tài thấp so với quốc gia có mức độ phát triển tài cao Các quốc gia

Ngày đăng: 08/05/2021, 20:15

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w