Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 30 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
30
Dung lượng
1,09 MB
Nội dung
PHÁT TRIỂN ĐỀ MINH HỌA 2020 TUYỂN TẬP ĐỀ PHÁT TRIỂN ĐỀ MINH HỌA 2020 • ĐỀ SỐ 33 - MỖI NGÀY ĐỀ THI Câu Câu Tính thể tích V của khối hộp chữ nhật có ba kích thước là a , 2a ,3a A V 3a B V a C V 2a D V 6a Cho hàm số y f x liên tục trên các khoảng ;0 , 0; và có bảng biến thiên dưới đây Khẳng định nào dưới đây đúng? A Hàm số đồng biến trên 1; B Hàm số nghịch biến trên khoảng 1;1 C Hàm số đồng biến trên ;0 D Hàm số đồng biến trên khoảng 1;0 Câu Cho f x dx 10 và g x dx Tính 3 f x 5g x dx A I Câu 4 2 B I 5 C I 10 Điểm A trong hình bên dưới là điểm biểu diễn số phức z Mệnh đề nào dưới đây đúng? A Số phức z có phần thực là , phần ảo là 2i B Số phức z có phần thực là , phần ảo là 2i C Số phức z có phần thực là , phần ảo là D Số phức z có phần thực là , phần ảo là y D I 15 A O x Câu Cho a , x , y là ba số thực dương tùy ý và a Khẳng định nào dưới đây đúng? x log a x A log a B loga x loga 10.log x y log a y 1 C loga x y log a x log a y D log a x log a x Câu Trong không gian Oxyz, cho ba điểm A 1; 2; 1 , B 3;1; , C 2; 3;0 Tìm tọa độ trọng tâm G của tam giác ABC 3 3 3 A G 3;0; B G 6;0; C G ;0; D G 2;0;1 2 2 4 Câu Trong không gian Oxyz , đường thẳng : vec-tơ chỉ phương? A n (2;3; 1) B p (1; 2; 3) x 1 y z nhận vec-tơ nào dưới đây làm một 3 C u (2;3;1) D a (1;2;3) Câu Tính diện tích xung quanh của hình nón có bán kính đáy bằng 5a và chiều cao bằng 12a 65 a A . B 65 a C 130 a D 20 a Câu Tính thể tích V của khối trụ trịn xoay có bán kính đáy r dm và chiều cao h dm A V 150 dm3 B V 30 dm3 C V 300 dm3 D V 50 dm3 Câu 10 Đường cong ở hình bên là đồ thị của hàm số nào dưới đây? A y x x Trang 1/7 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ B y x x C y x x D y x x Câu 11 Cho hàm số y f x có đạo hàm f x x x 3 x , x Hàm số đã cho có bao nhiêu điểm cực trị? A 1. C B D Câu 12 Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số f x x A 20 B 52 C 20 trên đoạn 1;3 bằng x D 65 Câu 13 Cho b , c là hai số thực dương tùy ý và biểu thức P 2log b 5log c Khẳng định nào dưới đây đúng? A P log 10bc B P log b2c5 C P log 2b log 5c D P log b2 log c5 Câu 14 Tìm họ nguyên hàm F(x) của hàm số f ( x) x x x 3x ln x x3 3x ln x C C F ( x) A F ( x) x B F ( x) x3 3x2 ln x C x3 x C x Câu 15 Trong không gian Oxyz , mặt phẳng đi qua điểm M 1;2;3 và nhận vectơ n 1;1;1 làm vectơ pháp tuyến có phương trình là A x y z B x y z 14 C x y z D x y z D F ( x) Câu 16 Cho hàm số y f x liên tục trên có đồ thị như hình vẽ bên. Đồ thị của hàm số đã cho có bao y nhiêu điểm cực trị? A B C D O x Câu 17 Cho hàm số y f ( x) có đồ thị như hình bên. Phương trình f x có bao nhiêu nghiệm? A B Trang 2/7 –https://www.facebook.com/phong.baovuong C D PHÁT TRIỂN ĐỀ MINH HỌA 2020 10 Câu 18 Tìm hệ số của x12 trong khai triển của biểu thức 2x x A C102 B C102 28 C C102 28 D C108 Câu 19 Cho đồ thị C : y ax bx c như hình bên. Khẳng định nào dưới đây đúng? A abc B a b c C a b a c D a 2bc Câu 20 Trong không gian Oxyz , cho điểm I 1; 2; 2 và mặt phẳng P : x y z Viết phương trình mặt cầu có tâm I và cắt P theo giao tuyến là một đường trịn có chu vi bằng 8 2 B x 1 y z 2 D x 1 y z 25 A x 1 y z C x 1 y z 16 2 2 2 Câu 21 Cho khối chóp tam giác đều S ABC có cạnh đáy bằng 2a , góc giữa cạnh bên và mặt đáy bằng 600 Thể tích của khối chóp đã cho. a3 2a 3 a3 A . B . C 2a3 D . 