1. Trang chủ
  2. » Giáo án - Bài giảng

15 bài toán cực trị trong hình giải tích trong không gian

4 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 359,1 KB

Nội dung

BÀI GIẢNG: TÌM ĐIỂM CĨ YẾU TỐ MIN, MAX MƠN TỐN LỚP 12 - THẦY NGUYỄN QUỐC CHÍ I/ Tìm điểm thuộc mặt phẳng *) Khoảng cách Đại số d ( M ; P)  Ax o  Byo  Czo  D A2  B  C (khoảng cách thường d ( M ; P)  Ax o  Byo  Czo  D A2  B  C ) *) Xét phía, trái phía điểm với mặt phẳng d ( A; P).d ( B; P)   A, B trái phía d ( A; P).d ( B; P)   A, B phía VD1: Cho A(1;3;1) B(2;0; 4) ( P) : x  z   Tìm M  ( P) cho (MA+MB) Hướng dẫn giải: 11  11 244 d ( B; P)   11 d ( A; P)  A Suy A, B khác phía với (P) AM  MB  AB   AM  MB   AB M Suy A, B, M thẳng hàng AB(1; 3;3) B x  t 1  y  3t    AB :   z  3t   x  z    t   3t     t  3 5 M ; ;  2 2 VD2: Cho A(0; 0;1) B(1;1;1) ( P) : x  y  z   Tìm M  ( P) cho (MA+MB) Hướng dẫn giải: A, B phía Gọi B’ điểm đối xứng B qua (P) Truy cập trang http://tuyensinh247.com để học Toán – Lý - Hóa – Sinh – Văn – Anh –Sử - Địa – GDCD tốt nhất! A  BB '  ( P )  BB '  nP  (1;1;1)   B (1;1;1) x  t 1  y  t 1   BB ' :  z  t 1 ( P ) : x  y  z   B M  (t  1)  (t  1)  (t  1)   t 4 4 H ; ;  3 3 B’ Vì H trung điểm BB’ H  B  B' 8 8 5 5  B '  H  B   ; ;   1;1;1   ; ;  3 3 3 3 5 2 AB '   ; ;    5; 5;  3 3  x  5t  Phương trình đường thẳng AB ' :  y  5t  z   2t  Để MA  MB M  AB '  P  M  AB '  M  5t ; 5t ;  2t  M   P   5t  5t   2t    t  5 3  M  ; ;  4 2 VD3: Cho A(2;0;0) B(0;1;0) , ( P) : x  y  z   Tìm M  ( P) cho MA  MB max Hướng dẫn giải: A,B phía A AM  BM  AB B Dấu “=”  A,B,M thẳng hàng M M Truy cập trang http://tuyensinh247.com để học Toán – Lý - Hóa – Sinh – Văn – Anh –Sử - Địa – GDCD tốt nhất!  x  2t    AB(2;1;0) y  t  AB :    A(2;0;0) z  ( P) : x  y  z    2t   t     t   M (4;3;0) A TH: A,B khác phía B’ Gọi B’ điểm đối xứng B qua (P) M Khi đó, M giao điểm AB’ (P) M B II/ Điểm thuộc đường thẳng +) Đưa M (tham số) +) Lập cơng thức  Biến tốn Min, Max VD5: Cho d : x y z    t A(0;0;3), B(0;3;3) Tìm M  (d ) cho (MA+MB) 1 Hướng dẫn giải: M (t ; t ; t ) AM (t ; t ; t  3)  AM  t  t  (t  3) BM (t ; t  3; t  3)  BM  t  (t  3)  (t  3)  AM  BM  3t  6t   3t  12t  18 f (t )  3t  6t   3t  12t  18  f '(t )  6t  3t  6t  Cho f '(t )   t   6t  12 3t  12t  18 3 3 M ; ;  2 2 VD6: Cho  : x  y 1 z  Tìm K  cho KA  KB  3KC min, A(1;1;0), B(3; 1;4), C (1;0;1)   1 Truy cập trang http://tuyensinh247.com để học Tốn – Lý - Hóa – Sinh – Văn – Anh –Sử - Địa – GDCD tốt nhất! Hướng dẫn giải: K (t  1; t  1; 2t  2) KA(2  t ; t ;  2t ) KB(4  t ; 2  t;6  2t ) 3KC (3t ; 3  3t ;9  6t )  KA  KB  3KC  (t  6; t  1; 2t  1)  (t  6)  (1  t )  (2t  1)  6t  6t  38  y'  12t  6t  6t  38 0t  1  3   K  ; ; 3   2  Truy cập trang http://tuyensinh247.com để học Tốn – Lý - Hóa – Sinh – Văn – Anh –Sử - Địa – GDCD tốt nhất! ... thẳng +) Đưa M (tham số) +) Lập công thức  Biến toán Min, Max VD5: Cho d : x y z    t A(0;0;3), B(0;3;3) Tìm M  (d ) cho (MA+MB) 1 Hướng dẫn giải: M (t ; t ; t ) AM (t ; t ; t  3)  AM ... 4 2 VD3: Cho A(2;0;0) B(0;1;0) , ( P) : x  y  z   Tìm M  ( P) cho MA  MB max Hướng dẫn giải: A,B phía A AM  BM  AB B Dấu “=”  A,B,M thẳng hàng M M Truy cập trang http://tuyensinh247.com... http://tuyensinh247.com để học Tốn – Lý - Hóa – Sinh – Văn – Anh –Sử - Địa – GDCD tốt nhất! Hướng dẫn giải: K (t  1; t  1; 2t  2) KA(2  t ; t ;  2t ) KB(4  t ; 2  t;6  2t ) 3KC (3t ; 3 

Ngày đăng: 01/05/2021, 17:23

w