3 Câu 22 Cho cấp số nhân un có số hạng thứ hai u2 và số hạng thứ năm u5 24 Tìm cơng bội q của cấp số nhân đã cho. A q B q C q D q Câu 23 Trong không gian Oxyz , cho hai điểm A 3;1; và B 1; 5; Phương trình nào dưới đây là phương trình của mặt cầu đường kính AB ? 2 2 2 A x y z 3 44 B x 3 y 1 z 44 2 C x y z 3 11 2 D x y z 3 11 Câu 24 Cho hình chóp S ABCD có đáy là hình thoi cạnh a , SA a và SA BC Góc giữa hai đường thẳng SD và BC bằng A 90 B 60 C 45 D 30 Câu 25 Biết rằng phương trình x x 3 4096 có hai nghiệm x1 , x2 Tính P x1.x2 A P 9 B P 7 C P D P Câu 26 Cho hai số phức z1 i và z2 3i Tìm số phức w z1 z z A w 6 4i B w 6 4i C w 4i D w 4i Câu 27 Trên mặt phẳng tọa độ Oxy , gọi M và N là hai điểm biểu diễn hai nghiệm phức của phương trình z z 13 Độ dài đoạn MN bằng A B C D 16 Câu 28 Cho hàm số y f ( x ) liên tục trên và có đồ thị (C ) như hình dưới đây: Gọi S là diện tích của hình phẳng giới hạn bởi (C ) và trục hồnh. Đặt a f ( x)dx, b f ( x)dx Mệnh đề nào sau đây đúng? 1 Trang 3/7 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ A S a b B S a b C S a b Câu 29 Bất phương trình 0,5 A 4. D S a b có bao nhiêu nghiệm nguyên? 16 B 2. C 5. x2 5 x D 1. Câu 30 Tính đạo hàm của hàm số y x ln x A y ' 3ln x x ln x x x ln x C y ' 3ln x x B y ' 3ln x x ln x x x ln x D y ' 3ln x x Câu 31 Cho F x một nguyên hàm của hàm số f x x sin x và F Tính F 2 A F B F C F D F 2 4 2 SS Câu 32 Cho hình lăng trụ đứng ABC ABC có AB BC AA a , ABC 120 Tính thể tích khối lăng trụ ABC ABC 3a3 3a3 3a3 a3 A B C D . 12 Câu 33 Có bao nhiêu số ngun m để phương trình z 2mz 3m có hai nghiệm khơng là số thực? A B C D Câu 34 Cho hàm số y f x liên tục trên và có đồ thị như hình vẽ Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình f x m có nghiệm A 0;2 B 3;0 C 2; 2 D 0;3 Câu 35 Thu nhập bình qn đầu người của Việt Nam năm 2017 đạt 53,5 triệu đồng. Nếu tốc độ tăng trưởng kinh tế ổn định 6,8% mỗi năm thì sau bao nhiêu năm thu nhập bình qn đầu người của nước ta đạt 100 triệu( làm trịn đến hàng phần chục)? A 11,5 năm. B 10,5 năm. C 9,5 năm. D 8,5 năm. 1 Câu 36 Cho f x là hàm số có đạo hàm liên tục trên đoạn 0;1 và f 1 , xf x dx Giá trị 36 18 của f x dx bằng A 12 B 36 C 12 D 36 Câu 37 Cho hình lập phương ABCD A ' B ' C ' D ' có cạnh bằng 10 cm. Gọi M là trung điểm của BB ' và P thuộc cạnh DD ' sao cho DP DD ' (tham khảo hình bên). Mặt phẳng AMP cắt CC ' tại N Tính thể tích của khối đa diện AMNPBCD 1125 1375 A V B V 250 cm3 C V 375cm D V cm cm Trang 4/7 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 Câu 38 Cho hình trụ có chiều cao bằng 6a Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a , thiết diện thu được là một hình vng. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng A 216 a B 150 a C 54 a D 108 a Câu 39 Tìm tập hợp S là tập hợp tất cả các thực của tham số m để hàm số y ;1 A S 2; B S C S 2; 2 mx nghịch biến trên 2x m D S ; 2 Câu 40 Xét hàm số f x liên tục trên đoạn 0;1 và thỏa mãn điều kiện f x f 1 x x x Tính tích phân I f x dx A 15 B 15 C D Câu 41 Có hai hộp chứa các quả cầu màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên đúng một quả cầu. 55 Biết tổng số quả cầu trong hai hộp là 20 và xác suất để lấy được hai quả cầu màu xanh là Tính 84 xác suất để lấy được hai quả cầu màu đỏ. 29 A . B . C . D . 28 84 42 21 Câu 42 Cho x, y là các số thực dương thỏa mãn log4 x log6 y log9 x y Tính giá trị của biểu thức x P y 2 A P B P C P 1 D P 3 Câu 43 Cho hàm số f ( x ) có đạo hàm liên tục trên Đồ thị hàm số f '( x ) như hình vẽ. Hàm số y f x x x x có bao nhiêu điểm cực trị thuộc khoảng 5;1 A B C D m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m sao x2 cho f ( x) max f ( x) Tổng bình phương tất cả các phần tử của S là Câu 44 Cho hàm số y f ( x) 0;1 A 16 0;1 B 32 C 72 D 128 Câu 45 Có bao nhiêu số nguyên m để phương trình log 3x 2m log 3x m có nghiệm? A B D C Câu 46 Có bao nhiêu giá trị nguyên của tham số m 10;10 để bất phương trình x x x x m nghiệm đúng với mọi x 4;6 ? A B C 21 D Trang 5/7 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ 3m Câu 47 Cho hàm số y x 2mx có đồ thị C , với m là tham số. Gọi S là tập hợp các giá trị thực của m để đồ thị C đã cho có 3 điểm cực trị cùng với gốc tọa độ tạo thành bốn đỉnh của một tứ giác nội tiếp đường trịn. Số phần tử của S là. A B 1. C 2. D 4. Câu 48 Cho hình chóp S ABCD có đáy ABCD là hình vng cạnh a Gọi M , N lần lượt là trung điểm của các cạnh AB, AD Biết hình chiếu của điểm S lên mặt đáy trùng với giao điểm H của CN và DM , SH a Tính khoảng cách d giữa hai đường thẳng DM và SC A d 3a 57 B d a 57 15 C d a 15 D d 2a 57 19 m 1 x5 m 1 x 3m 3 x có đồ thị C , với m là tham số. Một điều kiện cần của m để trên C tồn tại 2 điểm mà tiếp tuyến của C tại hai điểm đó vng góc với Câu 49 Cho hàm số y nhau là. A m B m Câu 50 Cho phương trình 3x 32 x 3x m C m D m 3x m 3x m , với m là tham số. Có bao nhiêu giá trị ngun âm của m để phương trình có nghiệm thực? A 5. B 3. C 6. Trang 6/7 –https://www.facebook.com/phong.baovuong D 4. PHÁT TRIỂN ĐỀ MINH HỌA 2020 1.D 11.D 21.B 31.C 41.A 2.A 12.C 22.C 32.C 42.D 3.A 13.B 23.C 33.B 43.A 4.C 14.C 24.B 34.B 44.D BẢNG ĐÁP ÁN 5.B 6.D 7.A 15.C 16.C 17.A 25.B 26.A 27.C 35.C 36.A 37.C 45.A 46.A 47.B 8.B 18.C 28.C 38.D 48.D 9.A 19.C 29.A 39.B 49.C 10.C 20.D 30.D 40.B 50.B ĐÁP ÁN CHI TIẾT TẢI TẠI BẢN ĐÀY ĐỦ NHÉ! THEO DÕI: FACEBOOK: https://www.facebook.com/phong.baovuong PAGE: https://www.facebook.com/tracnghiemtoanthpt489/ YOUTUBE: https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber WEB: https://diendangiaovientoan.vn/ ĐỂ NHẬN TÀI LIỆU ĐẦY ĐỦ NHÉ Trang 7/7 – Nguyễn Bảo Vương - 0946798489 PHÁT TRIỂN ĐỀ MINH HỌA 2020 TUYỂN TẬP ĐỀ PHÁT TRIỂN ĐỀ MINH HỌA 2020 •ĐỀ SỐ 33 - MỖI NGÀY ĐỀ THI Câu Tính thể tích V của khối hộp chữ nhật có ba kích thước là a , 2a ,3a A V 3a B V a C V 2a Lời giải D V 6a Chọn D Thể tích của khối hộp chữ nhật có ba kích thước a , 2a ,3a là V a.2a.3a 6a Câu Cho hàm số y f x liên tục trên các khoảng ;0 , 0; và có bảng biến thiên dưới đây Khẳng định nào dưới đây đúng? A Hàm số đồng biến trên 1; B Hàm số nghịch biến trên khoảng 1;1 C Hàm số đồng biến trên ;0 D Hàm số đồng biến trên khoảng 1;0 Lời giải Chọn A B sai Sửa: Hàm số nghịch biến trên khoảng 1;0 , 0;1 C sai Sửa: hàm số đồng biến trên ; 1 D sai Sửa: Hàm số nghịch biến trên khoảng 1;0 Vậy chọn A Câu 4 Cho f x dx 10 và g x dx Tính 3 f x 5g x dx A I 2 B I 5 C I 10 Lời giải D I 15 Chọn A 4 3 f x 5g x dx 3 f x dx 5 g x dx 3.10 5.5 2 Trang 1/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Câu Điểm A trong hình bên dưới là điểm biểu diễn số phức z y A O x Mệnh đề nào dưới đây đúng? A Số phức z có phần thực là , phần ảo là 2i B Số phức z có phần thực là , phần ảo là 2i C Số phức z có phần thực là , phần ảo là D Số phức z có phần thực là , phần ảo là Lời giải Chọn C Từ hình vẽ ta có A 3; biểu diễn số phức z 2i , số phức z có phần thực là và phần ảo là Câu Cho a , x , y là ba số thực dương tùy ý và a Khẳng định nào dưới đây đúng? A log a x log a x y log a y B log a x log a 10.log x C log a x y log a x log a y D log a 1 x loga x Lời giải Chọn B +) Phương án A: log a log a x x nên phương án A sai. log a x log a y y log a y +) Phương án B: log a 10.log x log a 10.log10 x log a x nên phương án B đúng. +) Phương án C: log a x log a y log a x y log a x y nên phương án C sai. +) Phương án D: log a Câu 1 log a x 1 log a x log x a nên phương án D sai. x log a x Trong không gian Oxyz, cho ba điểm A 1;2; 1 , B 3;1;4 , C 2; 3;0 Tìm tọa độ trọng tâm G của tam giác ABC. 3 A G 3;0; 2 B G 6;0; 3 3 C G ;0; 2 4 Lời giải Chọn D Gọi G(xG; yG; zG) là trọng tâm tam giác ABC. Ta có: Trang 2/23 –https://www.facebook.com/phong.baovuong D G 2;0;1 PHÁT TRIỂN ĐỀ MINH HỌA 2020 x A xB xC 2 xG 3 y A yB yC 0 yG 3 z A z B zC 1 1 zG 3 Vậy G 2;0;1 Câu Trong không gian Oxyz , đường thẳng : một vec-tơ chỉ phương? A n (2;3; 1) B p (1;2; 3) x 1 y z nhận vec-tơ nào dưới đây làm 3 C u (2;3;1) D a (1;2;3) Lời giải Chọn A Đường thẳng có một vecto chỉ phương là k (2; 3;1) nên n k (2;3; 1) cũng là một vecto chỉ phương của Câu Tính diện tích xung quanh của hình nón có bán kính đáy bằng 5a và chiều cao bằng 12a A 65 a B 65 a C 130 a D 20 a2 Lời giải Chọn B Độ dài đường sinh của hình nón: l h r 13a Diện tích xung quanh của hình nón: S rl 65a2 Câu Tính thể tích V của khối trụ trịn xoay có bán kính đáy r dm và chiều cao h dm A V 150 dm3 B V 30 dm3 C V 300 dm3 D V 50 dm3 Lời giải Chọn A Cơng thức thể tích khối trụ trịn xoay: V r h 52.6 150 dm3 Câu 10 Đường cong ở hình bên là đồ thị của hàm số nào dưới đây? Trang 3/23 – Nguyễn Bảo Vương - 0946798489 PHÁT TRIỂN ĐỀ MINH HỌA 2020 Câu 22 Cho cấp số nhân un có số hạng thứ hai u2 và số hạng thứ năm u5 24 Tìm cơng bội q của cấp số nhân đã cho. A q B q C q D q Lời giải Chọn C Theo công thức số hạng tổng quát của cấp số nhân un u1.q n 1 , n ta có: u u5 24 u1 q u1 q 24 u1 q 3q 24 u1 q Vậy công bội của cấp số nhân đã cho là q Câu 23 Trong không gian Oxyz , cho hai điểm A 3;1; và B 1; ; Phương trình nào dưới đây là phương trình của mặt cầu đường kính AB ? 2 B x 3 y 1 z 44 2 2 D x y z 3 11 A x y z 3 44 C x y z 3 11 2 2 Lời giải Chọn C 1 32 5 12 2 Gọi I là trung điềm của AB I ; ; , ta có: AB đường kính AB có tâm I và bán kính R 2 44 Mặt cầu AB 11 2 Vậy phương trình mặt cầu là x y z 3 11 Câu 24 Cho hình chóp S.ABCD có đáy là hình thoi cạnh a , SA a và SA BC Góc giữa hai đường thẳng SD và BC bằng A 90 B 60 C 45 D 30 Lời giải Chọn B AD / / BC , SA BC SA AD hay SAD vuông tại A AD / / BC , SD AD D SD , BC SD , AD SDA SA SDA 60 SAD vuông tại A tan SDA AD Trang 9/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Câu 25 Biết rằng phương trình 8x A P 9 x 3 4096 có hai nghiệm x1 , x2 Tính P x1.x2 B P 7 C P Lời giải D P Chọn B Ta có: x x 3 4096 23 x 18 x 9 x 1 212 x 18 x 12 x 18 x 21 x2 7 Vậy P 7 Câu 26 Cho hai số phức z1 i và z2 3i Tìm số phức w z1 z z A w 6 4i B w 6 4i C w 4i Lời giải D w 4i Chọn A 2 Ta có: w z1 z z 1 i 3i 6 4i Câu 27 Trên mặt phẳng tọa độ Oxy , gọi M và N là hai điểm biểu diễn hai nghiệm phức của phương trình z z 13 Độ dài đoạn MN bằng A B C Lời giải D 16 Chọn C Phương trình z z 13 có nghiệm z 2i và z 2i , do đó M (3; 2) và N (3; 2) Vậy MN Câu 28 Cho hàm số y f ( x) liên tục trên và có đồ thị (C ) như hình dưới đây: Gọi S là diện tích của hình phẳng giới hạn bởi (C ) và trục hồnh. Đặt a 1 Mệnh đề nào sau đây đúng? A S a b B S a b C S a b Trang 10/23 –https://www.facebook.com/phong.baovuong f ( x)dx, b f ( x)dx D S a b PHÁT TRIỂN ĐỀ MINH HỌA 2020 Lời giải Chọn C Ta có: S 1 2 f ( x)dx f ( x) dx f ( x)dx f ( x) dx a b Câu 29 Bất phương trình 0,5 1 có bao nhiêu nghiệm ngun? 16 B 2. C 5. x 5 x A 4. D 1. Lời giải Chọn A Ta có 0,5 x2 5 x 1 16 x2 5 x 1 x2 5x x2 5x x 2 Với x Z x 1;2;3; 4 , Vậy bất phương trình có bốn nghiệm ngun. Câu 30 Tính đạo hàm của hàm số y x ln x x ln x x x ln x C y ' 3ln x x x ln x x 3x ln x D y ' 3ln x x A y ' 3ln x B y ' 3ln x Lời giải Chọn D Ta có y ' 3x 'ln x 3x ln x ' 3ln x 3x ln x x Câu 31 Cho F x một nguyên hàm của hàm số f x x sin x và F Tính F 2 A F B F C F D F 4 SS 2 2 2 2 Lời giải Chọn C 1 F ( x) f x dx x sin xdx x cos x sin x C Do F C 1 2 Khi đó F cos 22 2 2 sin 1 1 Câu 32 Cho hình lăng trụ đứng ABC ABC có AB BC AA a , ABC 120 Tính thể tích khối lăng trụ ABC ABC A 3a3 12 B 3a3 C 3a3 D a3 Trang 11/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Lời giải Chọn C A' C' B' A C B Thể tích khối lặng trụ đứng ABC ABC là a sin120 a3 V AA.SABC AA AB.BC.sin ABC Câu 33 Có số nguyên m để phương trình z 2mz 3m có hai nghiệm không số thực ? A. B D. C. Lời giải Chọn B Phương trình đã cho có hai nghiệm khơng là số thực khi và chỉ khi ' m 3m 1 m Vì m Z nên ta chọn được 4 giá trị m thỏa 1 m là m 0, m 1, m 2, m Vậy chọn B Câu 34 Cho hàm số y f x liên tục trên và có đồ thị như hình vẽ Tìm tập hợp tất cả các giá trị thực của tham số m để phương trình f A 0;2 B 3;0 C 2;2 x m có nghiệm D 0;3 Lời giải Chọn B Đặt x t t Ta suy ra phương trình f t m có nghiệm trên đoạn 0; 2 3 m Trang 12/23 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 Câu 35 Thu nhập bình quân đầu người của Việt Nam năm 2017 đạt 53,5 triệu đồng. Nếu tốc độ tăng trưởng kinh tế ổn định 6,8% mỗi năm thì sau bao nhiêu năm thu nhập bình qn đầu người của nước ta đạt 100 triệu( làm trịn đến hàng phần chục)? A 11,5 năm. B 10,5 năm. C 9,5 năm. D 8,5 năm. Lời giải Chọn C Theo cơng thức tính lãi suất kép sau n năm kể từ năm 2017 thu nhập bình qn đầu người của n nước ta là: An 53, 1 6,8% Để thu nhập bình quân đầu người đạt 100 triệu thì n 53, 1 6,8% 100 1, 068n 1,869 n 9, Câu 36 Cho f x hàm số có đạo hàm liên tục đoạn 0;1 f 1 1 , xf x dx Giá trị 36 18 f x dx A 12 B 36 12 Lời giải C. D 36 Chọn A u x du dx Đặt: dv f x dx v f x 1 1 Ta có: xf x dx x f x f x dx f 1 f x dx 0 0 Theo giả thiết: xf x dx 1 , f 1 36 18 1 1 1 f x dx f x dx 18 36 18 36 12 Câu 37 Cho hình lập phương ABCD A ' B ' C ' D ' có cạnh bằng 10 cm. Gọi M là trung điểm của BB ' và P thuộc cạnh DD ' sao cho DP DD ' (tham khảo hình bên). Mặt phẳng AMP cắt CC ' tại N Tính thể tích của khối đa diện AMNPBCD 1125 1375 A V B V 250 cm C V 375cm D V cm cm Trang 13/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Lời giải Chọn C Ta có N AMP CC ' Do ABB ' A ' // CDD ' C ' PN // AM , tương tự ta cũng có MN // AP Thiết diện AMNP là hình bình hành. + Gọi H là hình chiếu của P trên CC ' Khi đó ABM PHN HN BM + CN CH HN DP HN BB ' 5cm DD ' HN 7,5cm BM CN BC AD DP CN CD + VAMNPBCD VA BCNM VA DCNP AB 3 7,5 10 10 2,5 7,5 10 375cm3 10 . 3 Câu 38 Cho hình trụ có chiều cao bằng 6a Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a , thiết diện thu được là một hình vng. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng A 216 a3 B 150 a C 54 a3 D 108 a Lời giải Chọn D Gọi O O tâm hai đáy hình trụ Giả sử thiết diện thu cắt hình trụ cho mặt phẳng song song với trục hình vng ABCD Theo giả thiết ta có AB BC OO 6a Trang 14/23 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 AB 3a Gọi I trung điểm AB Suy OI AB AI Mà OI BC nên OI ABCD Vì OO// ABCD nên d OO ; ABCD d O ; ABCD OI 3a Xét tam giác AOI vng I có OI AI 3a OA 3a Thể tích khối trụ là: V R2 h OA OO 3a 6a 108 a Câu 39 Tìm tập hợp S là tập hợp tất cả các thực của tham số m để hàm số y ;1 A S 2; B S C S 2; 2 mx nghịch biến trên 2x m D S ; 2 Lời giải Chọn B y y' mx m tập xác định D \ 2x m 2 m2 2x m Để hàm số y mx nghịch biến trên ;1 2x m m 2; m2 m 2; (Vô lý ). m m m 2 1 2 Vậy khơng có giá trị nào của m thỏa mãn. Câu 40 Xét hàm số f x liên tục trên đoạn 0;1 và thỏa mãn điều kiện f x f 1 x x x Tính tích phân I f x dx A 15 B 15 C D Lời giải Chọn B 1 Do f x f 1 x x x f x dx f 1 x dx x xdx 0 I1 1 I2 Trang 15/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ + Xét I1 3 f 1 x dx : Đặt t x dx dt Khi x t 1; x t Khi đó I1 3 f t dt 3I + Xét I x xdx Đặt t x x t dx 2tdt Với x t 1; x t 0 2t 2t Khi đó I 1 t t 2t dt 15 4 Thay vào 1 : I 3I I 15 15 Câu 41 Có hai hộp chứa các quả cầu màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên đúng một quả cầu. Biết tổng số quả cầu trong hai hộp là 20 và xác suất để lấy được hai quả cầu màu xanh là 55 Tính xác suất để lấy được hai quả cầu màu đỏ. 84 29 A . B . C . D . 28 84 42 21 Lời giải Chọn A Gọi x, z lần lượt là số quả cầu xanh trong hộp và Gọi y , t lần lượt là số quả cầu đỏ trong hộp và Theo giả thiết ta có xz 55 84 xz 55 x y z t x y z t 84 Vì 55,84 nên xz chia hết cho 55 , do đó x 11, z ( vì vai trị x và z là như nhau) Ta có 11 y t 84 11 y y 84 y , suy ra t Vậy xác suất để được hai quả cầu đỏ là C31 C11 11 3 1 84 28 Câu 42 Cho x, y là các số thực dương thỏa mãn log x log6 y log9 x y Tính giá trị của biểu x thức P y A P 2 B P C P Lời giải Chọn D Trang 16/23 –https://www.facebook.com/phong.baovuong 1 D P 3 PHÁT TRIỂN ĐỀ MINH HỌA 2020 Đặt x 4t log x log6 y log9 x y t y 6t 4t 6t 9t x y 9t 2 2t t t x 1 2 2 1 Do đó P 1 2 3 3 3 y Câu 43 Cho hàm số f ( x ) có đạo hàm liên tục trên Đồ thị hàm số f '( x ) như hình vẽ. Hàm số y f x x x x có bao nhiêu điểm cực trị thuộc khoảng 5;1 A C D Giải: Ta có: y ' x f ' x x x x f ' x x 1 B x x 2 y' (1) f ' x x Từ đồ thị f '( x ) ta được: x x 4 f ' x2 x 1 f ' x2 x x2 x (2) x x a 1;5 x x 4 x 2 (nghiệm kép). (3) x 5;1 x2 x (4) x 4 5;1 x 2 a 5;1 x2 x a x2 x a (5) x 2 a 5;1 Từ các kết quả (1), (2), (3), (4), (5) ta suy ra đồ thị y f x x x x có 5 điểm cực trị thuộc khoảng 5;1 m với m là tham số thực. Gọi S là tập hợp tất cả các giá trị của m x2 sao cho f ( x ) max f ( x ) Tổng bình phương tất cả các phần tử của S là Câu 44 Cho hàm số y f ( x) 0;1 A 16 0;1 B 32 C 72 D 128 Trang 17/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Lời giải Chọn D + Trường hợp 1: m , khi đó f ( x ) 0, x suy ra f ( x ) max f ( x ) Vậy m 0;1 0;1 (loại). + Trường hợp 2: m , khi đó y f ( x) m x 2 0, x 0;1 suy ra hàm số y f ( x ) đơn điệu trên 0;1 Ta có f ( x ).max f ( x ) 0;1 0;1 m2 0, m m suy ra f ( x) f (0) ; f (1) ; m và 0;1 2 m max f ( x) max f (0) ; f (1) max ; m 0;1 2 Khi đó f ( x) max f ( x ) 0;1 0;1 m m m m 2 2 128 Vậy tổng bình phương tất cả các phần tử của S là 3 3 Câu 45 Có bao nhiêu số ngun m để phương trình log 3x 2m log 3x m có nghiệm? A B C Lời giải D Chọn A Đặt log 3x 2m log 3x m t 3x 2m 3t x 2m m 3t 5t t 3 m m 1 3t 5t f t Ta có f t 3t ln 5t ln t log log 3 t0 Bảng biến thiên Từ bbt suy ra m 1 f t0 f t0 m f t0 2, 06 m 0, 06 m m 2; 1;0 Thử lại thấy thỏa mãn. Trang 18/23 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 Câu 46 Có bao nhiêu giá trị nguyên của tham số m 10;10 để bất phương trình x x x x m nghiệm đúng với mọi x 4;6 ? A B C 21 D Lời giải Chọn A Tập xác định: D 4;6 Ta có: x x x x m (*) Đặt t x x 24 Bất phương trình x x x x 24 x x 24 24 m x46 x t x x x x m trở thành: t t 24 m (**) (*) nghiệm đúng với mọi x 4;6 (**) nghiệm đúng với mọi t 0;5 max t t 24 m m 0;5 6 m 10 Mà m và m 10;10 có 10 giá trị m thỏa mãn bài toán. m Câu 47 Cho hàm số y x 2mx 3m có đồ thị C , với m là tham số. Gọi S là tập hợp các giá trị thực của m để đồ thị C đã cho có 3 điểm cực trị cùng với gốc tọa độ tạo thành bốn đỉnh của một tứ giác nội tiếp đường trịn. Số phần tử của S là. A B 1. C 2. Lời giải Chọn B D 4. x0 Ta có y x 4mx ; y m x Để hàm số có ba cực trị thì m m m 3m 3m Dễ tính được tọa độ ba điểm cực trị của đồ thị trên là A 0; ; B ; ; 2 m m 3m C ; 2 Vì đây là hàm số trùng phương do vậy đồ thị sẽ nhận trục Oy làm trục đối xứng ABC cân tại A , OBC cân tại O nên AO là trung trực của BC Gọi I là tâm đường tròn ngoại tiếp tứ ABO 90 BO AB giác ABOC I AO AO là đường kính hay Trang 19/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ m m AB ; ; BO 2 m m 3m ; 2 m m m 3m m m m 3m 0 suy ra BO AB 2 2 m m3 3m Theo u cầu bài tốn ta đi tìm tất cả các giá của tham số m sao cho: mR m 3,195 tm m0 m m 3m Vậy có 1 giá trị của m thoả mãn u cầu bài tốn. Câu 48 Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a Gọi M , N lần lượt là trung điểm của các cạnh AB , AD Biết hình chiếu của điểm S lên mặt đáy trùng với giao điểm H của CN và DM , SH a Tính khoảng cách d giữa hai đường thẳng DM và SC A d 3a 57 B d a 57 15 C d a 15 D d 2a 57 19 Lời giải Chọn D Trong mặt phẳng SNC kẻ HK song song với SC K SN Theo cách dựng, ta có SC // KMD nên d d SC , MD d SC , KMD d C , KMD 1 Từ N kẻ NP //AB Trang 20/23 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 NH NP NP Có 2 HC CD AM Ta có AMD DNC AMD DNC NDH 900 hay NHD 900 Vì AMD ADM 900 DNH Suy ra DM NC DM NC Ta có DM SNC DM SH Mà DM KMD nên suy ra KMD SNC HK 3 Từ 1 , và 3 suy ra d 4d N , KMD 4d N , HK Do NK //SC nên d N , HK NH 5 d N , SC NC Từ , suy ra d Ta có HC S SNC d N , SC 4 a 2a 20 a 95a a 95 SC 3a NC SC 5 25 25 SH NC 1 SH NC d N , SC SC d N , SC SC 2 a 5a 15 5a 57 38 a 95 95 a 5a 57 2a 57 Suy ra d 38 19 Câu 49 Cho hàm số y m 1 x m 1 x 3m 3 x có đồ thị C , với m là tham số. Một điều kiện cần của m để trên C tồn tại 2 điểm mà tiếp tuyến của C tại hai điểm đó vng góc với nhau là. A m B m m Lời giải C D m Chọn C m 1 x5 m 1 x 3m 3 x C y ' m 1 x m 1 x 3m y y' m x4 x 12 x 12 g x ; g ' x x4 x x x 3 Trang 21/23 – Nguyễn Bảo Vương - 0946798489 Lời giải chi tiết tham khảo tại: https://diendangiaovientoan.vn/ Điều kiện cần để C có 2 điểm mà tiếp tuyến tại 2 điểm đó vng góc với nhau là hàm số y có cực trị. Điều kiện để hàm số y có cực trị thì y ' có nghiệm. 1 Hay m ;3 3 Câu 50 Cho phương trình 3x 32 x 3x m 3x m 3x m , với m là tham số. Có bao nhiêu giá trị nguyên âm của m để phương trình có nghiệm thực? A 5. B 3. C 6. Lời giải Chọn B m3 m3 3 1 m m m m 3 m m 3x 32 x 3x m 3x D 4. 33 x 2x x x x 33 x 3x x x x x x x 3x m 3x m Xét hàm đặc trưng f t t t có f t 3t 0, t Vậy 33 x 3x 3x m 3x m f 3x f 3x m 3x 3x m 32 x 3x m (*) Đặt u 3x , với điều kiện u và đặt g u u u Phương trình (*) g u m g u 2u , g u u ta có bảng biến thiên của g u : 13 Từ bảng biến thiên ta thấy phương trình đã cho có nghiệm thực khi và chỉ khi m Vậy có tất cả 3 giá trị ngun âm của m để phương trình có nghiệm thực là: -3; -2; -1. Trang 22/23 –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 ĐÁP ÁN CHI TIẾT TẢI TẠI BẢN ĐÀY ĐỦ NHÉ! THEO DÕI: FACEBOOK: https://www.facebook.com/phong.baovuong PAGE: https://www.facebook.com/tracnghiemtoanthpt489/ YOUTUBE: https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber WEB: https://diendangiaovientoan.vn/ ĐỂ NHẬN TÀI LIỆU ĐẦY ĐỦ NHÉ Trang 23/23 – Nguyễn Bảo Vương - 0946798489 ... NHÉ Trang 7/7 – Nguyễn Bảo Vương - 0946798489 PHÁT TRIỂN ĐỀ MINH HỌA 2020 TUYỂN TẬP ĐỀ PHÁT TRIỂN ĐỀ MINH HỌA 2020 •ĐỀ SỐ 33 - MỖI NGÀY ĐỀ THI Câu Tính thể tích V của khối hộp chữ nhật có ba kích thước là ... –https://www.facebook.com/phong.baovuong PHÁT TRIỂN ĐỀ MINH HỌA 2020 Câu 22 Cho cấp? ?số? ?nhân un có? ?số? ?hạng thứ hai u2 và? ?số? ?hạng thứ năm u5 24 Tìm cơng bội q của cấp? ?số? ?nhân đã cho. A q B... Trang 2/7 –https://www.facebook.com/phong.baovuong C D PHÁT TRIỂN ĐỀ MINH HỌA 2020 10 Câu 18 Tìm hệ? ?số? ?của x12 trong khai? ?triển? ?của biểu thức 2x x A C102 B C102 28 C C102